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Abstract: Visual shape recognition — the ability to recognize a wide variety of shapes regardless of their
size, position, view, clutter and ambient lighting — is a remarkable ability essential for complex behavior.
In the primate brain, this depends on information processing in a multistage pathway running from
primary visual cortex (V1), where cells encode local orientation and spatial frequency information, to the
inferotemporal cortex (IT), where cells respond selectively to complex shapes. A fundamental question yet
to be answered is how the local orientation signals (in V1) are transformed into selectivity for complex
shapes (in IT). To gain insights into the underlying mechanisms we investigated the neural basis of shape
representation in area V4, an intermediate stage in this processing hierarchy.
Theoretical considerations and psychophysical evidence suggest that contour features, i.e. angles and

curves along an object contour, may serve as the basis of representation at intermediate stages of shape
processing. To test this hypothesis we studied the response properties of single units in area V4 of primates.
We first demonstrated that V4 neurons show strong systematic tuning for the orientation and acuteness of
angles and curves when presented in isolation within the cells’ receptive field. Next, we found that responses
to complex shapes were dictated by the curvature at a specific boundary location within the shape. Finally,
using basis function decoding, we demonstrated that an ensemble of V4 neurons could successfully encode
complete shapes as aggregates of boundary fragments. These findings identify curvature as a basis of shape
representation in area V4 and provide insights into the neurophysiological basis for the salience of convex
curves in shape perception.
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Introduction

One of the primary attributes of the human vis-
ual system is its ability to perceive and recognize
objects. Humans can recognize an infinite number
of complex shapes rapidly. Such recognition pro-
ceeds seemingly effortlessly under a variety of
viewing conditions — different viewing angles and
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distances, illumination levels, partial occlusion,
etc. Such invariant recognition is a computation-
ally challenging problem because, depending upon
the viewing conditions and the presence of occlud-
ing objects, the image cast by the object on the
retina can be dramatically different. Even so, the
primate visual system segments the relevant parts
of the shape from the scene and then perceives and
recognizes the appropriate object with a speed and
precision that is unmatched by even the most
cutting-edge machine vision systems. Very little,
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however, is known about the neural basis of such
visual shape recognition. Discovering the mecha-
nisms that underlie object recognition will further
our understanding about the workings of the pri-
mate brain. In addition, knowledge of the under-
lying brain mechanisms will help construct better
automated recognition systems that can perform
visual tasks as well as humans.
Ventral visual pathway

The ventral stream or temporal processing path-
way in the primate brain is implicated in the
processing of object shape and color information
(Ungerleider and Mishkin, 1982; Felleman and
Van Essen, 1991). The temporal pathway runs
from primary visual cortex (V1) to V2 to V4 and
into various regions of temporal cortex. This path-
way has been worked out in detail in the macaque
monkey (Felleman and Van Essen, 1991), and
physiological studies in the macaque provide most
of our knowledge about shape processing in the
primate brain.

Neurophysiological studies addressing the ques-
tion of shape representation in the ventral visual
pathway suggest a hierarchical model for shape
processing: successive stages are characterized by
larger receptive fields (RFs) and more nonlinear
response properties. In primary visual area V1 (the
first stage of cortical processing), neurons have
small RFs and the responses encode visual stimuli
in terms of local orientation and spatial frequency
information (Hubel and Weisel, 1959, 1965, 1968;
Baizer et al., 1977; Burkhalter and Van Essen,
1986; Hubel and Livingstone, 1987). V1 simple cell
responses are usually modeled as a linear weighted
sum of the input over space and time (with output
nonlinearities) and complex cell responses as a sum
of the outputs of a pool of simple cells with similar
tuning properties but different positions or phases.
Such models fit observed data quite well (for a
review see Lennie, 2003).

In the next processing stage, area V2, cells have
larger receptive fields — on average the area of a
V2 RF is approximately six times that of a V1 RF
(based on data from Gattass et al., 1981). V2 neu-
rons encode information about complex stimulus
characteristics, in addition to local orientation and
frequency information. Many V2 neurons are sen-
sitive to illusory or subjective contours (while cells
in V1 are not), and this selectivity is thought to be
achieved by pooling from several end-stopped V1
cells (von der Heydt and Peterhans, 1989). There is
also some evidence that V2 responses may encode
stimulus characteristics such as polarity of angles
and curves (Hegde and Van Essen, 2000), texture
borders and stereoscopic depth cues (von der
Heydt et al., 2000). V2 lesions impair discrimina-
tion of shapes defined by higher-order cues but not
those defined by luminance cues (Merigan et al.,
1993). Thus, while V1 responses primarily encode
contours defined by luminance, V2 responses en-
code contours defined by second-order cues as well
(Gallant, 2000).

Several lesion and neurophysiological studies
have demonstrated that area V4, the next stage
along the temporal processing pathway, plays a
crucial role in form perception and recognition.
Bilateral V4 lesions result in severe impairment in
form discrimination (Heywood and Cowey, 1987).
V4 lesions in macaques affect perception of inter-
mediate aspects of stimulus form while sparing
stimulus properties explicitly represented in V1
(Schiller and Lee, 1991; Schiller, 1995; Merigan
and Phan, 1998). For example, V4 lesions reduce
the ability to discriminate the orientation of illu-
sory contours (De Weerd et al., 1996) and to iden-
tify borders defined by texture discontinuities
(Merigan, 1996). In a human patient with a puta-
tive ventral V4 (V4v) lesion, Gallant et al. (2000)
reported impairments in the discrimination of il-
lusory contours, glass patterns, curvatures and
non-Cartesian gratings.

RFs of V4 neurons are much larger than those
in V1 and V2 — on average, at a given eccentricity,
a V4 RF is 16 times the area of a V1 RF. In ad-
dition, V4 neurons have been reported to have
large suppressive surrounds (Desimone et al.,
1985). Thus, V4 neurons have access to stimulus
information over a large region of the stimulus
space and this is thought to serve global perceptual
mechanisms, and contribute to the selectivity of
V4 neurons to stimulus shape. Some V4 neurons,
like complex end-stopped cells in V1 and V2, are
selective for stimulus length, width, orientation
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and spatial frequency (Desimone and Schein,
1987) while others show greater nonlinearity in
their responses than V2 neurons. Some cells en-
code edges explicitly (unlike V1 cells) as suggested
by their strong responses to bars and square-wave
gratings but not to sinusoidal gratings. Gallant
et al. (1993, 1996) demonstrated V4 selectivity for
non-Cartesian polar and hyperbolic gratings. The
authors suggest that selectivity for polar gratings
may mediate perception of curvature. Selectivity
for hyperbolic gratings may play an important
role in image segmentation, since these cells would
respond well to line-crossings, a good source of
information about image structure. Kobatake
and Tanaka (1994) have demonstrated that many
V4 neurons, unlike V2 neurons, respond stronger
to complex than simpler stimulus features. Thus,
while a lot of studies have demonstrated complex
response selectivities in V4 neurons, no coher-
ent, principled representational bases have been
identified.

Unlike the areas that precede it, inferotemporal
cortex (IT) has no discernible visuotopic organi-
zation (Desimone and Gross, 1979). IT neurons
have very large RFs that almost always include the
center of gaze and frequently cross the vertical
meridian into the ipsilateral visual field (Gross
et al., 1972). Anterior IT appears to be the last
stage in the shape processing pathway, since its
efferents project to areas in the temporal and
frontal lobe that are not exclusively concerned
with vision (Desimone et al., 1985). IT neurons
are often selective for complex shapes like faces
and hands (Gross et al., 1972; Perrett et al., 1982;
Desimone et al., 1984; Tanaka et al., 1991). Several
studies have demonstrated that IT neurons, at the
single cell, columnar and population levels, encode
information about features or parts of complex
objects (Schwartz et al., 1983; Fujita et al., 1992;
Kobatake and Tanaka, 1994; Wang et al., 1996;
Booth and Rolls, 1998). Kobatake and Tanaka
(1994) measured the ‘‘complexity’’ of the encoded
features by measuring the ratio between best re-
sponses to complex and simple stimuli and found
that the complexity of encoded shapes increased
from V4 to posterior IT to anterior IT. These
complex shapes often comprised simpler shapes
with a specific spatial relationship between the
component parts (Tanaka et al., 1991; Kobatake
and Tanaka, 1994). Responses were sensitive to
small changes or deletions of the critical attributes
of the multipart objects (Desimone et al., 1984;
Tanaka, 1993; Kobatake and Tanaka, 1994), but
relative responses were insensitive to changes in
absolute position (Sato et al., 1980; Schwartz et al.,
1983; Ito et al., 1995). Studies about the depend-
ence of IT responses on size, position and cue at-
tributes of an object have demonstrated that single
IT neurons can abstract shape properties from
widely varying stimulus conditions (Sary et al.,
1993).
Investigating shape representation in area V4

The results discussed above suggest that, in the
earliest stage of shape processing, responses faith-
fully encode local stimulus characteristics. At suc-
cessive levels, neural responses are dictated by
larger regions of the visual field and become in-
creasingly nonlinear functions of the stimuli. As a
result, neural responses reflect the abstraction of
stimulus form, with local characteristics becoming
increasing irrelevant in determining the neural re-
sponse. At the highest stages, responses encode the
global shape and are largely invariant to local cue
information, position, size, etc. How is this
achieved, i.e. how are local orientation and spatial
frequency signals in V1 transformed into selectivity
for complex shapes in IT? To gain insights into the
mechanisms that underlie this transformation of
stimulus representation, we need to decipher the
neural basis of representation at intermediate
stages between V1 and IT. At successive stages of
processing we need to discover the relevant stim-
ulus dimensions and the quantitative relationship
between those dimensions and the neural response.
The relationship between the bases of representa-
tion at successive stages will reveal the computa-
tions required and will thereby provide insights
into the underlying mechanisms. This will also
provide clues about how these representational
schemes might underlie perception and recognition.

To this end, we sought to discover the bases of
shape representation in area V4, an intermediate
stage in the ventral visual pathway. As described
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above, V4 neurons show selectivity for a wide va-
riety of complex stimuli but the specific shape di-
mensions represented are as yet unknown. We
therefore studied V4 neurons with the specific aim
of discovering the underlying tuning dimensions.
The ideal, most desirable, approach to investigat-
ing the basis of shape representation in any neuron
would be to study the responses to a large set of
complex natural stimuli created by uniformly
sampling all of ‘‘shape space’’. Then, analytical
approaches with minimal assumptions, such as
spike-triggered covariance, could be used to ex-
tract the shape dimensions along which the re-
sponses vary maximally. However, even a coarse,
uniform sampling of shape space would require
thousands of stimuli, since object shape varies
along a very large number of dimensions. For ex-
ample, all possible combinations from a 10� 10
pixel patch, whose pixels take one of two values
(background or preferred color of cell), will result
in 2100 stimuli. Such an exhaustive search ap-
proach would be impractical, since a primary ex-
perimental consideration is the length of time, on
average 1–2 hours, a single cell can be studied in an
awake behaving animal. A pragmatic alternative
would be to explore shape space in a directed
fashion for principled investigations of a specific
hypothesis about shape representation. Depending
on the hypothesis, an answer could be arrived at
by targeted sampling of the relevant subregion of
the extremely large shape space consisting of all
possible two-dimensional (2D) shapes. We fol-
lowed this approach to decipher the bases of rep-
resentation in area V4. On the basis of theoretical,
psychological and physiological studies we identi-
fied candidate dimensions for representation in
area V4 (see below) and then studied the response
characteristics of neurons as a function of the
shape dimensions in question.
Contour characteristics as basis of shape

representation

What might be a good candidate dimension of
shape representation in area V4? To answer this
question we turned to theoretical and psychophys-
ical studies. Many modern shape theories and
computational models propose a scheme of recog-
nition by hierarchical feature extraction, i.e. ob-
jects are first decomposed into simple parts that
are pooled at subsequent stages to form higher-
order parts. This approach has been motivated in
part by physiological findings of selectivity for
simpler features in earlier stages (see above). It has
also been motivated by the human ability to dis-
cern the various parts of an object and their rel-
ative positions in addition to recognizing the
object as a whole. There is also some psycholog-
ical evidence for the hypothesis that recognition
proceeds by parsing shapes into component parts
and then identifying the parts and the spatial re-
lationships between them (Biederman, 1987;
Biederman and Cooper, 1991). Finally, from a
practical and informational standpoint, such basis
representations are advantageous — they provide
data compression and are therefore compact and
good for further computations.

Feature-based models for visual shape represen-
tation vary widely in the number of hierarchical
levels and the nature of features or shape primi-
tives extracted at each stage. Beyond local edge
orientation, which most models invoke as the first-
level feature, shape primitives extracted at inter-
mediate levels are related to the object boundaries
(Attneave, 1954; Milner, 1974; Ullman, 1989;
Poggio and Edelman, 1990; Dickenson et al.,
1992) or to its volume (Biederman, 1987; Pentland,
1989). While boundary-related features (i.e. con-
tour features) include 2D angles and curves and
three-dimensional (3D) corners, curved surface
patches and indentations, solid or volumetric
primitives (generalized cones or geons) are simple
3D shapes such as cylinders, spheres, etc. defined
by the orientation of their medial axes and several
cross-sectional attributes.

Several theoretical studies have asserted the im-
portance of contour features as a basis of represen-
tation: they are high in information content and
lead to an economical representation (Attneave,
1954), they are largely invariant to deformation
(Besl and Jain, 1985) and can be constructed from
local edge orientation and curvature signals (Milner,
1974; Zucker et al., 1989). Further, they form nat-
ural parts for constructing more complex represen-
tations. Psychological findings imply specialized
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mechanisms for the perception of contour fea-
tures: angle perception acuity is higher than that
predicted by component line orientation acuity
(Chen and Levi, 1996; Heeley and Buchanan-Smith,
1996; Regan et al., 1996), the detection thresholds
for curvilinear glass patterns is much lower than
that for radial glass patterns (Andrews et al., 1973;
Wilson et al., 1997) and detection of curved targets
among straight distractors is faster than that for
straight targets among curved distractors (Triesman
and Gormican, 1988; Wolfe et al., 1992).

Thus, based on theory and psychophysics, con-
tour features seem to be a good choice for the basis
of shape representation beyond local orientation.
But does the primate visual system actually extract
contour features as intermediate-level shape prim-
itives beyond oriented edges, in the process of rec-
ognizing visual shape? In this paper we describe
experiments that explicitly test this hypothesis. If
contour features, i.e. convex projections and con-
cave depressions along the object contour, are in-
deed extracted in area V4 then one would expect:
a)
 At least some cells to be strongly and sys-
tematically tuned to contour features.
b)
 Responses to complex shapes to be dictated
primarily by specific contour features along
the object contour.
c)
 Population representation of complex
shapes, in terms of their component contour
features, to be complete and accurate.
Below, we demonstrate that each of these state-
ments is true for area V4. In our experiments,
roughly 33% of V4 neurons showed strong sys-
tematic tuning for contour features, i.e. angles and
curves, presented in isolation within their RFs.
(Pasupathy and Connor, 1999). Responses of many
V4 neurons to moderately complex shapes are dic-
tated by the curvature of the contour at a specific
location relative to object center (Pasupathy and
Connor, 2001). Finally, the estimate of V4 popu-
lation representation, derived from single cell re-
sponses and curvature tuning properties, provides
a complete and accurate representation of complex
2D contours (Pasupathy and Connor, 2002). These
results suggest that contour characteristics (param-
eterized in terms of contour curvature) at a specific
spatial location relative to object center are a basis
for shape representation in area V4. Certainly there
are other important shape dimensions encoded in
area V4 (see the section ‘‘Discussion’’). Our results
described below demonstrate that contour features
are an important dimension.
Tuning for isolated contour features in area V4

If contour features are a basis of representation
then we would expect single cells to respond se-
lectively to angles and curves presented in isolation
within the cell’s RF. This is the first question we
addressed with our experiments.

We studied the responses of 152 V4 neurons to a
large parametric set of single contour features.
Many V4 neurons showed strong systematic tuning
to these contour feature stimuli responding prefer-
entially to angles and/or curves oriented in a specific
direction (Pasupathy and Connor, 1999). Fig. 1A
shows the responses of a V4 neuron to the angles
and curves that we used in this study. Each icon
shows a stimulus with the background gray level
representing the average response rate based on five
stimulus repetitions. The stimuli were angles, curves
or straight edges, presented in isolation within the
center of the RF, in the optimum color for the cell
under study (shown here in white) as determined by
preliminary tests. Stimulus luminance was constant
within the estimated RF boundary and gradually
faded into the background gray over a distance
equal to estimated RF radius.

The stimulus set included convex, concave and
outline angles and curves that pointed in one of
eight directions at 451 intervals (orientation 451,
901, etc.) and subtended one of three angular ex-
tents (acuteness: 451, 901, 1351). Four edges and
lines were also included for a total of 156 stimuli.
Stimuli were flashed for 500ms each and were
separated by an interstimulus interval of 250ms. A
sequence of five stimuli comprised a trial. The en-
tire stimulus set was presented in random order
without replacement five times.

For the cell in Fig. 1A, response rates range
from 0 (light gray) to 4272.3 spikes/s (black) as
indicated by the scale bar. Responses to acute and
right angle convex stimuli pointing in the 135–1801
range were strong while the same stimuli drawn as
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Fig. 1. Examples of V4 responses to contour feature stimuli. Each icon represents a stimulus drawn against a dark background.

Circular boundaries were not a part of the actual stimulus display. Each stimulus consists of a straight edge, angle, or curve drawn as a

convex projection, outline or concave indentation, centered within the RF. Boundaries are sharp within the RF and gradually fade into

the background. Entire extent of fading is not shown here. (A) Example response pattern showing contour feature tuning. Responses

of a cell showing strong tuning for sharp angles pointed in the 135–1801 range. Background gray levels indicate average responses over

five repetitions as per scale bar on the right. (B) Another example of contour feature tuning. Responses show tuning for curves pointed

in the 315–3601 range. (C) Example response pattern showing orientation tuning. Cell responded strongly to many stimuli that contain

a 751 oriented edge or line. Figure originally published in Pasupathy and Connor (1999).
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outlines elicited moderate responses. Responses
were weaker to smooth (vs. sharp), obtuse (vs.
acute) and concave (vs. convex) features. The re-
sponses of this cell contribute to a clear, strong,
unimodal peak in the orientation� acuteness con-
tour feature space (for detailed analysis see
Pasupathy and Connor, 1999). These results can-
not be explained in terms of orientation tuning for
individual edges, since many of the least effective
stimuli (including the straight edges) contain the
same edge orientations as the most effective stim-
uli. This result is strikingly different from the re-
cently reported angle selectivity in area V2 (Ito and
Komatsu, 2004). Unlike in V4, angle-selective V2
units responded in comparable amounts to the
preferred angle and to one or both of its compo-
nent end-stopped lines.

A second example of contour feature tuning is
shown in Fig. 1B. Convex and outline curves ori-
ented at 3151–3601 elicited strong responses from
this cell. Responses were strongest to 901 curves
but the cell responded well to some obtuse curves
as well. Unlike the previous example, this cell did
not respond to sharp angle stimuli. Here again,
stimuli that drive the cell are clustered together
contributing to a single strong peak of high re-
sponses in the stimulus space.

Unlike the previous examples, the cell in Fig. 1C
did not show clustering of strong responses in the
stimulus space. This cell responded well to a variety
of angle and curve outline stimuli containing edges
oriented near 751 as part of the stimulus. In the
preliminary bar orientation test, this cell demon-
strated strong orientation tuning with a peak at
751. The response pattern exhibited by this cell re-
flects this orientation tuning, since the responses to
contour features are primarily dictated by the com-
ponent orientations of the contour feature stimuli.

Contour feature tuning described above
(Figs. 1A, B) cannot be explained in terms of tun-
ing along simpler stimulus dimensions such as edge
orientation, contrast polarity or spatial frequency.
Component edges of the optimal stimuli also ap-
peared in other stimuli that failed to evoke strong
responses from the cell. Secondly, tuning for the
orientation of a contour feature was consistent
across the three (451, 901, 1351) acuteness values
despite differences in component edge orientation
and, finally, responses to contour feature stimuli
were almost always greater than to single lines or
edges. Tuning for spatial frequency or contrast
polarity fails to explain contour feature tuning be-
cause both optimal and nonoptimal stimuli were
composed of similar spatial frequencies and con-
trast polarities. Further, contour feature tuning
was consistent across convex, concave and outline
stimuli despite substantial differences in contrast
polarity and spatial frequency content. Consist-
ency of tuning across convex, concave and outline
stimuli also argue against explanations in terms of
area of stimulation or differential surround stim-
ulation hypotheses. Finally, contour feature tun-
ing cannot be explained in terms of hotspots in the
RF because tuning profile (rank-order of re-
sponses) was similar at different positions in the
RF (Pasupathy and Connor, 1999).

Roughly one-third of the entire sample of
152 V4 cells showed strong unimodal peaks
(as in Figs. 1A, B) in this orientation� acuteness
contour feature space. Most cells responded best
to either convex or outline stimuli. This bias to-
wards convex features parallels findings of percep-
tual significance of convex features reported by
several psychophysical studies (see the section
‘‘Discussion’’). A majority of cells also responded
preferentially to 451 (more acute) stimuli but this
acuteness bias was weaker than that for convexity.
Many cells responded equally well to both angle
and curve counterparts while other cells were
clearly biased toward either sharp or smooth stim-
uli. In the case of curves, the angle subtended
by the contour feature is analogous to contour
curvature — more acute angles correspond to
higher curvature. Thus, tuning along the acuteness
dimension suggests that curvature may be an im-
portant shape dimension encoded by V4 neurons.
We explored this further in the next set of exper-
iments.

The results above demonstrate that V4 neurons
carry explicit information about the orientation
and acuteness of contour features when presented
in isolation. This suggests that angles and curves
along the object contour could serve as interme-
diate-level primitives, and that V4 neurons could
encode 2D contours in terms of their component
angles and curves. To ascertain if they do, in our
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second set of experiments, we tested how V4 neu-
rons respond when contour features are presented
in the context of a closed 2D contour. Do V4
neurons tuned for contour features represent com-
plex shapes in terms of their component contour
features, i.e. are the responses to complex shapes
dictated by convex and concave features along the
shape contour? To answer this question we studied
the responses of single V4 neurons to a set of
complex shapes created by a systematic combina-
tion of convex and concave contour features and
the results are discussed below.
Conformation of 2D contours dictate responses of

V4 neurons

If contour features are a basis for shape represen-
tation in area V4, then responses of V4 neurons to
complex-shape stimuli will carry reliable informa-
tion about the component contour features of the
shape in question. To test this question, in the sec-
ond set of experiments, we studied the responses to
complex-shape stimuli of 109 V4 neurons that
showed preferential responses to contour features
in preliminary tests (Pasupathy and Connor, 2001).
A large parametric set of complex shapes, created
by systematic variation of curvature along the ob-
ject contour, was used to study the responses of V4
neurons. An example is shown in Fig. 2.

Each stimulus (shown in white) consisted of a
closed shape, presented in the optimal color for the
cell, in the center of the RF (represented by the
surrounding circle). All parts of all stimuli lay
within the estimated RF for the cell under study.
The stimulus set consisted of 366 complex shapes
with varying combinations of convexities and con-
cavities along the contour. Stimuli had two, three
or four convex projections that were separated
by 901, 1351 or 1801. Convex projections were
sharp points (01 location stimulus 2) or medium
convexities (1351 location stimulus 2). The inter-
vening contours between the convex projections
were rendered as arcs of circles whose curvature
and convexity were defined by the angular sepa-
ration and curvature of the adjoining convex pro-
jections. Smooth transitions between contour
segments were achieved by rendering the stimuli
as piecewise cubic b-splines through the control
points associated with the contour segments. Stim-
uli were presented in eight orientations (horizontal
within each block) at 451 intervals except for stim-
uli that were rotationally symmetric. The stimulus
set also included two circles with diameters 3/16
and 3/4 of estimated RF diameter. Stimulus pres-
entation protocol was as in experiment above.

For the example in Fig. 2, response rates ranged
from �6.370.0 (light gray) to 38.177.0 spikes/s
(black). This cell responded strongly to a wide va-
riety of shapes that had a sharp convexity in the
lower left corner of the object (angular position
2251) with an adjoining concavity in the counter-
clockwise direction. Stimuli with a medium con-
vexity at 2251 elicited a moderate response from
the cell. For example, compare the responses to
stimuli 1 and 3 or stimuli 2 and 4, which differ in
their contour only at angular position 2251. In
both cases the stimulus with the sharp convexity
(stimuli 1 and 2) elicited the stronger response. In
contrast, stimuli with a broad convexity or a con-
cavity at 2251 did not drive the cell. Curvature of
the contour from 01 to 901 varied widely across
stimuli that evoked strong responses from the cell.
The results described so far suggest that the con-
tour curvature at a specific angular position
strongly dictates the responses to complex shapes.

To quantify the functional relationship between
the contour characteristics and the neural re-
sponse, we represented each stimulus in a multi-
dimensional shape space in terms of its contour
characteristics and then modeled the relationship
between the stimulus dimensions and the neuronal
responses. Each stimulus in our set can be ap-
proximated by 4–8 constant curvature segments
that are connected by short segments with variable
curvature entirely determined by the adjoining
segments. Therefore, each shape can be uniquely
represented using a discretized and simplified rep-
resentation of just the constant curvature seg-
ments. These constant curvature segments that
comprise the stimuli could be uniquely described
just in terms of the angular position relative to
center (or tangential orientation) and contour cur-
vature. For a general unconstrained 2D closed
contour unique representation would require
additional dimensions such as position along the
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Fig. 2. Example cell from the complex shape test. Within each dark circle, which represents the RF, a complex shape stimulus is drawn

in white. The circular boundaries were not an actual part of the visual display. Stimuli were constructed by systematic variation of the

convexities and concavities along the contour. Stimuli are divided into groups on the basis of the number of convex projections and the

angular separation between convex projections. Background gray level represents average response, to the corresponding stimulus, as

per scale bar on the right. Shapes with a sharp convexity pointing to the lower left and an adjoining concavity in the counterclockwise

direction elicit strong responses from this cell. Numbers to the upper right of stimuli correspond to references in text. Original figure

published in Pasupathy and Connor (2001).
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contour, radial position relative to the center of
the stimulus and local tangential orientation. Here,
since several of these dimensions co-vary, repre-
sentation in terms of just curvature and angular
position is unique.

In this scheme, each stimulus is represented by
four to eight points in the curvature by angular
position space. For example, stimulus 1 is repre-
sented by six points: one for each of the convex
points and the intervening concavities. To quantify
the dependence of the neural response on angular
position and contour curvature, we modeled the
neural response as a 2DGaussian function (product
of two 1D Gaussians with no correlation terms)
of contour curvature and angular position. Here,
response of a neuron to a stimulus was the max-
imum of the responses predicted by its compo-
nent contour segments. The parameters for these
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curvature�position tuning functions (peak position
and standard deviation (SD) for each of the two
dimensions and the amplitude of the Gaussian) were
estimated by minimizing the sum of squared errors
between predicted and observed responses (for fur-
ther details, see Pasupathy and Connor, 2001).

The tuning surface predicted by the best fitting
curvature � position model, for the example in
Fig. 2, is shown in Fig. 3. The horizontal axes rep-
resent angular position (01–3601) and contour cur-
vature (�0.31–1.0; negative values represent
concavities and positive represent convexities).
The z-axis and surface color represent the pre-
dicted normalized response. The peak of the
Gaussian surface is at contour curvature equal to
1.0 and angular position equal to 229.61, predicting
strongest responses to stimuli with a sharp convex
projection at or near the lower left corner of the
object. Tuning along the angular position dimen-
sion was narrow (SD ¼ 26.71), implying that a
small range of positions (centered at 229.61) of the
sharp convexity evoked strong responses. Predicted
responses were close to zero for stimuli with broad
convexities and concavities at the lower left. The
goodness of fit of the model, in terms of correlation
between observed and predicted values, was 0.70.

The predictions of the 2D model do not accu-
rately reflect the responses of the cell. The model
predicted high responses to all stimuli with a sharp
convexity at the lower left of the object. However,
several stimuli with sharp convex projections at
the lower left elicited weak responses from the cell
(see stimuli 5–8, Fig. 2). Among the stimuli with a
sharp convexity at the lower left, those with a
concavity in the counterclockwise direction
(�2701) evoked stronger responses than those
with a broad convexity in that same location
(stimuli 5–8). Thus, an adjoining concavity is es-
sential for a strong response.

To include the influence of the adjoining con-
tour segments, we built a four-dimensional (4D)
curvature� position model. In addition to angular
position and the corresponding contour curvature,
we included curvatures of the adjoining contour
segments as independent variables. The 4D model
was a product of four 1D Gaussians with no sec-
ond-order correlation terms. This model had nine
parameters: peak position and SD associated with
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each of the four dimensions and a parameter for
the amplitude of the Gaussian. Fig. 4 illustrates
the tuning profile predicted by the 4D model for
the example in Fig. 2. This figure shows 16 surface
plots, each of which is a slice through the multi-
dimensional Gaussian model at different values for
the adjoining curvature segments. Horizontal po-
sition of each plot represents curvature of the
counterclockwise (CCW) contour segment, and
vertical position represents curvature of the clock-
wise (CW) curvature segment. For example, the
surface plot in the lower left corner represents the
curvature� position tuning profile for the cell
when the adjoining contour segments are both
concave (curvatures: CCW ¼ –0.55, CW ¼ –0.2).
The horizontal axes for each surface plot represent
contour curvature and angular position of the
central contour segment, and the z-axis plots pre-
dicted normalized response. The peak of the 4D
model was at 230.041 and 1.0 along the angular
position and central curvature dimensions, similar
to the results of the 2D model. In addition, the
curvature of the CCW segment had an influence
on the predicted response as illustrated by the
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scaling of the Gaussian peak with CCW curvature
(across each row). The tuning profile along the
CCW curvature dimension had a peak at broad
concavity (curvature ¼ –0.15, second column), and
the predicted response dwindled with more convex
or concave curvature values. Thus, for stimuli with
a sharp convexity at the lower left of the object, the
model predicted strong responses when it was
flanked by a concavity in the CCW direction and
weaker responses when it was flanked by a broad
convexity (such as stimuli 5–8, Fig. 2). In contrast,
the curvature of the CW segment exerted a weak
influence on the response profile as indicated by the
almost identical tuning profiles down each column.
Tuning along the angular position dimension was
narrow (SD ¼ 25.81), implying that the preferred
pattern of contour curvature evoked a strong re-
sponse if it occupied a small range of angular po-
sitions in the lower left of the object.

The SD parameters for the CCW, CW and cen-
tral curvature dimensions were 0.21, 1.08 and 0.5,
respectively. High SD (compared to 1.31, which is
the range of curvatures sampled) implies a flat,
broad-tuning profile with a small maximum–
minimum response difference over the range of
curvatures sampled, and therefore a weak depend-
ence of the response on the corresponding dimen-
sion. A low SD implies narrow tuning with a large
maximum–minimum response difference, and
therefore a strong influence on the response. Just
as illustrated by the surface plots in Fig. 4, the SD
parameters for the 4D model imply a strong de-
pendence of the predicted response on the central
and CCW contour segments. The goodness of fit
represented by the correlation coefficient was 0.82
for this 4D model.

The coefficient of correlation between observed
and predicted responses (r) was used to assess the
goodness of fit of the 2D and 4D curvature �

position models. For 101/109 cells, the 2D model
produced a significant fit (F test, po0.01) and the
median of this distribution was 0.46. Inclusion of
the two adjoining curvature segments in the 4D
model significantly improved the fit in 93/109 cases
(partial F test, po0.01) and the median of the r

distribution increased to 0.57. The model’s validity
was confirmed by predicting responses to stimuli
that were not used to derive the tuning functions.
Alternate hypotheses

Can the response patterns described above be ex-
plained in terms of previously described tuning
properties of V4 neurons such as edge orientation,
bar orientation or contrast polarity? We tested
these alternate hypotheses explicitly and found
that none explained the results presented here. For
each cell, we modeled the responses to complex
shapes as a function of edge orientation and con-
trast polarity and assessed the goodness of fit. We
also modeled responses as a function of bar ori-
entation, length and width. Third, we tested
whether responses to complex shapes were a func-
tion of the mass-based shape of the object by rep-
resenting each shape in terms of its principal axis
orientation and the aspect ratio of the approxi-
mating ellipse. For most cells, the predictive power
of these models was poor (median ro0.3) and the
2D and 4D curvature� position models provided
superior fits to the observed data. The 2D model
had as many or fewer parameters than these al-
ternate models. Therefore, the quality of fits was
not simply a function of the number of parameters
in the model but a true reflection of the cell’s tun-
ing along the corresponding stimulus dimensions
(such as curvature, edge orientation, etc.).

Another potential explanation is that the ap-
parent shape tuning is due to selective activation of
hotspots in the RF. In other words, rather than the
shape of the bounding contour, the strength of the
response may simply depend on whether certain
subregions of the RF are stimulated by the visual
stimulus. If this were the case then shape tuning
would be dependent on the position of the stim-
ulus within the RF. We investigated position de-
pendence of shape tuning in roughly one-third of
the neurons. For each cell, we presented a subset
of stimuli at multiple positions within the RF. The
subset included at least one stimulus that had the
preferred contour segment (as determined by its
responses to complex shapes and the angular po-
sition-curvature model) as part of its contour and
another stimulus that did not. In all we found that
responses to all stimuli were modulated as a func-
tion of the position of the stimulus in the RF.
However, the responses to the preferred stimulus
were greater than those to the nonpreferred for all
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stimulus locations, i.e. while responses decreased
in magnitude the preferred features were consistent
at all locations within the RF (Pasupathy and
Connor, 2001).

The curvature�position models discussed so far
test whether complex shape responses were dictated
by a specific sector along the object contour. An-
other possibility is that responses were dictated by
two (or more) noncontiguous regions of the contour.
We investigated this hypothesis by modeling the
neuronal responses to complex shapes as a function
of two noncontiguous sections of the contour sep-
arated by 1801. We restricted the angular separation
to 1801, since curvatures of contour segments closer
than 1801 were not entirely independent of each
other. This 3D model, consisting of one angular
position and the curvatures of two contour segments
as independent variables, had seven parameters. The
performance of the model (median r ¼ 0.47) was
similar to the 2D curvature� position model, i.e. the
second (noncontiguous) contour segment made a
negligible contribution to the predictive power of the
model. This suggests that the curvature� position
models with contiguous contour segments provide a
better description of the responses of V4 neurons. A
sum of Gaussian’s model, where each Gaussian was
4D, further confirmed the negligible influence of
other regions of the contour.

As alluded to earlier, in this stimulus set object-
centered angular position and tangential orienta-
tion for the curvature segments comprising each
shape were completely dependent on each other,
since the curvature segments were pointed directly
away from or towards the object center. With a
secondary test, we sought to determine whether
the true dependence of the neural response was on
object-centered angular position or on orientation
of the corresponding curvature segment. We tested
cells with a stimulus set (Fig. 5), in which these two
factors are partially segregated, since the convex
extremities are offset (orthogonal to the main axis)
in the CW and CCW directions. If curvature ori-
entation (i.e. the pointing direction of the convex
extremities) were the only significant dimension,
then tuning patterns should be similar (though
scaled in amplitude) across the three blocks of
rows in Fig. 5. In fact, the tuning patterns are very
different. In the top block, responses are strongest
for the CCW orthogonal offset; in the middle block
responses are strongest for the stimuli with no or-
thogonal offset; in the bottom block, responses are
strongest for the CW orthogonal offset. This re-
versal pattern reflects tuning for angular position:
at each orientation, the most effective stimuli are
those with convex extremities near 451 relative to
the object center. A similar reversal pattern was
observed for 23/29 cells. For each of the 29 cells we
determined the orthogonal offset position that ex-
cited the cell most for each of the three stimulus
orientations tested. A linear regression between the
orthogonal offset position and stimulus orientation
had a negative slope in 23 cases indicating a re-
versal pattern in the responses similar to the pat-
tern shown here. Also, interaction between
orthogonal position and stimulus orientation was
significant in all 23 cases that showed selectivity for
polar position of the feature relative to the object
center. These findings suggest that the position of
boundary pattern relative to object center does
dictate the neural response in V4.

The experiments described so far demonstrate
that the neurons in area V4 are tuned to contour
curvature at an object-centered position. This tun-
ing cannot be explained in terms of other previously
described properties of V4 neurons. The responses
cannot be described in terms of hotspots in the RF.
Thus, these results suggest that boundary confor-
mation, which can be parameterized in terms of
contour curvature, at a specific position relative to
object center, may be a basis of shape representa-
tion in area V4. If this were true then we would
expect a complete and accurate representation of
2D shape contours in terms of contour curvature in
the V4 population response. We tested this hypoth-
esis explicitly and the results are described below.
Ensemble representation of 2D contours in area V4

How complete and accurate is the representation
of 2D contours at the population level in area V4?
We tested this question by deriving the population
representation for each shape in our stimulus set
using basis function decoding. As a first approach
to population analysis, we focused on the simpler
curvature� position 2D domain. All 109 cells that
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responses are strongest for stimuli with the sharp convex point at the upper right corner of the object. For instance, at 01 stimulus

orientation, CCW orthogonal position elicits the strongest response, at 451 center elicits the strongest response, and at 901 CW elicits

the strongest response. Figure from Pasupathy and Connor (2001).
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we recorded from were included in the population
analysis.

We used the curvature� position tuning func-
tions (e.g. Fig. 3) to estimate the V4 population
response to each shape in our stimulus set. Fig. 6
shows the results of this analysis for an example
stimulus, the ‘‘squashed raindrop’’ shape shown at
the center. The curvature� position functional
representation of this shape is drawn as a white
line in the surrounding polar plot. This function
has peaks and troughs corresponding to the major
features of the shape: a medium convex peak at 01
(right), a concave trough at 451 (upper right), a
sharp convex peak at 901 (top), etc. Our analysis
was designed to determine whether similar curva-
ture/position information could be decoded from
the neural responses.
To derive the population response, we scaled
each cell’s tuning peak by its response to the shape
in question. Thus, each cell ‘‘voted’’ for its preferred
boundary fragment with strength proportional to
its response rate. The entire set of scaled tuning
peaks defined a surface representing coding strength
for all combinations of curvature and position. The
(Gaussian) smoothed resulting surface is shown as a
color image in Fig. 6. Here, color represents the
strength of the population representation for the
corresponding curvature/position combination.
Red represents strong population representation
for the corresponding feature, and blue represents
weak population representation. The actual curva-
ture function is re-plotted in white for comparison.
The population surface contains peaks (red) corre-
sponding to the major boundary features of the



Fig. 6. Estimated population response for an example shape.

Top: The shape in question is shown in the center. The sur-

rounding white line plots boundary curvature (radial dimen-

sion) as a function of angular position (angular dimension) in

polar coordinates to highlight the correspondence with bound-

ary features. Bottom: Estimated population response across the

curvature�position domain (colored surface) with the true

curvature function superimposed (white line). X-axis represents

angular position; Y-axis represents curvature. Color scale runs

from 0.0 (blue) to 1.0 (red). The peaks and troughs in the cur-

vature function are associated with peaks (red) in the popula-

tion representation. All the prominent boundary features of the

shape are strongly encoded by the V4 population representa-

tion. Figure from Pasupathy and Connor (2002).

Fig. 7. Estimated population response for a second example

shape. Top: The shape. Bottom: Estimated V4 population re-

sponse is shown with the curvature function superimposed in

white. Axes and details as in Fig. 6. The three strong peaks (red)

at convex curvatures and the somewhat weaker peaks (yellow)

at concave curvatures correspond well, in terms of curvature

and angular position, with the six prominent boundary features

of the shape in question.
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stimulus: the sharp convexity at 901, the medium
convexities at 01 and 1801, the broad convexity at
2701, and the concavities at 451 and 1351.

A second example is shown in Fig. 7. Again, the
population representation contains peaks associated
with all of the major boundary features of the stim-
ulus: sharp convexity at 901 and 2251, medium con-
vexity at 3151, and the three intervening concavities.
We obtained similar results for all 49 shapes in our
stimulus set — the V4 population representation
had peaks associated with all of the major boundary
features for each shape. Thus, the V4 population
signal provides a complete representation of 2D
shape contours in terms of contour curvature and
angular position. To assess the accuracy of the
population representation, for each shape we com-
puted the mean absolute difference between the
population peaks and the nearest points on the true
curvature� position function. For all shapes the
errors in representation were small in both dimen-
sions: median difference was 4.041 along the angular
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position dimension and 0.0704 along the curvature
dimension. Thus, the peaks in the population sur-
face corresponded closely to the boundary compo-
nents in the original shape and therefore provided a
complete and accurate representation of the stimuli
used here. Thus, the V4 population signal carries all
the information needed to represent, perceive and
recognize the 2D shape contours used here.
Discussion

Previous studies suggest that area V4 encodes shape
in terms of edge orientation, spatial frequency, and
bar orientation, length and width (Desimone and
Schien, 1987). The results presented here add an-
other pair of dimension to this list — contour cur-
vature and object-centered position. Individual V4
neurons carry information about the boundary
conformation at a specific location along the shape
contour and the V4 population as a whole encodes
a complete and accurate representation of the entire
2D contour in terms of its boundary configuration.
With these results we can now successfully describe
the responses of many V4 neurons to a more gen-
eral class of curves; such a description using edge
and bar orientation models alone is poor. Thus,
these findings extend our understanding of V4 re-
sponses to a larger class of 2D shapes.

Our results are consistent with studies demon-
strating selectivity for complex shapes with curved
parts in area V4 (Gallant et al., 1993; Kobatake
and Tanaka, 1994; Gallant et al., 1996; Wilkinson
et al., 2000) and IT (Schwartz et al., 1983; Tanaka
et al., 1991; Janssen et al., 1999). They also rein-
force previous evidence for the extraction of coarse
curvature information at earlier levels by end-
stopped cells (Heggelund and Hohmann, 1975;
Dobbins et al., 1987; Versavel et al., 1990). Re-
cently, Ito and Komatsu (2004) suggested that the
process of angle extraction may start but not at-
tain completion in area V2 because angle-selective
V2 units respond in comparable amounts to the
component end-stopped lines as well. Perhaps
then, this process of angle and curve encoding
which starts in V2 (or even V1) culminates in the
representation of 2D boundaries in terms of their
contour features as demonstrated here.
The dimensions used to quantify the encoded
boundary features need not have been curvature
and angular position — other parameterization
schemes that describe contour characteristics
might be as or more effective. However, as dis-
cussed above, results cannot be explained in terms
of mass-based orientation parameters, tuning for
oriented bars or lower-level factors such as edge
orientation, contrast polarity and spatial fre-
quency. Also, response patterns exhibited by these
cells cannot be explained in terms of area of stim-
ulation or by differential surround stimulation.
Thus, many V4 neurons carry information about
2D object boundaries in terms of component
shape and position. At the population level, this
representation is complete and accurate. These re-
sults suggest that V4 neurons represent complex
2D contours in a piecewise fashion, encoding in-
formation about curvature and other characteris-
tics of a section of the shape boundary.
Implications for perception

Several psychophysical studies have reported high
sensitivity in humans for the detection of curved
elements in visual displays (Andrews et al., 1973;
Triesman and Gormican, 1988; Wolfe et al., 1992;
Wilson et al., 1997). Our results demonstrating
explicit representation of curvature in area V4
provides a physiological basis for this increased
sensitivity to curves. In the experiments presented
above, when contour features were presented in
isolation and in the context of complex shapes,
selectivity for sharp convexities was overrepresent-
ed while that for concavities was rare. The distri-
bution of Gaussian tuning peaks along the
curvature axis was independent of RF eccentricity
and showed a consistent bias toward sharp con-
vexities at all eccentricities. This bias was evident
even when curvature was finely sampled (in the
secondary fine-scale tuning test). These findings
suggest a biased representation of shape in terms
of sharp convexities. In the complex-shape study,
we sampled curvatures in the range of �0.31 (me-
dium concavity) to 1.0 (sharp convexity). It is
possible that sharp concavities are also strongly
represented in the cortex and the true bias is in
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favor of sharp curvatures rather than sharp con-
vexities. However, results from the first experiment
with isolated contour features suggested otherwise.
In those experiments, the same ranges of concave
and convex curvatures were sampled and the re-
sults showed a strong bias in favor of convexities.
Taken together, these results suggest a bias toward
shape representation in terms of sharp convexities.

The overrepresentation of neurons that encode
shape in terms of convex projections makes sense
from a functional point of view — encoding object
shape in terms of sharp convexities leads to a
highly efficient and economical shape description,
since high curvature regions appear to be rich
sources of shape information (Attneave, 1954). The
neuronal bias toward convex features may also
underlie their perceptual salience. Researchers have
found that convex projections, rather than concave
indentations, provide the basis for figure/ground
interpretations (Kaniza and Gerbino, 1976) and
shape similarity judgements (Subirana-Vilanova
and Richards, 1996) in human observers. The
greater representation of neurons that encode
shape in terms of convex projections may under-
lie the perceptual significance of convex features.
Our results provide neurophysiological evidence in
support of the ‘‘curvature minima’’ rule (Hoffman
and Richards, 1984), which hypothesizes that ob-
ject segmentation, for the purpose of shape recog-
nition, should occur along boundaries of maximum
concavity, producing convex parts. Psychophysical
results (Braunstein et al., 1989) in humans support
this rule — observers are more likely to recognize
parts from a previously viewed object if the parts
are convex. Our results suggest that shape repre-
sentation in the ventral visual pathway proceeds in
accordance with the curvature minima rule.
Transformation from local oriented signals to
complex shape selectivity

How might tuning for angles and curves in area V4
arise from tuning for local orientation and spatial
frequency information available at earlier visual
areas? Theorists have proposed that tuning for
sharp angles could be achieved by an appropriate
combination of end-stopped orientation signals
(Milner, 1974; Hummel and Biederman, 1992).
For example, the response pattern in Fig. 1A could
be achieved by combining the signals from units
tuned to a 01-oriented edge end-stopped at the top
and a 901 edge end-stopped at the right, with a
preference for a specific contrast direction (bright-
er to the right). The end result would be a signal
related to the presence of a sharp corner pointing
to the upper left. The tuning width of the pooled
units may then produce the tuning for contour
feature orientation and acuteness, and integrating
signals from multiple positions could yield posi-
tion invariance. Transformation from oriented sig-
nals to angle representation possibly requires
multiple stages of processing, since both in V2
(Ito and Komatsu, 2004) and in V4 there are in-
termediate units that respond strongly to the pre-
ferred angle and its component end-stopped lines.

Cells selective for angles constructed in the
above fashion would also respond to curves that
contain the appropriate component orientations.
Cells that respond preferentially to curves and are
tuned to contour curvature may also be derived by
integrating an appropriate pattern of local orien-
tation and curvature signals from end-stopped
cells in preceding visual areas. Recently Cadieu
et al. (2005) have demonstrated that V4-like
curvature tuning can be achieved by combining in-
puts from position-invariant orientation-selective
Gabor filters. This is equivalent to pooling appro-
priate orientation selective units from V1 or
V2, followed by nonlinear processing, to derive
the necessary curvature-tuned responses. Alterna-
tively, selective responses to curved contours in
area V4 may be achieved by integration of V2
signals modeled as linear-nonlinear-linear filters
(Wilson, 1999). A third hypothesis suggests that
position-independent tuning for corners and
curves may be achieved by the processing of local
orientation end-stopped signals in the dendrites
of V4 neurons (Zucker et al., 1989). Further ex-
periments are required to decide between these
possible mechanisms.

At a more global level, the progression from
local orientation signals to selectivity for contour
conformation supports the proposal of many
feature-based shape recognition schemes that sug-
gest contour features as intermediate level shape
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primitives. Our results imply a coding scheme
based on structural description of the shape, con-
sistent with the notion of representation by parts
or components. As outlined earlier, in these mod-
els shapes are described in terms of the conforma-
tions and relative positions (and/or connectivity)
of their simpler components (Marr and Nishihara,
1978; Hoffmann and Richards, 1984; Biederman,
1987; Dickenson et al., 1992; Riesenhuber and
Poggio, 1999; Edelman and Intrator, 2000). Our
findings are consistent with several recent studies
that support this idea of a parts-based represen-
tation in IT (Tanaka et al., 1991; Wang et al.,
2000; Op de Beeck et al., 2001; Tsunoda et al.,
2001; Sigala and Logothetis, 2002).

A parts-based representation is advantageous be-
cause of its insensitivity to variations in the retinal
image of an object and its alphabet-like power to
encode an infinite variety of shapes. Most parts-
based theories envision a hierarchical progression
of parts complexity through a sequence of
processing stages. Boundary fragments constitute
an appropriate level of parts complexity for an in-
termediate processing stage like V4. More complex
parts are encoded in IT, the next stage in the
ventral pathway (Desimone et al., 1984; Tanaka
et al., 1991; Tsunoda et al., 2001). In a recent study
Brincat and Connor (2004) demonstrated that the
responses of posterior IT neurons reflect (linear and
nonlinear) integration of information about the
characteristics and relative positions of 2–4 contour
segments of complex shapes. Further integration in
anterior IT could lead to selectivity for more com-
plex features and sparser responses (Tanaka, 1996;
Tsunoda et al., 2001; Edelman and Intrator, 2003)
or it may culminate in holistic coding for global
object shape (Logothetis and Sheinberg, 1996;
Booth and Rolls, 1998; Ullman, 1998; Riesenhuber
and Poggio, 1999; Baker et al., 2002).
Areas of future investigation

The results presented in this review further our
understanding about the basis of 2D contour
representation in area V4. Due to practical consid-
erations, our stimuli were restricted to be a small
subset of 2D contours — silhouettes with no
internal structure — and so our results pertain to
the representation of the boundaries of 2D con-
tours. To gain a more complete understanding of
2D contour representation and to extend our re-
sults to more naturalistic stimuli further investiga-
tions are required.

Our stimuli were 2D contours with convex pro-
jections radiating out from the center. In future
experiments, these results need to be extended to
shapes containing curve segments at other
orientations as well. To derive more precise tun-
ing functions of V4 neurons, boundary curvature
should be more densely sampled. In this study,
stimuli were constructed with a few constant cur-
vature segments. To investigate the dependence of
V4 responses on the rate of change or other func-
tions of curvature, responses to stimuli with con-
tinuously varying contour curvature needs to be
studied. For the stimuli used here, contour repre-
sentation in terms of curvature and angular posi-
tion was sufficient (since the stimuli were
constructed by combining constant curvature seg-
ments) and economical (since it resulted in a small
set of points representing each stimulus). For other
stimuli, however, representation based on constant
curvature segments may be uneconomical (for e.g.
stimuli with a high frequency of convex projec-
tions along the contour) or insufficient (for e.g.
stimuli with long segments of changing curvature).
In such cases, it is possible that neurons would
encode information in terms of additional stimulus
dimensions — a question to be addressed in future
studies.

Several other questions need to be addressed —
how do V4 neurons respond to more realistic
stimuli such as objects with internal structure, si-
multaneous presentation of contours of multiple
objects, stimuli with texture and 3D information
or stimuli without explicit contours such as pho-
tographic images? In such cases, a different, higher
dimensionality would be required to describe the
responses of neurons. Finally, only one-third of
the neurons that we studied showed systematic
tuning for contour characteristics. Amongst the
other neurons many were selective for previously
described properties such as edge orientation, con-
trast polarity, oriented bars, etc. A few neurons
showed no discernible pattern in their responses or
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did not respond to any stimuli presented here.
These cells may encode shape in terms of other
stimulus dimensions not tested here, such as tex-
ture patterns (Hanazawa and Komatsu, 2001), 3D
stimuli (Hinkle and Connor, 2002; Watanabe
et al., 2002; Hegde and Van Essen, 2005; Hinkle
and Connor, 2005; Tanabe et al., 2005), kinetic
boundaries (Mysore et al., 2006) or other proper-
ties that have not been previously discovered in
area V4 — all questions to be addressed in future
experiments.
Conclusion

Our results demonstrate that area V4 encodes 2D
contours as aggregates of boundary fragments,
with individual neuron encoding the characteristics
of a specific fragment. This result has provided a
first step toward deciphering the bases of shape
representation in area V4. The general method used
here could be extended to investigate the shape di-
mensions that dictate V4 responses to more natu-
ralistic stimuli. Targeted investigation of shape
dimensions, parametric design of stimuli combined
with appropriate analytical techniques will help us
identify the other bases of representation in the
ventral pathway. This will bring us closer to solving
the puzzle of how the primate brain parses the 2D
representation of the visual world into 3D objects
that are perceived and recognized.
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