
Rsync How-to Guide
January 13, 2021

David Nichols

What is rsync and why should I care?
Rsync stands for “remote synchronization”. It is used to transfer files with
minimum actual transfer of data by copying only the sections of a file that have
updated. Some of the useful features include:

• Copying links, devices, owners, groups, and permissions.
• It does not require elevated privileges (though it does require file

permissions).
• Files can be copied to a remote machine, remote to local, or local to local.
• Rsync is standard in OSX and MobaXterm.

No, really, why should I care?
Rsync allows recursive1, differential2 copies of file trees. With a single command,
a folder can be copied without risking overlooking files. If the connection fails
during the transfer, reentering the command simply continues the process. This
makes it ideal for backing up working files and archiving completed work, which
is the use case explored in the rest of this guide.

What it isn’t.
Rsync does not keep differential backups like Time Machine and similar
programs such as Subversion. That is, there is no version history, no daily
differential backups. Rsync’s ‘differential’ file copy leaves only one copy of a
given file, rather than a list of different versions, any of which can be recovered.
In that way, data can be lost.

For example, if you have a file, file_1, which is already backed up to your
archive, the archive has a copy of file_1 from the last backup. If you then go in
and edit file_1 and modify it, another rysnc backup will replace the copy of file_1

1 Recursive here refers to rsync’s capability of working its way through sub-folders, applying the same copy method to

each folder that it has the first.
2 Differential backups look for changes in a file or file structure and copy only the changes made to the files and file

structures.
 Any backup is a snapshot of the existing files and folders at the time the backup operation is run. Time Machine

takes numerous snapshots. The first Time Machine backup takes lots of time because it is backup up everything.
Subsequent snapshots contain the differentials – the changes made to individual files and overall file structure, which
takes up considerably less space than subsequent full backups.

 Rsync, on the other hand, is a single snapshot. The differentials are written to the existing files and file structure. (It
doesn’t remove anything, unless the --delete flag is applied.)

with the updated file. If, while modifying it, you accidentally remove an important
paragraph, the copy of file_1 will reflect the changes – that paragraph will still be
missing, and there will be no way to recover the lost data.

Rsync works of full path entries. That is, it reads each file according to its full
path: /home/user/file1.txt rather than file1.txt. This means that it if you move
file1.txt from /home/user/ to /home/user/docs/, it will not remove the old copy of
file1.txt from /home/user/file1.txt and add /home/user/docs/file1.txt to the
backup. This can lead to unwanted replication of files. There is a flag: --delete,
which will remove files from such a backup, which will be discussed below. As
always, caution is required when deleting files in Linux – once a file is deleted,
there is no way to recover it.

Finally, rsync cannot copy files and directories for which you lack privileges. If
you don’t own files in a file tree, using the -P flag (detailed below) will show an
error indicating your lack of file permissions.

How to use rsync
Here is the basic syntax of rsync:

rsync [options] source [destination]

The options are one or more of the numerous flags, the source is the file tree
you wish to back up, and the destination is the location of the backup. Rsync
can be used in many different ways, but in our use case, destination is not
optional, and we will need flags. Rsync has two operations; uploading data is
called a push ‘operation’, while a download is called a ‘pull’ operation. Push is
used to back up your data. The basic syntax for a push is:

rsync /local/file/path/ username@<remote.host>:/remote/file/path

where <remote.host> is the remote location to which you are backing up. If you
are using an attached drive, omit the ‘username@<remote.host>:’ from the
command:

rsync /local/file/path/ /path/to/backup

In our use case, pull operations are used to recover data. A pull reverses the
syntax:

rsync username@<remote.host>:/remote/file/path /local/file/path

In practice, however, you’ll need to use several flags ([options] in the basic
syntax) in order to copy file trees.

Flags in rsync:
Before going into detail about the flags, it is useful to note that there are many
more flags which you are unlikely to find useful. To find out about those flags,
enter man rysnc to get the manual page for rsync. In the explanations of the
various flags below, the man page entry is included in an edited form.

-r, --recursive recurse into directories

Recursive mode copies entire file trees. Without this flag, rsync will only
copy the files in the folder specified by /local/file/path. This flag is assumed
in archive mode (below) and can be omitted.

-a, --archive mode

Archive mode copies links, preserves permissions, modification times,
group & owner, and, with superuser access, preserves device files
(drivers, etc.). This flag is essential.

--exclude exclude files matching the pattern

Exclude skips files matching the folder entry. It could be used to exclude
types of files with a wildcard (such as *.wav). It is also useful to exclude
certain branches in your file tree.

-P shows progress during transfer including the progress of individual
files

The -P flag is the verbose output shown as rysnc runs. This is not strictly
necessary, but if you have large and/or many files, this can be very
reassuring. Without it, there is no output – all that is visible is the
command itself, until it has completed, at which time the command prompt
returns.

--delete deletes ‘extraneous’ files

This deletes files from the remote server which no longer exist in the local
directory. --delete can be used to clean up backups and archives in order
to save space. This comes with a huge caution:
once files are deleted from a backup or archive in this manner, they
cannot be recovered. Think carefully before using this option.

Importance of the trailing ‘/’:
The command line interface is unforgiving of errors. Mistakes in either the
source or destination paths, the flags used, and syntactic errors can and do
cause headaches. Fortunately a lot of mistakes cause errors prior to the rysnc
command running. One of the pitfalls is keeping track of the trailing ‘/’ in
/local/source/path/. Excluding the ‘/’ from the end changes how the file tree is
copied to to the backup.

Excluding the ‘/’ from the /local/source directory as below appends the copied
directory to the destination folder: /remote/destination/source.

rsync -aP /local/source username@<remote.host>/remote/destination

Using the trailing ‘/’ from the /local/source/ directory appends the copied data
directly to /remote/destination/.

rsync -aP /local/source/ username@<remote.host>/remote/destination

Neither of these is wrong, but consistency is key. For our use case, and the
examples below, we will use the trailing ‘/’.

Examples:
Even with the best of guides, CLI3 commands can be difficult to understand.
Concrete examples are extremely helpful, but ultimately experience is the best
teacher. Many of the following examples build on one another.

The setup:
Using username ‘ulfgard’ with the source path /home/ulfgard/source/ on the local
system, and the following directory structure:

/home/ulfgard/source/
/home/ulfgard/source/file1
/home/ulfgard/source/file2
/home/ulfgard/source/dir/
/home/ulfgard/source/dir/file3

3 Command Line Interface.

This is illustrated by using the command ls -l, which lists the contents of a folder
(Fig. 1). Viewing first the and the empty directory /home/ulfgard/destination on
the remote server zeos.ling.washington.edu. (Future ls -l commands will omit
/home/ulfgard/, as it is the working directory on both the local and remote
systems.)

Standard use case:
Using the rsync command to transfer the contents of the source directory (on a
single line):

rsync -aP /home/ulfgard/source/
ulfgard@zeos.ling.washington.edu:/home/ulfgard/destination

The rsync push command and output from the -P flag:

All of the data has been appended to /home/ulfgard/destination/:

Figure 2: The complete rsync command, followed by its output.

Figure 1: Initial file structure of the source directory, using ls -l for
source/ and source/dir/

Figure 3: destination/ folder after the push operation, using ls -l.

That trailing ‘/’:
Doing nothing else, we now run the same command, excluding the trailing ‘/’ (on
a single line):

rsync -aP /home/ulfgard/source
ulfgard@zeos.ling.washington.edu:/home/ulfgard/destination

The rsync push command and output from the -P flag:

The result is to add a copy of the entire source directory as
/home/ulfgard/destination/source:

Using --delete:
Realizing that a mistake was made, we can rerun the original command with the
additon of the --delete flag. Once again, be cautioned that files deleted files
cannot be recovered. The command (on a single line):

rsync -aP--delete /home/ulfgard/source/
ulfgard@zeos.ling.washington.edu:/home/ulfgard/destination

Figure 5: Destination folder after the second push operation --
without the trailing '/'.

Figure 4: Push operation without the trailing '/' and the resulting output.

This removes the extraneous second source directory. Here is the command
and the output:

The extraneous folder has been removed from the remote server.

(Unwanted) file replication:
Suppose that we move file1 to the dir directory, so that the file structure now
looks like this:

source/
source/file2
source/dir/
source/dir/file1
source/dir/file3

We run the rsync command again with the trailing ‘/’ and excluding the --delete
flag. This is exactly like the standard use case, detailed in the standard use
case, above.

Figure 6: Push command with the --delete flag and the output.

Figure 7: New file structure, followed by the rsync push command and its output.

Looking at our destination folder, we find that we now have 2 copies of file1, one
in the destination folder, the other in the destination/dir folder (highlighted in
blue):

destination/
destination/file1
destination/file2
destination/dir
destination/dir/file1
destination/dir/file3

This may not be an undesirable effect, but it generally bloats the size of a
backup or archive.

Excluding a directory:
For this example, we reset our source directory (from the setup, above), and
empty destination folder. Suppose we want to suppress the sub-directory dir
(i.e., source/dir). We run the following push command, using the --exclude flag

command (on a single line):

rsync -aP –exclude=dir /home/ulfgard/source/
ulfgard@zeos.ling.washington.edu:/home/ulfgard/destination

Figure 9: File structure in the destination on the remote server.

Figure 8: File structure on remote server, using ls -l to reveal
folder contents.

The command and the output from it:

Only file1 and file2 are copied to the remote server:

Excluding .wav files:
Continuing the above example, we add the file soundfile.wav to the source
directory. We now exclude all .wav files. Instead of a directory, we use the file
extension preceded by a wildcard (*):

rsync -aP –exclude=*.wav /home/ulfgard/source/
ulfgard@zeos.ling.washington.edu:/home/ulfgard/destination

Because we did not suppress source/dir, it is copied to the destination directory.

This looks exactly like our initial rsync backup:

Figure 10: Rsync push command using the --exclude flag, and its output.

Figure 11: Push command excluding *.wav and it's -P output.

Figure 12: destination/ file structure after the push command, using ls -l.

Running the basic command without the --exclude=*.wav flag uploads
soundfile.wav, so that all of the files have now been backed up to the remote
destination folder:

Push / pull of files without permissions:
Adding the file ‘badfile’ for which we have no permissions, we try rsync using the
standard use case push command from source/, which would simply transfer the
only new file – badfile – but it lacks permissions. It results in errors, but those
errors do not stop rsync from continuing with the push operation.

Pull operations:
Restoring files from backup back is as simple as reversing the order of folders:

rsync -aP ulfgard@zeos.ling.washington.edu:/home/ulfgard/destination/
/home/ulfgard/source/

Doing so with the file tree we just transferred has little effect. However, reversing
the order and using a pull operation is how you restore your data if it has been
lost. To restore individual files, it is best to use SFTP; SFTP put (equivalent to
the rsync push) overwrites destination files. Any rsync operation in which no files
are transferred will have an empty (or mostly empty, depending on the version)
output from the -P flag.

Figure 13: Rsync push with no exclusions, pushing soundfile.wav.

Figure 14: Attempting rsync on a file without permissions results in errors.

Figure 15: Output via the -P flag when rsync attempts to operate on a file without permissions.

That’s great, but I’m not using a remote server.
To copy files from one folder to another on a local machine only changes the
source/destination by removing the necessity for the
“username@<remote.host>:” portion of the command, so that it becomes:

rsync -aP /path/to/source/ /path/to/destination

Okay, but how do I find my USB device?
The most useful local-only backup is from your computer to an external drive.
This is fairly easy on a Windows system. Using the GUI4, go into file explorer
and select “This PC” to show the Devices and Drives. External drives are
assigned a letter once they have been recognized and mounted by the system.
Suppose the drive letter for your USB device is D. Using MobaXterm, the
destination folder should be preceded by /drives/d/, thus the full path is
/drives/d/destination. Assuming a source directory in your account, the standard
rsync push command is:

rsync -aP /path/to/source/ /drives/d/destination

In OSX, all of this is done via the CLI. Enter the command:

df -h

This will produce a list of drives showing: file systems, size, space used, space
available, remaining capacity as a percentage, information about inodes5 (iused,
ifree, %iused), and the mount point – the path used to access it. We’re
interested in the “Mounted on” column. Find your USB drive in that column. It
will generally be preceded by /Volumes/. This is the path which precedes every
file or folder on your USB device.

For example, if the device is named MY USB STICK, you’ll likely find it mounted
under /Volumes/MY USB STICK. The destination file would then be accessed at

4 Graphical User Interface.
5 Inodes are lower level metadata about files and directories in unix-like file systems. That data is generally of little use

for most users.

Figure 16: Results of df -h on chesterton.

/Volumes/MY USB STICK/destination.

A word of caution about whitespace in a unix-like CLI: each space delimits a
different “word” or portion of a command. Using /Volumes/MY USB
STICK/destination will result in rsync seeing /Volumes/MY as the destination,
and USB, STICK/destination as extraneous information. If /Volumes/MY exists,
the data will go directly to it. Otherwise, it will fail to find the specified destination
directory and will fail to run. To solve this problem, enclose the path in single
quotes: ‘/Volumes/MY USB STICK/destination’. OSX then sees the entire string
as a single entity. Assuming a source directory as above, the command is:

rsync -aP /path/to/source/ ‘/Volumes/MY USB STICK/destination’

