# Effects of Style and Gender on Fronting and Raising of $/ æ /, / \mathrm{e}: /$ and $/ \varepsilon /$ before /g/ in Seattle English 

Alicia Beckford Wassink§,
Robert Squizzeros, Mike Scanlon§, Rachel Schirras Jeff Conn*
*Portland State University
${ }^{\S}$ University of Washington
NWAV38 (October 2009)

## Motivation

- $200^{\text {th }}$ anniversary of introduction of non-indigenous speakers to the PNW (Pacific Northwestern United States)
- A dearth of information:
- reasons: (1) young region, (2) history of dialect contact (Carver 1987; Wolfram \& Schilling-Estes, 1997)
- Reed (1952, 1956, 1961, 1965, 1973) registers key divergences
- persistent view (since 1950s) that PNW too young to exhibit unique features
- like "southern Illinois and Iowa but not a mere extension of northern

California": e.g., (o) cot ~ (oh) caught, (u) root, raising of (ae) hang to [e] (Reed 1952:187)
note: (Gordon, 2004) does not note divergences
"considerable mixing of language patterns"
(Labov, Ash and Boberg 2006)


## Motivation

- Phonological Atlas of North American English (Labov, Ash and Boberg, 2006) includes 16 speakers from the PNW (UT, ID, WA, OR)
- "The third dialect" united by a single feature (Labov, 1991)

Arizona (Hall-Lew, to appear), California (Eckert, 2005; Moonwomon, 1987, 1991; Luthin, 1987; and, Hinton, et. al., 1987), and Utah (diPaolo and Faber, 1990)

- 200 years may be sufficient time for dialect focusing (vis-à-vis koineization) to occur (Trudgill, 2005)



## Research Hypotheses

RQI. What are the phonetic features of the vowel system of the English used in the PNW?
Hyp 1a: all PNWE speakers' vowel systems have same basic distribution.
Hyp 1b: a predominating tendency for PNWE speakers to monophthongize
/e:/ BAKE (Ingle, Wright and Wassink, 2005)
Hyp 1c: raising and fronting of pre-velar /æ/ BAG found. (No NCS pre-nasal tensing and raising)
RQII. Are there gender-related differences in front vowel production?
Hyp II: Females show overlap only between / $\varepsilon$ / BEG and /e:/ BAKE
RQIII. Are there style-related differences in front vowel production?
Hyp IIIa: Both Females \& Males show separation of V categories in formal styles, with overlap increasing in less-scripted styles
Hyp IIIb: Where there is overlap, trajectory differentiates the vowel classes.

## Methods: The Database

| Main Study | This presentation | In Analysis Phase |
| :---: | :---: | :---: |
| Judgement \& Random samples | Judgement sample | Random (telephone) sample |
| 44 speakers | 17 speakers (out of 30) | 20 |
|  | gender: $12 \mathrm{~F}, 5 \mathrm{M}$ |  |
|  | $\begin{gathered} 3 \text { age cohorts: Gen1 } \\ \hline \text { (b.1900-1950) } \\ \text { Gen } 2 \\ \text { (b. 1951-1971) } \\ \text { Gen } 3 \\ \text { (b. 1976-1986) } \end{gathered}$ |  |
|  | 3 ethnicities: Caucasian-Am, African-Am, JapaneseAmerican |  |
|  | 4 Tasks: <br> (1) Word List <br> (2) Interview (demographic) <br> (3) Reading Passage <br> (4) Experimental Tasks (e.g., Semantic Differentials) [(5) Conversation] |  |

## Methods 2



- Materials:
(iy) (i) (ey) (e) (ae) (aeh) (o) (ah) (oh) (^) (u) (uw) (ay) (oy) (aw) (ow) [~550 tokens/speaker]
Rhotic classes (ihr) (r) (aer) (ohr) (uwr)
Particular focus on one subset of vowel system (3 historic classes: (æ) BAT,( $\varepsilon$ ) BET,(e:) BAIT)
Velar contexts (aeG) BAG, (eG) BEG, (ey) BAKE
Word list h_t, h_d in carrier "Write _ today"
Additional phonetic contexts targeted for sociolinguistic analysis (patterns such as are associated with the Northern Cities,
- Recordings:
1.5-3 hours each
peer conversation, followed by one-on-one interview
M-Audio Microtrack 24/96 Compact Flash Recorder (microphone: Audio Technica 3031) 44 kHz sampling rate (downsampled to 11.025 kHz )
- Analysis:

Auditory \& acoustic analysis
Measures and Timepoints: fo, F1-F3 and duration (onset, 20\%, 50\%, 80\%, offset)
Signal analysis in Praat (customized Praat script, and Akustyk)
Uniform Scaling normalization (Nearey, 1977)
NORM for visualization of vowel trajectories
VOIS3D (Wassink, 1999; 2006) for 2-dimensional geometric assessment of vowel overlap (overlap fractions)
Euclidean distances (to represent vowel-inherent spectral change; from $20 \%$ to $80 \%$ ) (Morrison \& Nearey, 2007) Appropriate inferential statistical tests (students' t-test; bivariate correlation)


Results
Hyp 1b: a predominating tendency for PNWE speakers to monophthongize
/e:/ BAKE

8

- Yes. We find similar Euclidean distances for $/ \mathrm{e}: /=221 \mathrm{~Hz}$ and $/ \mathrm{e} /=241 \mathrm{~Hz}$.
- Formant trajectory vectors are short in comparison to vectors of true diphthongs: /e:/: $\Delta \mathrm{F} 1=-1.8 \mathrm{~Hz}, \Delta \mathrm{~F} 2=5 \mathrm{~Hz} ; / \mathrm{aw}: /: \Delta \mathrm{F} 1=-6.9 \mathrm{~Hz}, \Delta \mathrm{~F} 2=-24.1 \mathrm{~Hz}$



## Results <br> Hyp 1c: raising and fronting of pre-velar /æ/ BAG found. (No NCS pre-nasal tensing and raising)

- Yes. (ae) proximal to (e) (all contexts). A bivariate correlation on manner of articulation of following phone and F1 trajectory shows that $\Delta \mathrm{F} 1$ for (aeN) is NOT significantly different from that of other (aeC). $(\mathrm{F}(3,971)=1.2$, $\mathrm{p}=.276$, ns). This is a nearcategorical pattern in the PNWE sample.



## Results

Hyp II: Mainly females show overlap between / $\varepsilon$ / BEG and /e:/ BAKE


- Yes (but only at midpoint). This pattern appears to be primarily associated with Gen1 female speakers. (Squizzero, 2009)
- However, trajectories appear to contribute to differentiation. Recall that these vectors are not truly diphthong-length. They do, however, proceed along the periphery in different directions.



## Measuring vowel overlap (VOIS3D)

Normalized values (F1, F2, duration) are evaluated for overlap by the Spectral Overlap Assessment Metric (SOAM), and visualized using VOIS3D.

Big idea: Normalized scatter for two vowels distributions is modeled as two best-fit ellipses oriented at angles with respect to F1, F2 axes. The output of the metric is an overlap fraction. The overlap fraction represents the area of the region of overlap (the region shared by both best-fit ellipses).

Procedure:
(1) Each observed vowel is plotted in a coordinate system where ( $\mathrm{x}, \mathrm{y}$ ) $=$ (normF1, normF2)
(2) Center each vowel class' datapoints around its own origin. $(0,0)$ is the center of each "system's" vowel space. Determine the geometric formula for each ellipse and define a principal axis for each. (3) Rotate each ellipse along its principal axis; determine the range of coordinates it occupies within its own 2D space.
(4) Using area information, determine extent of overlap between areas of Vowel 1 \& Vowel 2. The output of this procedure is referred to as the "overlap iraction", a real-number value between o-100\%. (Wassink 1999,2006)

## Some show spectral overlap between /æ/, / $\varepsilon /$ and $/ \mathrm{e}: /$ before $/ \mathrm{g} /$ centered around /e/ in Seattle English



Males - Linguistic Tasks (Squizzero, 2009) 96 \% Overlap across the three vowels (BACON, BEG and BAG) in the $3^{\text {rd }}$ most formal style (of five)

## Results

Hyp IIIa: Both Females \& Males show separation of V categories in formal styles, with overlap increasing in less-scripted styles.
-In the casual styles, both males and females show a greater tendency to overlap vowel categories (at $20 \%, 50 \%$ and $80 \%$ in pairwise comparisons) than in formal styles.




## Acknowledgements

- National Science Foundation BCS\#-0643374
- University of Washington, Special Collections Libraries



## References

(18)

Carver, C. M. (1987). American Regional Dialects: A Word Geography. Ann Arbor, MI: University of Michigan Press.
Eckert, P. (2005). California Vowels. http://www.stanford.edu/~eckert/vowels.html. Date accessed: 7/15/2005.
Foster, D. \& Hoffman, R. (1966). Some observations on the vowels of Pacific Northwest English (Seattle area). American Speech, 41(2), 119-122.
Gordon, M. J. (2004) The West. In Handbook of Varieties of English (Schneider, E. W., Burridge, K., Kortmann, B., Mesthrie, R. and Upton, C. editors) New York: Mouton de Gruyter
Hall-Lew, L. (To appear). One Shift, Two Groups: When fronting alone is not enough. University of Philadelphia Working Papers in Linguistics 10.2: Selected Papers from NWAVE 32.

Ingle, J. K., Wright, R. A., \& Wassink, A. B. (2005). "Pacific Northwest Vowels: A Seattle neighborhood dialect study," presented at the annual meeting of the Acoustical Society of America, Vancouver BC, May

Kerswill, P. (2002a). Koineization and accomodation. In J. K. Chambers, Peter Trudgill and Natalie Schilling-Estes (eds.), The Handbook of Language Variation and Change. Oxford: Blackwell. 669-702.
Kerswill, P. (2002b) Models of linguistic change and diffusion: new evidence from dialect leveling in British English. Reading Working Papers in Linguistics 6: 187-216 Labov, W. (1991). The three dialects of English. In P. Eckert (Ed.), New ways of analyzing sound change (pp. 1-44). New York: Academic Press.
Labov, W. (1994). Principles of linguistic change: Vol. 1. Internal factors. Oxford: Blackwell Publishers.
LePage, R. (1980) Projection, focusing, diffusion, or, steps toward a sociolinguistic theory of language, illustrated from the Sociolinguistic Survey of Multilingual Communities. York Papers in Linguistics 9:9-32. Department of Language and Linguistic Science, University of York.

Luthin, H. (1987). The story of California (ow): The coming-of-age of English in California. In K. M. Denning, S. Inkelas, F. C. McNair-Knox, \& J. R. Rickford (Eds.), Variation in language: NWAV-XV (Proceedings of the Fifteenth Annual Conference on New Ways of Analyzing Variation) (pp. 312-324). Stanford: Department of Linguistics, Stanford University.
Moonwomon, B. (1987). Truly awesome: (o) in California English. In K. M. Denning, S. Inkelas, F. C. McNair-Knox, \& J. R. Rickford (Eds.), Variation in language: NWAV-XV (Proceedings of the Fifteenth Annual Conference on New Ways of Analyzing Variation) (pp. 325-336). Stanford: Department of Linguistics, Stanford University

## References



Moonwomon, B. (1991). Sound Change in San Francisco English. University of California, Berkeley Ph.D. dissertation.
Morrison, G. S., \& Nearey, T.M. (2007). Testing Theories of Vowel-Inherent Spectral Change. Journal of the Acoustical Society of America, 122, EL15-EL22.
Reed, C. (1952). The pronunciation of English in the state of Washington. American Speech, 27(3): 186-189.
Reed, C. (1956). Washington Words. Publication of the American Dialect Society, 25, pp. 3-11.
Reed, C. (1961). The pronunciation of English in the Pacific Northwest. Language, 37(4): 559-564
Reed, C. E. (1965). Linguistic atlas of the Pacific Northwest. Original transcriptions and recordings archived at the Department of English, Springfield College, Springfield, MA 01109.

Reed, C. (1973). Dialects of American English. University of Massachusetts Press..
Squizzero, Robert (2009) Fronting of $/ æ /$ and $/ \varepsilon /$ before $/ g /$ in Seattle English: Effects of Style and Gender, unpublished undergraduate Honors Thesis, University of Washington.
Trudgill, P. (1986). Dialects in Contact. Oxford: Blackwell.
Trudgill, P. (2004). New-Dialect Formation: The Inevitability of Colonial Englishes. Oxford: Oxford University Press.
Wassink, A. B. (1999). A sociophonetic analysis of Jamaican vowels. Unpublished Ph.D. dissertation, University of Michigan, Ann Arbor.
Wassink, A. B. (2006). A geometric representation of spectral and temporal vowel features: Quantification of vowel overlap in three varieties. Submitted to Journal of the Acoustical Society of America , 119(4), pp 2334-2350

Wolfram, W. \& Schilling-Estes. (1998). American English: Dialects and variation. Oxford: Blackwell.


