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Abstract—We report long-range trapping of vanadium dioxide
(VO-) and vanadium oxyhydroxide (H; V3 Og) nanowires at a dis-
tance as large as 50 pm outside the laser spot using plasmonic
tweezers and controlled rotation of the nanowires by combining
trapping with microfluidic drag force. The plasmonic tweezers are
built upon a self-assembled gold nanoparticle array platform. In
addition to the long-range trapping and rotation capability, the
required optical intensity for the plasmonic tweezers to initiate
trapping is much lower (<8 ptW/um?) than that required by con-
ventional optical tweezers for similar nanowires. We also investi-
gate possible mechanisms for the unique long-range trapping of
nanowires through performing control experiments.

Index Terms—Nanostructures, optical manipulation, surface
plasmons.

1. INTRODUCTION

HE INCEPTION of optical tweezers [1]-[3] marked
T a new era for trapping and manipulating micrometer
and submicromete-sized particles using focused laser beams.
While direct conversion from optical energy to mechanical en-
ergy is often an inefficient process and optical tweezers re-
quire a tightly focused intense laser beam to achieve signifi-
cant amount of optical force, the enhancement of an electric
field close to a metal nanostructure through localized surface
plasmon resonance (LSPR) induced by light has been inves-
tigated to increase the optical-to-mechanical energy conver-
sion efficiency [4], [S]. Recently, it has been theoretically pre-
dicted and experimentally demonstrated that optical trapping
and manipulation technology with surface plasmons is able
to relax the requirement on incident laser focusing and inten-
sity, with subdiffraction-limited trapping volume defined by the
metal nanostructure [6]-[8]. Parallel and selective trapping of
micrometer-sized dielectric beads have been realized using engi-
neering plasmonic patterns [9], [10]. More recently, nanometric
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optical tweezers that are able to trap a 200-nm dielectric bead
have been demonstrated by utilizing optical near-fields between
gold nanodots fabricated by electron beam lithography [11].
Furthermore, the plasmonic approach has been used to trap bio-
logical entities [12] and has been proposed to manipulate (trap
or repulse) metal nanoparticles [13]. Here, we report our recent
study using the plasmonic approach to trap and manipulate 1-D
nanostructures.

Manipulation and assembly of 1-D nanostructures such as
nanowires and nanotubes have been investigated in great detail
over the last decade for their potential use as building blocks of
nanoscale electronic and optical devices. Current available tech-
nologies including dielectrophoresis [14], microfluidic trans-
port [15], and Langmuir—Blodgett compression [16] are used to
manipulate and assemble 1-D nanostructures in bulk but lack the
capability to selectively manipulate individual nanostructures
with high spatial and angular resolution. Recently, single-beam
optical tweezers were utilized to trap and assemble individual
semiconducting nanowires in water and physiological environ-
ments through the control of a tightly focused laser beam [17].
Furthermore, holographic optical tweezers [18] and optical line
tweezers [19] were employed to enable translation and in-plane
rotation control of individual nanowires by creating many inde-
pendently controlled optical traps. However, the applications of
optical tweezer-related techniques are limited by the required
high optical intensity and small working area. Although the
intensity requirement can be greatly reduced by combining op-
tical tweezers with dielectrophoresis [20], [21], an electrical bias
configuration is required that adds to system complexity. On the
contrary, plasmonic manipulation technology is an all-optical
approach that can be applied without requiring tight focus and
high laser power.

In this paper, we demonstrate for the first time trapping of
nanowires instigated at a distance from the low-intensity laser
source assisted by surface plasmons. We also report the con-
trolled rotation of nanowires. In Section II, we describe the
details of the experiment including fabrication and characteri-
zation of plasmonic nanoparticle array, synthesis of 1-D nanos-
tructures, as well as trapping and rotation experiment. In Sec-
tion I1I, we discuss the underlying mechanism for the long-range
trapping behavior through presenting further experimental re-
sults. The summary and future study are presented in the last
section.

II. EXPERIMENTS AND RESULTS
The system under study is shown in Fig. 1. It consists of a

gold nanoparticle array lying upon a glass coverslip. A low op-
tical intensity laser light is used to excite the localized surface
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Fig. 1. Schematic diagram of the experimental configuration for trapping and
manipulation of 1-D nanostructures using the plasmonic approach.

plasmons on the gold nanoparticle array, which forms the en-
hanced plasmonic optical and thermal field that is induced by
the radiative and nonradiative damping of localized surface plas-
mons, respectively. At the appropriate wavelength, the localized
surface plasmons consist of oscillating electrons moving reso-
nantly with the incident electromagnetic field. The 1-D nanos-
tructures used for trapping experiment are suspended in the thin
liquid layer that is placed above the gold nanoparticle array. The
location and movement of 1-D nanostructures can be monitored
by an optical microscope and recorded by a charge-coupled
device (CCD) camera.

A. Fabrication of the Gold Nanoparticle Array

The gold nanoparticle array on the glass coverslip is fab-
ricated by a chemical self-assembly approach using surface-
adsorbed latex spheres (Polysciences, Inc.) with a mean diam-
eter of 454 nm as a template. Gold is first evaporated on the
glass coverslip to a thickness of 20 nm using chromium as the
adhesion layer. The latex sphere monolayer is self-assembled
by exposing the gold-coated substrate to a mixture of 1-ethyl-3-
(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC),
latex sphere suspension, and deionized water. The adsorption
process is allowed to last for about one hour and the nonabsorbed
spheres are washed away with a copious amount of water. Sub-
sequently, the formed monolayer is dried in the air. Finally, an-
other 20 nm of gold is evaporated on the latex sphere monolayer
to form the core/shell-structured gold nanoparticle array. Fig. 2
shows the scanning electron micrograph of the gold nanoparticle
array, which is random and has a close-packed configuration.

B. Scattering and Absorption Characterization

The localized surface plasmon resonance of the gold nanopar-
ticle array is presented by the enhanced scattering and absorp-
tion cross sections macroscopically, which are attributed to the
radiative and nonradiative damping of localized surface plas-
mons, respectively. The characterization setup for the scattering
and extinction spectra of the gold nanoparticle array is built
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Fig. 2. Scanning electron micrograph of the random gold nanoparticle array.
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Fig. 3. Normalized extinction, scattering, and absorption efficiency spectrum

of the random close-packed gold nanoparticle array.

upon the same microscope for the trapping experiment. The
gold nanoparticle array is placed on the specimen plane of the
microscope and focused under a 50 x objective lens by adjusting
the stage height. A broadband white light source is used for exci-
tation purpose. The scattered light from gold nanoparticle array
is collected in dark-field configuration by the objective lens and
sent to a UV/VIS spectrometer (OSM100, Newport) through a
multimode fiber. The extinction spectrum is measured in a sim-
ilar way but in the bright-field configuration by subtracting the
spectrum of reflection light from the spectrum of incident light.
Furthermore, the absorption information of the gold nanoparti-
cle array can be obtained by subtracting the scattering from the
total extinction. These spectra are shown in Fig. 3, where the
efficiency on Y -axis represents the percentage of incident light
scattered or absorbed by the gold nanoparticle array.

C. Synthesis of 1-D Nanostructures

The 1-D nanostructures used in our experiment include
vanadium dioxide (VOs) nanowires, vanadium oxyhydroxide
(H2V30g) nanowires, and titanium dioxide (TiO3) nanotubes.
These metal oxide nanostructures are at the center of many
emerging applications such as nanophotonics (ultrafast optical
shutter [22]) and nanoelectronics (nanoscale FET [23]). These
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Fig. 4. Scanning electron micrograph of Hy V30g nanowires (a) and VO3
nanowires (b) in the ensemble.

metal oxide nanostructures usually have high polarizabilities
and extinction cross sections.

In our experiment, the VO, nanowires are synthesized using
a hydrothermal method at 220 °C for 48 hours from an aque-
ous colloidal dispersion consisting of amorphous precipitate of
VO; from hydrazine-containing aqueous solution [24]. When
the vanadium concentration is kept below 0.1 M with a pH be-
low 4, Hy V30g nanowires form [25]. TiO4 crystals are grown
hydrothermally from a mixture of TiO, powder dispersed in an
aqueous NaOH solution at 110 °C for 24 hours [26]. The scan-
ning electron micrograph of the VO, and Hy V30Og nanowires
are shown in Fig. 4(a) and (b), where the H, V3Og nanowire has
a length ~50 um and a diameter ~200 nm; the VO, nanowire
has a length ~20 pym and a diameter ~200 nm.

D. Trapping and Rotation of Individual Nanowires

An HeNe laser beam (1 = 633 nm) is directed into the optical
path of an upright microscope (Zeiss Axio Imager) and focused
onto the sample plane right above the gold nanoparticle array
on a motorized stage by a 20 x objective lens (numerical aper-
ture = 0.22). The HeNe laser has a full power of 25 mW at the
output, much lower than the typical full power (1 ~ 10 W) of
the laser used in conventional single-beam optical traps. With
the low-NA lens, the focused laser spot size is about 20 pm,
which is much larger than the diffraction limit (~1 pm) re-
quired for conventional single-beam optical traps. Overall, the
optical intensity measured at the sample plane for the plasmonic
tweezers is several orders of magnitude lower than the minimum
requirement for conventional single-beam optical traps.
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Fig. 5. Long-range trapping of an individual Hy V3Og nanowire. The two
ends of the nanowire are marked by the crosses (+). The background is due
to scattering from the gold nanoparticle array under the optical microscope.
A short-pass filter is mounted in front of the charrge-coupled CCD camera to
partially block the HeNe laser light, which results in an overall green color of
the images. The time interval between the snapshots is 3 seconds.

Before performing the demonstration experiment, the synthe-
sized VO, and Hs V305 nanowires were suspended in deionized
water through sonication. Several microliters of the nanowire
suspension were transferred by a pipette onto the gold nanopar-
ticle array and sandwiched into a thin liquid layer with a glass
coverslip on top. The thickness of the liquid layer is estimated
to be ~1 mm. The chamber is sealed by putting a thin spacer
surrounding the liquid drop between the gold nanoparticle array
and the glass coverslip. The liquid evaporation can be prevented
effectively and the experiment can be performed for several
hours without noticeable decrease in the liquid volume.

The snapshots in Fig. 5 show the trapping process of an
individual H,V30Og nanowire. Under the optical microscope,
randomly oriented nanowires were observed close to the surface
of the gold nanoparticle array. A single nanowire was identified,
and the laser was turned ON to activate the localized surface
plasmons. Contrary to most of the optical trapping experiments
where the particles need to be right around the laser spot for
trapping to be initiated, the nanowire located at a distance of
~40 pm outside the laser spot experiences the attractive force
and moves toward the illuminated area when the incident laser
power exceeds a certain threshold. The nanowire undergoes
both translation and rotation simultaneously as it approaches
the illuminated area. The nanowire is trapped stably when one
end of the nanowire is pulled into the center of the illuminated
area.

Starting from this stable state, the trapped end of the nanowire
can be repulled into the illuminated area when the laser spot
moves away slowly. Therefore, the orientation of the nanowire
can be finely tuned when the laser spot gradually moves per-
pendicular to the long axis of the nanowire, shown in Fig. 6.
The view fields of the snapshots in Fig. 6 were adjusted to move
with the laser spot.

The trapping and rotation process of the nanowire observed
in our experiment are always maintained in the horizontal
plane close to the gold nanoparticle array surface. This is
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Fig. 6. Orientation control of an individual Hy V3Og nanowire (a)—(i). The
orientation of the nanowire is parallel to that of the arrow in each snapshot.
Notice that the view fields of the snapshots were adjusted to move with the laser
spot.

different from the behavior of nanowires in a single-beam op-
tical trap [17] or in the optoelectronic tweezers [21], where
the long axes of nanowires are oriented parallel to the prop-
agation axis of the laser light, and usually, in the vertical
direction.

E. Measurement of Light Intensity Threshold

Similar experiments were performed on VO, nanowires us-
ing the same setup and procedure, and the same long-range
trapping phenomena were observed. To quantify the trapping
efficiency, the minimum optical intensities to initiate trapping
of the nanowires were measured at different trapping radii, de-
fined as the center-to-center distance from the laser spot to the
nanowire, shown in Fig. 7(a) and (b). This measurement rep-
resents the threshold optical intensity for the induced attrac-
tive force to overcome the randomized Brownian motion of the
particles and viscous drag force from the liquid medium. The
threshold intensity increases with the distance, and a long-range
trapping effect is evident. For example, trapping of individual
H,V30g nanowires can still be realized when the trapping ra-
dius is increased up to 50 pm with the input optical intensity as
low as 7.2 uW/um?.

III. DISCUSSION

To investigate the underlying mechanism of the observed
long-range trapping effect, we performed control experiments
with modified configurations. First, we replaced the gold
nanoparticle array substrate with a plain glass slide or with
a flat gold film while keeping the other experimental condi-
tions unchanged. In either situation, the long-range trapping
phenomenon was not observed for the same nanowires. This
suggests the existence of localized surface plasmons on the gold
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Fig. 7. Minimum optical intensity to initiate trapping of (a) HaV3Og
nanowires, (b) VO2 nanowires, and (c) TiO2 crystals versus the trapping radius.
The solid lines are fitted polynomial curves to the experimental data. For each
trapping radius, the minimum optical intensity is measured at five different loca-
tions. The data point and the error bar represent the average value and standard
deviation of the minimum optical intensity, respectively.

nanoparticle array that is necessary for the long-range trapping
to occur. Although surface plasmon polaritons can be excited on
a thin gold film, it requires the excitation laser source incident
at a specific angle, which our experimental configuration does
not provide.

In our previous experiments with spherical polystyrene beads
using the same experimental setup, the long-range trapping
behavior was not observed [7], [28]. To verify the likelihood
of long-range trapping force associated with elongated geom-
etry of the nanostructures, we performed the experiments on
micrometer-sized TiOs crystals that have low aspect ratios and
the shape of TiO; crystals is more similar to the spherical parti-
cles rather than the elongated nanowires. The same long-range
trapping phenomena were observed for these TiO, crystals. The
threshold optical intensity for the long-range trapping of TiO,
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crystals was also calibrated and shown in Fig. 7(c). The large
uncertainty of threshold optical intensity at the trapping radius
of 40 pm could possibly be attributed to the gold nanoparticle ar-
ray defect. The control experiment with TiO, crystals excludes
the possibility of shape dependence for long-range trapping and
suggests that the high polarizability of the particle may be one
of the factors for the long-range trapping.

Two types of attractive forces that can be used to possibly
explain the long-range trapping of nanowires are optical forces
and hydrodynamic force. The optical force is originated from
the gradient of electromagnetic field and enhanced by the local-
ized surface plasmons on the gold nanoparticle array. The hy-
drodynamic force exerted by the surrounding fluid is attributed
to thermal convection, which is induced by the temperature
gradient formed by heat absorption (nonradiative damping of
localized surface plasmons). The optical force or the hydrody-
namic force dominates under different experimental conditions
such as the thickness of the liquid layer, the optical power, as
well as the distance from the particle to the light spot. For in-
stance, the enhanced optical force has been utilized to trap single
polystyrene beads [7] and the hydrodynamic force has been uti-
lized for mixing [27] and concentrating [28] polystyrene bead
ensembles. Interested readers may refer to [29] for a detailed
discussion of particle dynamics due to the interplay between
optical and thermal forces. It is very likely that both the op-
tical and thermal effects contribute to the long-range trapping
process of nanowires. When the nanowires are far away from
the light spot, the magnitude of the optical force is weak as
the propagation through electromagnetic coupling of localized
surface plasmons is unlikely to be achieved across the distance
involved in our experiment considering the substantial absorp-
tion loss and array defects. Therefore, the thermal convection
might be the dominant effect in this region to push the nanowire
toward the light spot, where the local temperature is the highest.
As the nanowire is gradually approaching the light spot, the
optical force increases and eventually may take over when the
end of the nanowire reaches the light spot.

IV. CONCLUSION

In summary, we report in this paper the first observation of
long-range trapping of single nanowires based on plasmonic
technology. We also demonstrated the orientation control of the
trapped nanowires by changing the relative location of laser
spot to the nanowire. The plasmonic technology, therefore, pro-
vides a potential tool for transporting and manipulating 1-D
nanostructures. The powerful capability and low optical power
requirement make this technology a potential candidate for a
wide range of nanotechnology applications. Future study in-
cludes studying the applicability of this approach to other types
of 1-D nanostructures as well as optimized design of plasmonic
structure for better control of the manipulation.
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