One-pot synthesis of \textit{in-situ} carbon-coated Fe$_3$O$_4$ as a long-life lithium-ion battery anode

To cite this article: Min Liu \textit{et al} 2017 \textit{Nanotechnology} \textbf{28} 155603

View the \texttt{article online} for updates and enhancements.
One-pot synthesis of in-situ carbon-coated Fe₃O₄ as a long-life lithium-ion battery anode

Min Liu¹, Hongyun Jin¹, Evan Uchaker², Zhiqiang Xie³, Ying Wang³, Guozhong Cao², Shuen Hou¹ and Jiangyu Li¹,⁵

¹Faculty of Materials Science & Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
²Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, United States of America
³Department of Mechanical Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, United States of America
⁴Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, United States of America

E-mail: jinhongyun@cug.edu.cn and jjli@uw.edu

Received 8 December 2016, revised 20 January 2017
Accepted for publication 9 February 2017
Published 16 March 2017

Abstract
Fe₃O₄ has been regarded as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity, low cost, and environmental friendliness. In this work, we present a one-pot reducing-composite-hydroxide-mediated (R-CHM) method to synthesize in situ carbon-coated Fe₃O₄ (Fe₃O₄@C) at 280 °C using Fe(NO₃)₃·9H₂O and PEG800 as raw materials and NaOH/KOH as the medium. The as-prepared Fe₃O₄ octahedron has an average size of 100 nm in diameter, covered by a carbon layer with a thickness of 3 nm, as revealed by FESEM and HRTEM images. When used as anode materials in LIBs, Fe₃O₄@C exhibited an outstanding rate capability (1006, 918, 825, 737, 622, 455 and 317 mAh g⁻¹ at 0.1, 0.2, 0.5, 0.8, 1.0, 1.5 and 2.0 A g⁻¹). Moreover, it presented an excellent cycling stability, with a retained capacity of 261 mAh g⁻¹ after 800 cycles under an extremely high specific current density of 2.0 A g⁻¹. Such results indicate that Fe₃O₄@C can provide a new route into the development of long-life electrodes for future rechargeable LIBs. Importantly, the R-CHM developed in our work can be extended for the synthesis of other carbon-coated electrodes for LIBs and functional nanostructures for broader applications.

Supplementary material for this article is available online

Keywords: carbon-coated Fe₃O₄, R-CHM method, long-life, anode

(Some figures may appear in colour only in the online journal)

Introduction
Lithium-ion batteries (LIBs) have been widely considered as one of the most promising energy storage/conversion systems to fulfil the growing energy demand of the global economy [7, 19, 24, 34, 35]. A high reversible capacity, long cycle stability, fast charge/discharge rate, and environment friendliness are the basic requirements of the ideal electrode materials for LIBs applications [21, 25, 27, 36]. In order to satisfy these requirements, recent research focus has been shifted from a graphitic anode with a theoretical capacity of 372 mAh g⁻¹ to transition metal oxides with a higher specific capacity, such as Co₃O₄, Fe₃O₄, Fe₂O₃, SnO₂, CuO, MnO₂ and TiO₂ [4, 8, 12, 14, 22, 28, 37]. Iron oxides, such as α-Fe₂O₃ and Fe₃O₄, have been extensively investigated as potential electrode materials. Furthermore, Fe₃O₄—possessing a high theoretical specific capacity of 924 mAh g⁻¹, low cost, and environmental friendliness—is particularly attractive [13, 30, 38, 50]. Nevertheless, because of its lower electronic conductivity and large volume variation during
charging/discharging, poor cycling stability is still a serious issue that needs to be overcome before Fe3O4 can be used as a commercial anode material in LIBs [31, 46].

To mitigate the above predicament, carbon coatings have been explored to improve the performance of Fe3O4 anodes [26, 39, 42]. Studies have shown that coating carbon can not only facilitate ion and electron transports, but also relieve mechanical stress during the Li-ion insertion/extraction process. Various carbon coated Fe3O4 spheres, nanosheets, nanocubes, nanorods, pomegranate and sheaf-like structures have been successfully synthesized and they were found to possess improved electrochemical performances compared to a bare Fe3O4 electrode [2, 6, 45]. Thus, combining nanos- tructured Fe3O4 and a carbon matrix could be a promising way to optimize the electrochemical performance of an Fe3O4-based electrode, improve its cycling stability and prolonging its service life in LIBs [43, 44]. Recently, Zhao et al proposed a method of pyrolysis of polydopamineen capsulated carbonate crystals to synthesize an Fe3O4@C hybrid, which possess a high reversible capacity of 770 mAh g⁻¹ at 200 mAg⁻¹ after 50 cycles. In this method, the Fe2CO3 precursor was synthesized first, then the Fe3O4@C hybrid was obtained after pyrolysis at 500 °C [51]. Han et al reported hierarchically structured Fe3O4@C nanotubes prepared by three steps, which delivered a reversible capacity of 840 mAh g⁻¹ at 1000 mA g⁻¹ after 300 cycles. MoO3 nanorods and FeOOH nanotubes were synthesized first and then calcined at 500 °C for 4 h to obtain Fe3O4@C nanotubes [10]. Ma et al prepared a sheaf-like hierarchical Fe3O4@C nanostructure by a facile solvothermal method, which exhibited a reversible capacity of 849 mAh g⁻¹ at 500 mA g⁻¹ over 200 cycles. In this process, Fe(NO3)3· 6H2O and glucose were heated at 220 °C first and then calcined at 350 °C for 3 h in N2 gas [33]. Zhang et al proposed microwave irradiation as a heat source and Fe3O4/graphene composites were synthesized by depositing Fe3⁺ in the interspaces of graphene sheets. To obtain Fe3O4/graphene composites, GO was prepared by a modified Hummers’ method, and then a mixture of GO, Fe(NO3)3 urea and ascorbic acid were refluxed under ambient conditions for 1 h and microwave heated, and finally, MGCs were obtained by treating the above products in an Ar atmosphere at 873 K for 8 h [48]. However, most of these methods used to synthesize the Fe3O4@C nanostructure have some disadvantages, including specific organic reagents, complicated experimental processes involving two or more steps, a high reaction temperature (mostly more than 280 °C) and poor reproducibility. Therefore, it is highly desirable to synthesize a carbon coated Fe3O4 anode by a one step process.

Herein, we developed a reducing-composite-hydroxide-mediated (R-CHM) method to obtain the in situ carbon coated Fe3O4 (Fe3O4@C) using Fe(NO3)3· 9H2O and polyethylene glycol-800 (PEG800) as raw materials and NaOH/KOH (MOH) as a medium at 280 °C in one step. When used as an anode for LIBs, such Fe3O4@C possessed an exceptional capacity of 1006 mAh g⁻¹ at a current density of 0.1 A g⁻¹. Moreover, the reversible capacities of 268 mAh g⁻¹ can still be retained after 800 cycles under a high current density of 2.0 A g⁻¹.

Experimental section

Chemicals

Fe(NO3)3· 9H2O, KOH, NaOH, and PEG800 were of analytical grade and were purchased from Sigma-Aldrich, with 99.9% purity. Deionized water was used in all the experimental processes.

Synthesis

Fe3O4@C was synthesized by the R-CHM method via the following steps. (1) First, 5.15 g of NaOH, 4.85 g of KOH and 1.2 g of Fe(NO3)3· 9H2O were mixed in a mortar and fully ground. (2) Then 0 or 5 g of PEG800 were added to the mixture, and were further ground. (3) Two mixtures were put into a 25 ml Teflon container, placed in an electric oven and heated at 280 °C for 48 h. (4) The Teflon container was taken out and cooled to room temperature naturally after reaching the specified time. (5) The precipitate formed in the container was washed with deionized water and ethanol until the pH value reached 7, and then dried in vacuum. The sample obtained with 0 g PEG800 was labelled as S1, while the other one was labelled S2.

Characterizations

X-ray diffraction (XRD) analysis was carried out using nickel filtered Cu Ko radiation on a Bruker D8 Advance diffractometer to identify the crystalline phase of the as-prepared samples. The morphology was characterized by an SU8010 field emission scanning electron microscope (FE-SEM) and D8-high resolution transmission electron microscopy (HR-TEM). The reaction mechanism in the R-CHM method was analyzed by a thermo-gravimetric differential scanning calorimeter (TG–DSC) (STA449C/3/G) with a heating rate of 10 °C min⁻¹. Fourier transform infrared spectroscopy (FT-IR) was performed to analyze the surface characteristics of PEG800 and the intermediates in the reaction system by a SHIMAUZU-8400 system. The specimens were mixed with KBr pellets and then pressed into a pelletizer for FT-IR measurements. Magnetic measurements were performed by a Lake Shore 7410 vibrating sample magnetometer (VSM) operated at room temperature. The magnetic hysteresis loop was measured in the field range between ±10 kOe at room temperature.

Electrochemical measurements

For electrochemical analysis, coin-type half cells (CR 2025) were assembled in a glove box filled with high purity argon. The anode was prepared by mixing 80 wt% of the active material (e.g. Fe3O4@C), 10 wt% of Super P conductive carbon, and 10 wt% of polyvinylidene fluoride binder in N-methyl pyrrolidone solvent on copper foil. It was then put into
a vacuum oven and dried at 120 °C for 12 h. The copper foils coated with active materials were cut into circular sheets with a diameter of 1.33 cm and assembled in the glove box. Lithium (Li) metal was used as the cathode and the complex of ethyl methyl carbonate, 1 M LiPF6 in dimethyl carbonate and ethylene carbonate (1:1:1, v/v/v) was used as an electrolyte, and the Celgard 2400 as a separator. Cyclic voltammetry (CV) was carried out between 0.01 and 3.0 V versus Li/Li+ at scanning rates of 0.5 mV s−1 using an electrochemical analyzer (Solartron, 1260/1287). The current density and cycle stability were performed on an Arbin battery tester (BT-2000, Arbin Instruments) between 0.01 and 3.0 V versus Li/Li+ at various charging rates of 0.1, 0.2, 0.5, 0.8, 1.0, 1.5 and 2.0 A g−1. To validate the electrochemical kinetics of Fe3O4@C, electrochemical impedance spectroscopy (EIS) measurements were examined by a frequency response analyser (Solartron, 1260/1287) in the frequency range from 0.1 Hz–100 kHz with an AC signal amplitude of 10.0 mV.

Results and discussion

Figure 1 shows the XRD patterns of S1 and S2. The lower standard XRD pattern confirmed that all the diffraction peaks of S1 can be assigned to the hexagonal phase of α-Fe2O3 (JCPDS No.33-0664) [53]. Meanwhile, the diffraction peaks of S2 at 2θ = 26.30°, 30.01°, 35.41°, 43.11°, 53.61°, 56.91° and 62.41° were indexed to (111), (220), (311), (400), (422), (511) and (440)—in good agreement with the pure face-centred cubic Fe3O4 (JCPDS No. 75-0449) [5, 29]. This suggests that the α-Fe2O3 had completely transformed into the Fe3O4 after being heated to 280 °C for 48 h together with PEG800. All the diffraction peaks of S2 were sharp in width and strong in intensity, indicating that it has excellent crystallinity, while there was no diffraction peak corresponding to carbon observed in the XRD pattern. FT-IR spectra of bare PEG800 (figure S1(a) is available at stacks.iop.org/NANO/28/155603/mmedia) and PEG800 reacting in MOH at 280 °C (figure S1(b) have been obtained. As shown in figure S1, compared to bare PEG800, the absorption peaks of –OH and –CH2 almost disappeared after PEG800 was reacted in MOH for some time, suggesting that PEG800 could be converted into carbon after prolonging the reaction time. Therefore, combining the XRD and FT-IR results, we suggested that PEG800 has transformed into carbon in the process of the synthesis of Fe3O4, which was confirmed by the subsequent TEM image.

In order to characterize the microstructures, FE-SEM, HR-TEM and SAED images of S2 (Fe3O4@C) were examined. The FE-SEM image revealed the detailed morphology of Fe3O4@C, which showed an octahedral shape and uniform size (figure 2(a)). From the enlarged image in figure 2(b), it was found that Fe3O4 crystals have an octahedral morphology with eight facets and have a lateral size of 100 nm. With reference to the FE-SEM analysis above, the TEM images gave a further view of the octahedral Fe3O4@C nanostructure. The same selected area was presented in bright and dark fields, and is shown in figures 2(c) and (d). From the bright-field TEM image in figure 2(c), it can be seen that Fe3O4 possesses regular geometrical morphology, and thus good crystallization. From the dark-field TEM image in figure 2(d), it was observed that some bright spots were covered by shallow grey flocculent matter, suggesting that the surface of the Fe3O4 octahedron was coated with a layer of amorphous material, believed to be carbon. From the highermagnification TEM image in figure 2(e), it can be seen that the Fe3O4 nanocrystals exhibited a regular octahedral shape and the entire surface of the Fe3O4 octahedron was covered by a uniform carbon layer to form a composite structure of Fe3O4@C. After further magnification, the carbon coating wrapping the Fe3O4 octahedron was revealed, as shown in figure 2(f). The thickness of the carbon was measured to be around 3 nm, as marked by the blue dashed lines in figure 2(f). The homogeneous carbon coating structure could effectively improve the conductivity of the electrodes, limit the volume change of Fe3O4 octahedron materials and keep the Fe3O4 electrode stable during Li+ intercalation and deintercalation. Moreover, a small amount of lattice fringes can be observed in the local area. The lattice fringe pitch of 0.30 nm corresponds well with the d-spacing of the (220) reflections of Fe3O4 [17]. In addition, the relative SAED pattern (inset in figure 2(f) disclosed rectangular bright diffraction spots, which can be indexed to the crystal planes (220) and (111) of Fe3O4, indicating the perfect single crystaline structure of the Fe3O4 nanocrystals [40]. At the same time, the morphology and structural characteristics of S1 (α-Fe2O3) were examined by SEM and TEM as well, as shown in figure S2, revealing the as-synthesized α-Fe2O3 sample consisting of dispersed nanosheets that were hexagonal plates with an average diameter of 1 μm and a thickness of about 50 nm. The structures of Fe3O4@C and α-Fe2O3 were further supported by their magnetic properties measured using VSM.
at room temperature, as shown in figure S3, confirming their ferromagnetic characteristics. The saturation magnetization of 26.8 emu g\(^{-1}\), the remanent magnetization of 5.2 emu g\(^{-1}\) and the coercivity of 165.4 Oe measured in Fe\(_3\)O\(_4\)@C are smaller than values reported previously, which could be explained by the surface coating of the carbon layer on Fe\(_3\)O\(_4\).

The reaction process of Fe(NO\(_3\))\(_3\) · 9H\(_2\)O and PEG800 in the MOH medium can be understood from the TG–DSC curves in figure 3. According to the DSC results, there were five endothermic peaks at 66 °C, 91 °C, 105 °C, 132 °C, and 261 °C, and one exothermic peak at 114 °C. The endothermic peak at 66 °C occurs with hardly any weight change, which was believed to correspond to Fe(NO\(_3\))\(_3\) · 9H\(_2\)O changed to Fe(OH)$_3$. The endothermic peaks at 91 °C and 105 °C were associated with a 1.2% weight loss, which was ascribed to the amount of adsorbed water that was lost from the heating process. At 114 °C, a sharp exothermic peak occurred with obvious weight loss, corresponding to the start of the PEG800
decomposition. An endothermic peak appears at 132 °C, which was attributed to Fe(\text{OH})_3 decomposition. Finally, an endothermic peak occurred at 262 °C corresponding to the carbon thermal reduction of Fe_2O_3 into Fe_3O_4. It should be pointed out that, during the process from 114 °C–300 °C, the weight loss was about 22.5%—much larger than the theoretical value of 3.8% for the weight loss associated with the decomposition of Fe(NO_3)_3 \cdot 9H_2O into Fe_2O_3. This difference was likely caused by the weight loss associated with the gradual carbonization of PEG800. Combined with the XRD results above, it was thus concluded that PEG800 provided a reducing agent to transform Fe^{3+} into Fe^{2+} and thus form Fe_3O_4.

The detailed reaction mechanism during the R-CHM synthesis of Fe_3O_4@C is summarized by the following equations:

\begin{equation}
50 ^\circ\text{C} \sim 100 ^\circ\text{C}: \text{Fe}^{3+} + 3\text{OH}^- \rightarrow \text{Fe(OH)}_3
\end{equation}

\begin{equation}
100 ^\circ\text{C} \sim 250 ^\circ\text{C}: \text{PEG800} \rightarrow \text{C} + \text{O}_2 + \text{H}_2\text{O}
\end{equation}

\begin{equation}
120 ^\circ\text{C} \sim 200 ^\circ\text{C}: \text{Fe(OH)}_3 \rightarrow \text{Fe}_2\text{O}_3 + \text{H}_2\text{O}
\end{equation}

\begin{equation}
200 ^\circ\text{C} \sim 300 ^\circ\text{C}: \text{Fe}_2\text{O}_3 + \text{C} \rightarrow \text{Fe}_3\text{O}_4 + \text{CO}_2
\end{equation}

According to the above results of XRD, FESEM and TG–DSC, the formation mechanism of Fe_3O_4@C can be inferred. As illustrated in scheme 1, the Fe_3O_4@C was obtained by a simple one-pot method, as follows: (a) the raw mixture consisted of Fe(NO_3)_3 \cdot 9H_2O, PEG800, MOH that were mixed uniformly with full grinding; (b) after heating at 132 °C, the introduced PEG800 formed a carbon–oxygen skeleton by partial dehydration in the MOH medium, and Fe(OH)_3 decomposed to α-Fe_2O_3. The carbon–oxygen skeleton was then adsorbed on the surface of the obtained α-Fe_2O_3 nanosheets by a large number of hydroxyl groups; (c) when the temperature increased to 262 °C, the carbon–oxygen skeleton transformed to carbon molecules and the α-Fe_2O_3 was reduced to Fe_3O_4 by carbon molecules; the remaining carbon–oxygen skeleton was then coated on the surface of the obtained Fe_3O_4 nanosheets by a large number of hydroxyl groups; (d) as the reaction time progressed, the remaining carbon–oxygen skeleton transformed to carbon molecules and was coated on the surface of the Fe_3O_4 octahedron. As a result, a carbon coated octahedral Fe_3O_4

Figure 3. TG–DSC curves of the Fe(NO_3)_3 \cdot 9H_2O and PEG800 decomposition in MOH medium.

Scheme 1. Illustration of the assembly process and formation mechanism of Fe_3O_4@C.
nanostructure was obtained. The phase transition can be demonstrated by XRD, the morphological description can be obtained according to the FESEM images, and the reaction temperature is confirmed by the TG–DSC results from (a) to (d).

The electrochemical properties of the Fe₃O₄@C were examined by CV and galvanostatic charge/discharge tests. The typical cyclic voltammograms of the Fe₃O₄@C anode in the initial three cycles between 0.01 V and 3.0 V at a scanning rate of 0.5 mVs⁻¹ are shown in figure 4(a). In the first cathodic process, the major peaks located around 0.85 V could be attributed to the formation of Li₂O and solid electrolyte interface (SEI) film [11, 20]. Further, the anodic peak at 1.72 V demonstrated the extraction of Li from the electrode material. In the subsequent cycles, it could be seen that the cathodic peak at 0.85 V shifted to 0.90 V, which might be considered to enhance the physical buffering affect and increase the polarization of the electrode material after being coated with a layer of amorphous carbon. The peak at 1.72 V shifting to 1.79 V might be ascribed to the increased oxidation of Fe⁰ to Fe³⁺ due to the formation of the carbon layer.

Figure 4. (a) Cyclic voltammograms of Fe₃O₄@C at a scan rate of 0.5 mVs⁻¹ between 0.01 and 3.0 V; (b) discharge/charge profiles of Fe₃O₄@C for the initial 100 cycles at a specific current of 0.1 A g⁻¹; (c) the rate capabilities of Fe₃O₄@C at different specific currents between 0.1 and 2.0 A g⁻¹; (d) Nyquist plots of Fe₃O₄@C electrodes before electrochemical cycling by applying an AC voltage of 10 mV over the frequency range from 0.1 Hz–100 kHz.

The cycling performance of Fe₃O₄@C at a specific current of 2.0 A g⁻¹.
Figure 4(b) reveals the galvanostatic charge/discharge curves of the Fe3O4@C at 0.1 A g\(^{-1}\). At 1.0 V, there was a distinct voltage plateau in the discharge curve that corresponds to Li\(^+\) insertion into Fe3O4 and the formation of the SEI films after electrolyte decomposition [3, 10, 41]. A reversible conversion from Fe to Fe3O4 at a sloping plateau around 1.7 V was observed in the charge curve. The capacities during the first two cycles were measured to be 1297 mAh g\(^{-1}\) and 950 mAh g\(^{-1}\). Furthermore, it was noted that a high reversible capacity of 630 mAh g\(^{-1}\) was achieved after 50 cycles. After 100 cycles, it still maintained a reversible capacity of 505 mAh g\(^{-1}\). These results suggest that the integrity of Fe3O4@C could be retained during long-life cycles.

The rate capability of the as-prepared Fe3O4@C was tested at various specific currents ranging from 0.1–2.0 A g\(^{-1}\). As shown in figure 4(c), at 0.1 A g\(^{-1}\), the stable capacity of Fe3O4@C was around 1006 mAh g\(^{-1}\). When the specific current raised to 0.5 A g\(^{-1}\), a stable high capacity of 825 mAh g\(^{-1}\) could be achieved. At a high specific current of 1.0 A g\(^{-1}\), the Fe3O4@C could possess a stable capacity of 622 mAh g\(^{-1}\) (figure 4(c)). At an even higher specific current of 2.0 A g\(^{-1}\), it presented a reversible capacity of 317 mAh g\(^{-1}\). Remarkably, when the specific current was reduced back to 0.1 mA g\(^{-1}\) after 35 cycles, a stable high capacity of 1006 mAh g\(^{-1}\) could be recovered (figure 4(c)). Such enhanced electrode kinetics could be further examined by EIS measurements. The charge transport properties of the Fe3O4@C samples were measured by EIS at an open-circuit voltage of 2.85 V. As shown in figure 4(d), it was observed that from 10\(^2\) Hz–10\(^5\) Hz, the Nyquist plots displayed a depressed semicircle and from 0.1 Hz–10\(^2\) Hz displayed a sloped line, which correspond to the charge transfer resistance (R\(_{ct}\)) and Warburg impedance (W\(_{w}\)), respectively [1, 42]. The value of the charge transfer resistance (R\(_{ct}\)) was 52 Ω for Fe3O4@C, indicating the significantly improved charge transport properties of the Fe3O4@C electrode due to the presence of the carbon layer on its surface.

To verify the long-term cycling stability and high rate capability of Fe3O4@C as an anode material for LIBs, it was tested at an extremely high specific current of 2.0 A g\(^{-1}\) for 800 cycles, as shown in figure 5. It can be seen that the reversible capacity was stabilized around 300 mAh g\(^{-1}\) at the 50th cycle and the capacity decay ratio was about 58%. After 800 cycles, the Fe3O4@C anode remained at a reversible capacity of 268 mAh g\(^{-1}\) and the capacity decay ratio was about 52%. It is noted that the capacity decreased at the start of the 50 cycles. This phenomenon has also been observed in previous researches [15, 32, 52]. The possible reason is that when the current density is too large, the anode is prone to polarization which causes Li ion reduction by deposition. So the capacity decreased in the initial stage [32]. The excellent cycling stability and rate performance of Fe3O4@C may be attributed to the synergic effects of each component in the composite [18]. Firstly, the nanosize octahedral Fe3O4 can significantly increase the electrode/electrolyte contact area and shorten the electron and Li ion diffusion distances; secondly, the carbon coating can effectively improve the structural stability of the electrode by suppressing the aggregation of the Fe3O4 octahedron and accommodating its volume expansion during the process of charge/discharge [9, 47]. Moreover, to verify the long-term cycling stability, the performance of other similar materials reported in the literature are summarized in table 1. It can be seen that the Fe3O4@C exhibited a long-term cycling stability when synthesized by the R-CHM method. All the above characteristics proved Fe3O4@C to be a promising anode material for high performance LIBs.

Conclusion

A novel one-pot R-CHM strategy was developed for the synthesis of an octahedral Fe3O4@C nanostructure at 280 °C. Such Fe3O4@C delivered reversible capacities of 1006–317 mAh g\(^{-1}\) over a wide range of specific currents of 0.1–2.0 A g\(^{-1}\). Importantly, it maintained a reversible capacity of 268 mAh g\(^{-1}\) after 800 cycles at 2.0 A g\(^{-1}\). These excellent electrochemical properties are attributed to the uniform-sized octahedral Fe3O4 and in situ carbon coating. The carbon layer on the surface of the octahedral Fe3O4 could effectively improve the electrode conductivity, avoid direct exposure of the Fe3O4 octahedral to the electrolyte and help to reduce the mechanical stress during the Li-ion insertion/extraction process. Therefore, this R-CHM method is an ideal one-step technique to obtain an in situ carbon coating structure at lower temperatures. Thanks to its facility and versatility, the R-CHM method invented in our work can be extended to the synthesis of other functional nanostructures for various applications.
Acknowledgments

This work was financially supported in part by the National Key Research Program of China (2016YFA0201001), the National Nature Science Foundation of China (NSFC51102218), the National Science Foundation (NSF, DMR-1505902), the National Natural Science Foundation of China (11627801), and the Shenzhen Science and Technology Innovation Committee (ZDSYS20140509162754023).

References

[9] Geng H B, Zhou Q, Zheng J W and Gu H W 2014 Preparation of porous and hollow Fe3O4@C spheres as an efficient anode material for a high-performance Li-ion battery RSC Adv. 4 6430–4
[10] Han F, Ma L, Sun Q, Lei C and Lu A 2014 Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries Nano Res. 7 1706–17
[18] Jo M R et al 2016 Fe3O4 nanoparticles encapsulated in one-dimensional Li7Ti2O7 nanomattix: an extremely reversible anode for long life and high capacity Li-ion batteries Nano Energy 19 246–56
[22] Lang L and Xu Z 2013 In situ synthesis of porous Fe3O4/C microbolts and their enhanced electrochemical performance for lithium-ion batteries ACS Appl. Mater. Interfaces 5 1698–703
[26] Li et al 2012 Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage Adv. Funct. Mater. 22 1647–54
[29] Liu J, Xu H, Hu R, Yang L and Zhu M 2016 Uniform hierarchical Fe3O4@polypyrrole nanocages for superior lithium ion battery anodes Adv. Energy Mater. 6 1600256
supported Fe3O4 lithium battery anodes with long cycle life and high rate capability \textit{Nano Lett.} \textbf{13} 6136–43

[34] Ma T, Zhao Q, Wang J, Pan Z and Chen J 2016 A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery \textit{Angew. Chem., Int. Ed. Engl.} \textbf{55} 6428–32

[38] Ren Y, Wang J, Huang X and Ding J 2016 Enhanced lithium-ion storage performance by structural phase transition from two-dimensional rhombohedral Fe2O3 to cubic Fe3O4 \textit{Electrochem. Acta} \textbf{198} 22–31

[40] Wan Y, Yang Z, Xiong G, Guo R, Liu Z and Luo H 2015 Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanotubers toward flexible high-rate anodes for lithium-ion batteries \textit{J. Power Sources} \textbf{294} 414–9

[53] Zhao L, Gao M, Yue W, Jiang Y, Wang Y, Ren Y and Hu F 2015 Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries \textit{ACS Appl. Mater. Interfaces} \textbf{7} 9709–15