Walnut-like Porous Core/Shell TiO2 with Hybridized Phases Enabling Fast and Stable Lithium Storage

Yi Cai, Hong-En Wang, Xu Zhao, Fei Huang, Chao Wang, Zhao Deng, Yu Li, Guozhong Cao and Bao-Lian Su

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070, Wuhan, Hubei, China

Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States

Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium

Department of Chemistry and Clare Hall, University of Cambridge, Cambridge CB2 1EW, U.K.

ABSTRACT: TiO2 is a promising and safe anode material for lithium ion batteries (LIBs). However, its practical application has been plagued by its poor rate capability and cycling properties. Herein, we successfully demonstrate a novel structured TiO2 anode with excellent rate capability and ultralong cycle life. The TiO2 material reported here shows a walnut-like porous core/shell structure with hybridized anatase/amorphous phases. The effective synergy of the unique walnut-like porous core/shell structure, the phase hybridization with nanoscale coherent heterointerfaces, and the presence of minor carbon species endows the TiO2 material with superior lithium storage properties in terms of high capacity (~177 mA h g⁻¹ at 1 C, 1 C = 170 mA g⁻¹), good rate capability (62 mA h g⁻¹ at 100 C), and excellent cycling stability (~83 mA h g⁻¹) was retained over 10 000 cycles at 10 C with a capacity decay of 0.002% per cycle.

KEYWORDS: anatase, amorphous, TiO2, titanate, porous core/shell structure, lithium ion battery, anode material, electrochemical performance

1. INTRODUCTION

Lithium ion batteries (LIBs) are a very promising electrochemical power source that are widely used in portable electronics, electric vehicles, and stationary energy storage systems because of their environmental friendliness, long calendar life, high output voltage, and energy density. Currently, graphite is the main anode material for commercial LIBs; however, it still suffers from poor rate capability and low safety. Several alternative candidates, such as alloy-based materials and transition metal oxides and sulfides, have been explored as next-generation anode materials for LIBs. Among them, titanium dioxide (TiO2) has attracted much attention because of its low cost, environmental benignity, and structural stability. Moreover, TiO2 is electrochemically stable during lithiation/delithiation processes, and it can avoid lithium electroplating which causes safety concerns. However, the practical application of TiO2 in LIBs has been hindered by the large polarization at high charge/discharge rates due to the sluggish Li⁺ diffusion and poor electron transport. To mitigate the slow kinetics, many approaches have been studied, such as engineering the particle morphology and size, phase composition, oxygen vacancies, and surface modification to improve the battery performance by enhancing the ionic diffusion and electronic conduction.

Previous studies have demonstrated that reducing the particle sizes of TiO2 to nanoscale range could significantly improve the Li⁺ insertion/extraction kinetics and increase the storage capacity. To this end, various low-dimensional nanostructured TiO2 such as nanoparticles, nanorods/nanowires, nanotubes, nanocables, and nanosheets, have been synthesized to improve the performance. For example, an alkali hydrothermal process has been developed to synthesize various 1D TiO2 nanostructures anodes using amorphous or crystalline TiO2 nanoparticles as starting precursors. Further, to overcome the easy aggregation of low-dimensional nanostructures, porous and hollow TiO2 nanostructures having unique structural superiorities of both nanosized building units and microsized assemblies are thus able to manifest enhanced strain-accommodation capability and structural stability. In particular, porous core/shell TiO2 materials are more appealing because of their high surface area and permeability to electrolyte as well as the ability to better accommodate the repeated volume variation upon electrochemical cycling. Meanwhile, introducing conductive...
Materials is also an effective approach to improve the lithium storage performance of TiO$_2$ because it can significantly enhance the electron transport of the electrode.27 Furthermore, previous studies have suggested that the formed Ti$^-$C bond between TiO$_2$ and conductive carbon materials can strongly boost the electrical conductivity which is different from the weak physical contact.28$-$30 For example, Etacheri et al.30 synthesized chemically bonded TiO$_2$-B nanosheet/reduced graphene oxide hybrid via a simple photocatalytic reduction method. Benefiting from the synergistic effects of the increased...
charge transfer with Ti–C bond and exposed (010) facets, the nanocomposite presents good rate performance and excellent cycling stability.

In addition, engineering the TiO₂ materials with mixed polymorphs has also been proposed to improve the lithium storage performance. Through coupling the anatase TiO₂ with secondary TiO₂-B or amorphous TiO₂, the lithium storage capability could be significantly improved,²¹−²⁴ because the multiphased TiO₂ hybrid shows unique phase boundaries, which can improve the Li-ion diffusion and facilitate electron transport through the electrode.²¹,²² For example, Guo et al.²¹ designed and fabricated surface amorphized TiO₂/layer hybrids for LIBs. The surface amorphized sample exhibited improved lithium storage performance compared with crystalline sample owing to the lower lithium-ion diffusion and electronic conduction resistances and better surface adsorption in the amorphous layer.

Herein, inspired by all the above considerations, we have successfully fabricated a porous walnut-like TiO₂/C core/shell structure with hybridized anatase/amorphous phases and incorporation of minor carbon species in form of Ti–C chemical bond. The material was prepared by an alkaline solvothermal process paired with post-treatment using well-defined TiO₂/oleylamine hybrid spheres as precursor. Our finding is strikingly different from the most conventional alkaline hydrothermal processes whereas phase-pure onedimensional TiO₂ nanostructures or their assemblies are routinely obtained. Interestingly, the synergy of porous core/shell nanostructures, hybridized anatase/amorphous phases with nanoscale coherent interfaces, and favorable Ti–C bonds endows the TiO₂ hybrid material with superfast Li⁺ diffusion and electron transport and enhanced pseudocapacitive lithium storage, giving rise to excellent lithium storage capability. Through the ex situ characterizations, we also observe the existence of cubic LiTiO₂ nanodots attaching on the electrode surface after long-term discharge/recharge processes, which strongly supports the deep lithiation capability of the porous core/shell TiO₂ electrode.

2. RESULTS AND DISCUSSION

The porous core/shell TiO₂ material was synthesized by an alkaline solvothermal reaction paired with post-treatment, as illustrated in Scheme 1. First, amorphous TiO₂/oleylamine precursor (Scheme 1a) was fabricated by sol−gel processing and used as a self-template in the subsequent process. The resulting TiO₂/oleylamine precursor consists of uniformly sized spherical particles with smooth surface and diameter of ~500 nm as revealed by means of scanning electron microscopy (SEM) (Figure 1a).

The precursor was in situ converted into sodium titanates (termed as NaTiO, Scheme 1b) by a solvothermal reaction in alkaline solution. It is noted that the resulting NaTiO product consists of porous spheres made of nanoparticles (Figures 1b−d). The X-ray diffraction (XRD) pattern further reveals its amorphous nature or very poor crystallinity (Figure 2a). This finding is noticeably different from the crystalline titanate nanowires/nanotubes/nanofibers commonly reported in the literature.²⁵,²⁶ To probe the formation process of the porous amorphous NaTiO spheres, a series of intermediate products at different stages of solvothermal synthesis were collected and analyzed by SEM (Figure S1). It is clear that porous NaTiO spheres were formed within a short reaction period of 3 h (Figure S1a). Further prolonged reaction time up to 12 h did not change much of the porous spherical morphologies but only enlarged the pores in the spheres (Figure S1b–d). On the basis of these observations, we hypothesize that the high alkaline concentration and presence of oleylamine species in the TiO₂ precursor play an important role in controlling the formation of such porous amorphous NaTiO spheres. On the one hand, at high alkali concentration the NaOH can penetrate into the loose hybrid spheres and react with TiO₂ colloids, favoring rapid formation of a large number of titanate nuclei shortly. On the other hand, the chemisorption of oleylamine molecules on the surfaces of the titanate nuclei would hinder their further attachment and crystallization into low-dimensional nanostructures.

After the proton-exchange process, the resulting hydrogen titanate (HTiO) sample (Scheme 1c) consists of core/shell spherical structures (Figure 1e), differing from its parent NaTiO product. The HTiO shell of ~30 nm thickness is mainly composed of interconnected nanoparticles. The inner porous core with a diameter of ~400 nm is also composed of interlinked nanoparticles. The XRD pattern (Figure 2b) reveals the HTiO sample is crystallized, and the diffraction reflections can be readily indexed to orthorhombic H₂TiO₅·H₂O phase (JCPDS Card No. 47-0124).²⁵ The formation of such unique core−shell structure can be explained by the Kirkendall effect, which deals with the movement of the interface between two diffusion couples during the ion-exchange process.²⁶ In current experiments, the protons (H⁺) in the acid solution acting as diffusion species would exchange with Na⁺ ions in the NaTiO. The diffusion at (NaTiO) solid/solution interface and the concentration gradients of H⁺ and Na⁺ within each phase would lead to the original formation of a H₂TiO₅·H₂O shell. In addition, the exchange of Na⁺ with protons is thermodynamically favorable. The energy gain during the proton-exchange process can promote the crystallization of the HTiO shell. As a result, the rigid and crystalline HTiO shell would then detach from the inner core, leading to the formation of a core/shell HTiO structure. In addition, no Na element is detected in the energy-dispersive X-ray (EDX) pattern (Figure 1f), which apparently verifies the complete replacement of Na⁺ by H⁺ after ion exchange.

Finally, porous core/shell TiO₂ was obtained after dehydration of the HTiO by heat treatment at 300 °C in air (Scheme 1d). The XRD reflections (Figure 2c) can be readily
indexed to the tetragonal anatase phase (JCPDS Card No. 21-1272).37,38 The broadening of the diffraction reflections suggests the relatively low crystallinity due to possible existence of amorphous TiO\textsubscript{2} components in the as-obtained product because of the low calcination temperature used. Raman spectroscopy (Figure 3) was further performed to demonstrate

![Raman spectra of the as-prepared TiO\textsubscript{2} product.](image)

the crystal structure of TiO\textsubscript{2}, where five apparent Raman peaks at 150, 198, 395, 515, and 634 cm-1 can be observed, corresponding to the typical Raman modes of anatase TiO\textsubscript{2}.39 From the SEM image in Figure 4a, the spherical structure has been well preserved and many macropores (\textasciitilde 55 nm) can be observed on the particle surface. SEM image of several broken spheres (Figure 4b) further unravels the porous core/shell structure of the resulting TiO\textsubscript{2} material. TEM image confirms the shell has a thickness of \textasciitilde 30 nm and is constructed by some nanoparticles and nanosheets (Figure 4c). The inner porous core is composed of some aggregated nanoparticles with interconnected pore channels. The highly porous core/shell structure can afford a large contact area for the wettability of electrode with electrolyte and a short diffusion pathway for Li+ and electron transport. Clear lattice fringes with a spacing of 0.35 nm in the HRTEM micrograph can be assigned to the (101) and (011) crystal planes of anatase (Figure 4d). In addition, some amorphous TiO\textsubscript{2} domains can also be observed as labeled by the dotted and closed yellow lines. The amorphous domains surround the anatase nanocrystals, forming abundant continuous coherent heterointerfaces on a nanoscale (Figure S2). The formation of amorphous domains can be attributed to the low annealing temperature and the existence of minor oleylamine molecules in the HTiO product, which decompose into carbon species during annealing and suppress the crystallization of TiO\textsubscript{2}. The existence of amorphous domains can potentially increase the lithium storage capability of the TiO\textsubscript{2} material. (1) Amorphous TiO\textsubscript{2} has a higher practical lithium storage capacity and can better buffer the volume change during charge/discharge due to its loose structure and low mass density.40 (2) The heterojunctions created at the anatase/amorphous interface can enhance the

![Figure 4. (a, b) SEM images and (c) TEM image of the porous core/shell TiO\textsubscript{2}. (d) HRTEM micrograph of the TiO\textsubscript{2} illustrates the anatase nanocrystals are surrounded by some amorphous TiO\textsubscript{2} domains, leading to the formation of abundant nanoscale coherent heterojunctions.](image)
charge separation and Li$^+$ intercalation due to the self-building electric field at the phase interfaces.31,41

The nitrogen adsorption/desorption isotherms in Figure 5 show a typical type IV curve with H1-type hysteresis, representing typical mesoporous structure.42 The Brunner–Emmett–Teller (BET) specific surface area of the sample yields to be ~ 81 m2 g$^{-1}$. The Barrett–Joyner–Halenda (BJH) pore size distribution curve (inset of Figure 5) derived from the desorption branch verifies the existence of both macropores and mesopores with size distribution centering at ~ 35 and 3 nm, respectively, which is in good accordance with the SEM and TEM results.

X-ray photoelectron spectroscopy (XPS) analyses were further conducted to study the elemental composition and chemical states of the elements in the TiO$_2$ material. Figure 6a shows the XPS spectra at the Ti 2p binding energy (BE) region. The bands centered at 458 and 463.7 eV are ascribed to the 2p$_{3/2}$ and 2p$_{1/2}$ spin–orbit split photoelectrons of Ti$^{4+}$ in TiO$_2$ lattice. In addition, two other weak peaks centered at 459.5 and 465.2 eV can be attributed to the formation of Ti–C bond28,29,43,44 due to the in situ decomposition of minor oleylamine residue at low annealing temperature. The formation of Ti–C bond and existence of minor carbon species have been further confirmed by C 1s XPS analysis and thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), respectively, as discussed later. The O 1s XPS spectrum (Figure 6b) can be deconvoluted into three bands. The band centered at 530 eV corresponds to the O–Ti bonds while the bands centered at 531.5 and 532.7 eV can be assigned to the C–O–Ti bonds and O–H bonds of surface adsorbed H$_2$O. Figure 6c depicts the C 1s XPS spectra. The deconvolution of C 1s spectra reveals five different bands. The strongest band centered at 284.9 eV corresponds to the C–C/C\equivC bonds of graphitic carbon. The band centered at 284.3 eV can be assigned to the bonds of C connected to Ti,43 signifying the formation of Ti–C bond between the TiO$_2$ and minor carbon species as discussed above. The presence of Ti–C bonds will favor the electron transfer from carbon to TiO$_2$ and thus enhance the electronic conduction in the TiO$_2$.
material, which is beneficial for high rate lithium storage. In addition, the C 1s bands centered at 258.7, 286.2, and 288.7 eV correspond to the C−O, C=O, and −COO functional groups on the surface of the carbon species, respectively.44

TGA/DSC measurements were used to further identify the carbon content in the TiO2 sample. As shown in Figure 6d, the initial weight loss of 5.7% before 300 °C can be mainly due to the physically adsorbed water at the porous particle surfaces. The second weight loss of 4% occurring between 300 and 600 °C can be assigned to the combustion of the carbon species contained in the TiO2 sample, which is accompanied by a large exothermal peak as shown in the DSC curve. It is noted that the elevated decomposition temperature for complete removal of carbon species (600 °C) compared to previous work (480 °C)29 can be ascribed to the formation of strong Ti−C bonds as shown in XPS (Figure 6a,c).

We then evaluate the lithium storage performance of the porous core/shell TiO2 electrode in the voltage range of 1−3V vs Li+/Li. Figure 7a records the first three cycles of cyclic voltammetry (CV) curves of the TiO2 electrode at 0.2 mV s−1. In the first cathodic sweep, the Li-insertion potential is noted at 1.65 V vs Li+/Li. In the subsequent anodic scan, the oxidation peak occurs at 2.1 V vs Li+/Li (denoted as “A peaks”). In the second cathodic scan, the reduction peak shifts to a higher potential of 1.7 V with slight increased peak current, suggesting an activation process.20 The potential gap between redox couples becomes smaller and the peak current slightly increases, representing the decreased electrode polarization and improved electrochemical kinetics.45 As a result, the reversibility of Li+ insertion/removal increases after the first cycle possibly due to the improved electrolyte permeation in our porous core/shell electrode.20 The third sweep curve almost overlaps with the second one, implying the highly reversible redox reaction. Besides, another pair of redox peaks is observed at ∼1.4 and 1.8 V (termed as “S peaks”). This peak can be ascribed to pseudocapacitive lithium storage processes that occur in porous nanostructures or amorphous domains.33 The CV curves of the TiO2 electrode recorded at varied sweep rates are depicted in Figure 7.
The TiO₂ electrode delivers a high initial discharge capacity of small crystallite size, and the coexistence of amorphous phase, (inset of Figure 7b), suggesting Li storage is governed by both the cathodic and anodic process are 0.6 and 0.7, respectively storage on the surface. The third region with a slope potential increase the electrical conduction and shorten the diffusion in the solid state electrode and pseudocapacitive storage on the surface.

In this equation, current \(i \) is to a power law with scan rate \(v \), and the exponential term \(b \) can be determined from the slope of \(\log(i) \) versus \(\log(v) \) plot. Usually, a \(b \) value of 0.5 indicates a diffusion-controlled \(\text{Li}^+ \) intercalation process in solid electrode while \(b \) value of 1 signifies a surface-mediated pseudocapacitive storage process. In current experiments, the fitted \(b \) values for the cathodic and anodic process are 0.6 and 0.7, respectively (inset of Figure 7b), suggesting Li storage is governed by both diffusion in the solid state electrode and pseudocapacitive storage on the surface.

Figure 7c shows the first two galvanostatic discharge/charge voltage profiles of the TiO₂ electrode at 0.5 C (1 C = 170 mA g⁻¹). The discharge curves can be separated into three different regions. The first region shows a monotonous potential drop before reaching a voltage plateau, which relates to a solid-solution insertion mechanism linked to porous nanostructures. The second region with a voltage plateau at \(\sim 1.7 \) V is associated with \(\text{Li}^+ \) insertion and occupation of empty interstitial octahedral sites in anatase lattice. During this process a two-phase reaction occurs with an equilibrium between tetragonal \(\text{Li}_{0.01}\text{TiO}_2 \) and orthorhombic \(\text{Li}_{0.55}\text{TiO}_2 \). In addition, no inflection point is observed before entering the second region, suggesting no extra overpotential is required for driving the initial nucleation of \(\text{Li}_{0.55}\text{TiO}_2 \). This result can be ascribed to the enhanced reaction kinetics caused by the presence of carbon content and \(\text{Ti}–\text{C} \) bonds and sintered nanogranin in porous core/shell structure, which significantly increase the electrical conduction and shorten the diffusion path lengths of \(\text{Li}^+ \) ions. The third region with a slope potential drop reflects extra lithium storage at the particle surface as well as the formation of a new \(\text{Li}_4\text{Ti}_5\text{O}_{12} \) phase. The very long slope region of third stage and the short potential plateau at second region suggest an increased surface \(\text{Li}^+ \) storage in the porous core/shell TiO₂ due to their high specific surface area, small crystallite size, and the coexistence of amorphous phase. The TiO₂ electrode delivers a high initial discharge capacity of 307 mA h g⁻¹ followed by a charge capacity of 208 mA h g⁻¹, with an initial Coulombic efficiency (CE) of 68%. The initially irreversible capacity loss is mainly due to the decomposition of trace moisture adsorbed on the electrode surface and insertion of \(\text{Li}^+ \) ions into some sites that are not extractable. The discharge and charge capacities are 220.7 and 196.6 mA h g⁻¹ in the second cycle, together with a much higher CE of 89%, implying its superior Li storage property. The discharge/charge curve profiles at varied current rates are shown in Figure 7d. It is evident that the as-obtained TiO₂ material exhibits high and reversible \(\text{Li}^+ \) storage capacity even at very high current rates. In addition, the potential plateaus between discharge and charge increase very slowly, further demonstrating the superior \(\text{Li}^+ \) insertion/extraction kinetics in the TiO₂ electrode. From the rate capability curve (Figure 7e), the core/shell TiO₂ hybrid electrode delivers reversible capacities of 176.7, 162, 157.7, 135.7, and 126.4 mA h g⁻¹ at rates of 1, 2, 5, 10, and 20 C, respectively. Even at an ultrahigh rate of 100 C, the TiO₂ electrode can still deliver 62 mA h g⁻¹ (a retention of ∼36.3% relative to the value at 1 C). When the current rate is suddenly reduced to 1 C again, a reversible capacity of 160 mA h g⁻¹ can be recovered, indicating the superior cycling stability of the electrode. Moreover, the core/shell TiO₂ electrode also exhibits excellent cycling performance with a reversible capacity of 151 mA h g⁻¹ after 100 cycles. As discussed previously, the excellent lithium storage performance of the core/shell TiO₂ electrode is related to the presence of amorphous TiO₂ in the sample, which favors the formation of nanoscale coherent heterointerfaces, enabling fast Li-ion diffusion and electron transport driven by a self-building electric field. To prove these, we further measured the electrochemical properties of amorphous TiO₂ and pure anatase TiO₂ for comparison. The related structures and morphologies of the two control TiO₂ samples have been characterized by XRD, SEM, Raman, and TEM, respectively as shown in Figures S3, S4, S5, and S6. Clearly, the core/shell TiO₂ with hybridized amorphous/anatase phases exhibit better rate capability and cycling property than the amorphous and anatase TiO₂ (Figure 7e,f).

To further reveal the favorable reaction kinetics of the amorphous/anatase TiO₂ electrode, electrochemical impedance spectroscopy (EIS) analyses of the three samples are further provided in Figure 8. The Nyquist plots are composed of a semicircle in the high-frequency region which is related to the charge transfer resistance \((R_t) \) and one sloping line in the low-frequency region corresponding to the \(\text{Li}^+ \) diffusion in the electrode. The plots reveal that the amorphous/anatase TiO₂ electrode has a much smaller \(R_t \) value than the amorphous and anatase TiO₂ electrodes, suggesting its better kinetics characteristics. The superior kinetics property of the TiO₂ electrode benefits from the improved electrical conduction and facile \(\text{Li}^+ \) uptake due to the porous core/shell structure and phase hybridization with nanoscale coherent heterointerfaces as well as the presence of minor carbon species and the formation of \(\text{Ti}–\text{C} \) bonds.

Moreover, long-term cycling performance at high rate is crucial for the practical high-power implementation of lithium-ion batteries. To identify the favorable cyclic stability of the
TiO₂ electrode, the Li-half cell is tested up to 10,000 cycles at 10 C. As shown in Figure 9, the TiO₂ electrode delivers an original capacity of 99 mA h g⁻¹ and retains a capacity of 83 mA h g⁻¹ after 10,000 cycles, demonstrating a high capacity retention of 84% and a very low capacity loss rate of ~0.002% per cycle. This outstanding cycling stability and rate capability of the TiO₂ electrode are also superior or comparable to a variety of core/shell structured TiO₂ materials²⁵,²⁶,⁵¹−⁵⁷ reported previously, as summarized in Table 1.

To disclose the effects of repeated electrochemical (de)lithiation on the morphology and microstructure of the TiO₂ electrode, ex situ SEM and TEM characterizations of the TiO₂ electrode after cycling at different current rates were conducted as shown in Figure 10. Figure 10a–c shows the SEM and TEM images of the electrode after cycling at 1 C for 50 cycles. Clearly, the porous morphology and core/shell structure of the TiO₂ material have been well preserved. This observation is strikingly different from the previous findings that obvious structure decay (e.g., evolution of cracks) observed in ordered mesoporous TiO₂ spherical frameworks after discharge/charge for 50 cycles.²⁸ This result clearly validates the better structural robustness of our porous core/shell material, which is beneficial for superior electrochemical Li⁺ storage with long-term cycling stability as discussed above. In addition, as can be seen in Figure 10d, even after 10,000 cycles at 10 C, the porous core/shell structure is well-preserved, indicating the good structural integrity of the TiO₂ electrode. From the HRTEM image in Figure 10e, the interplanar distances of 0.21 and 0.35 nm can be indexed to the (200) plane of cubic Li₄Ti₅O₁₂ and (101) plane of anatase, respectively. The emergence of cubic Li₄Ti₅O₁₂ in the tetragonal anatase TiO₂ phase can be further confirmed by the SAED pattern (Figure 10f). The newly emerged cubic Li₄Ti₅O₁₂ phase (JCPDS No. 74-2257)⁶⁹ mainly exists in the form of ~10 nm nanodots attaching on the electrode surface. The direct observation of nano-Li₄Ti₅O₁₂ after long-term discharge/recharge process strongly supports the deep lithiation capability of the porous core/shell TiO₂ electrode with coexisted coherent anatase/amorphous heterointerfaces and minor graphitic carbon.

3. CONCLUSIONS

Unique hierarchically structured porous TiO₂ material with core/shell configuration and anatase/amorphous phase hybridization was successfully synthesized via a solvothermal route coupled with post-treatment. The Kirkendall effect was proposed to explain the morphology evolution from sodium titanates to hydrogen titanates. Owing to the integrated features of porous and core/shell structures, hybridized anatase/amorphous phase with coherent interface, and the presence of minor carbon species and the formed Ti–C bonds, the resulting TiO₂ material displays superior lithium storage performance. The current strategy may be extended to the design and synthesis of other electrode materials for broad use in (post) lithium batteries and supercapacitors. In addition, the hierarchically porous core/shell structured TiO₂ material may find other applications in sodium ion batteries, photocatalysis, and photovoltaics, etc.
4. EXPERIMENTAL SECTION

4.1. Synthesis. All the reagents were analytical pure grade and used as received.

First, amorphous spherical TiO$_2$ particles were prepared by pouring 4.5 mL of tetrabutyl titanate into 200 mL of ethanol solution containing 0.8 mL of deionized (DI) water and 1.8 mL of oleylamine under vigorous stirring. After reaction for 2 h, the resulting white precipitates were washed with absolute ethanol for three times, then collected by centrifugation, and finally dried at 60°C in air overnight.

Next, sodium titanates (NaTiO) were prepared by a solvothermal reaction. First, 0.25 g of precursor was dispersed in 40 mL of alkaline solution containing 24 g of sodium hydroxide. Then 20 mL of ethanol was added in the solution to form milky suspension under mild stirring. After that, the suspension was transferred to a 100 mL Teflon-lined autoclave and then heated in an electric oven at 150°C for 48 h. After the autoclave was cooled down, the products were collected by centrifugation, washed with ethanol and deionized water for several times, and finally dried at 60°C in air. Hydrogenated titanates (HTiO) were prepared by soaking the NaTiO in 0.12 M HCl solution for 12 h, then collected by centrifugation and rinsing with deionized water several times, and finally dried at 60°C in air.

The porous core/shell TiO$_2$ material was obtained by annealing the HTiO product at 300°C for 2 h in air. For comparison, amorphous TiO$_2$ material was also prepared at the same condition except further increasing the content of sodium hydroxide to 28.8 g. The crystalline anatase TiO$_2$ material was obtained at the same condition except annealing the HTO product at 450°C for 6 h in air.

4.2. Characterizations. X-ray diffraction (XRD) patterns were obtained on a Bruker diffractometer at 40 mA/kV with Cu K$_\alpha$ radiation ($\lambda = 0.15405$ nm). The morphologies of the samples were observed by a field-emission scanning electron microscope (FESEM, Hitachi S-4800) equipped with an energy-dispersive X-ray (EDX) spectroscopy. Transmission electron microscopy (TEM) images were acquired on a JEM-2100F electron microscope operated at 200 kV. The surface electronic states of the elements were analyzed by an X-ray photoelectron spectroscope (XPS, Thermo fisher, Alpha). The binding energy (BE) for the sample was calibrated using the C 1s peak from a carbon tape at 284.8 eV. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of the material were performed using a Labsys EvoS60/58458 thermal analysis instrument at a temperature ramping rate of 5°C min$^{-1}$ in air. Raman spectroscopy measurement was recorded by a Nexus FTIR spectrometer using a laser with wavelength of 1064 nm and resolution of 4 cm$^{-1}$. Nitrogen adsorption/desorption isotherms were measured at 77 K using a Tri Star II 3020 surface area and porosity analyzer. Prior to adsorption experiments, the samples were degassed at 100°C for 48 h in a vacuum line. The specific surface area and pore size
distribution were calculated by Brunauer—Emmett—Teller (BET) and Barrett—Joyner—Halenda (BJH) methods, respectively.

4.3. Electrochemical Measurements

Electrochemical tests were performed using 2025-type coin cells. The working electrodes were prepared by mixing the active materials, acetylene black, and poly(vinylidene fluoride) (PVDF) with a weight ratio of 7:2:1 in N-methyl-2-pyrrolidone (NMP) to form a slurry. The slurry was uniformly spread on a copper foil. Lithium foil was used as the counter electrode and reference electrode. A 1 M solution of LiPF6 dissolved in ethylene carbonate and dimethyl carbonate (1:1 in volume ratio) was used as the electrolyte. The lithium half-cells were assembled in an argon-filled glovebox with both water and oxygen contents below 0.5 ppm. Cyclic voltammetry (CV) data were recorded using an CHI 604e electrochemical workstation. Galvanostatic charge curves were collected on a LAND CT2001A battery test system within a voltage range of 3.0–1.0 V (vs Li+/Li) at various C rates (1 C is defined as 170 mA g⁻¹). Electrochemical impedance spectra (EIS) were carried out on an electrochemical workstation (Autolab PGSTAT 302N) in the frequency range of 100 kHz–10 mHz with an amplitude of 5 mV. All the electrochemical measurements were carried out at room temperature.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.6b16498.

SEM images of the sodium titanate (NaTiO) collected after different reaction durations and HRTEM image of the TiO₂ product; XRD patterns, SEM images, and Raman spectrum of amorphous and anatase TiO₂ (PDF)

AUTHOR INFORMATION

Corresponding Authors
*Fax +86 27 87879468; Tel +86 27 87855322; e-mail hongen.wang@gmail.com (H.-E.W.).
Fax +1 206 543 3100; Tel +1 206 616 9084; e-mail gzcao@u.washington.edu (G.-L.S.).
Fax +32 81 725414; Tel +32 81 724531; e-mail bao-lian.su@unamur.be (B.-L.S.).

ORCID

Hong-En Wang: 0000-0002-6859-5683
Guozhong Cao: 0000-0003-1498-4517

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

B.-L.S. acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Membership at the Clare Hall and the financial support of the Department of Chemistry, University of Cambridge. H.-E.W. and Y.L. acknowledge Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is supported by the National Key Research and Development Program of China (2016YFA0202602), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), the National Science Foundation of China (51302204), and International Science & Technology Cooperation Program of China (2015DFE52870). H.-E.W., X.Z., and F.H. also thank China Scholarship Council (CSC) for financial support for their study at University of Washington, Seattle, WA.

REFERENCES

Dioxide Spheres with a Core-Shell Structure as Anode Materials for Lithium and Sodium Ion Batteries. J. Power Sources 2014, 269, 37–45.