Yolk-shell structured V$_2$O$_3$ microspheres wrapped in N, S co-doped carbon as pea-pod nanofibers for high-capacity lithium ion batteries

Wenwen Goua,1, Xiangzhong Konga,1, Yaping Wanga,*, Yanling Aia, Shuquan Lianga, Anqiang Pana,*, Guozhong Caob

a School of Materials Science & Engineering, Central South University, Changsha, Hunan 410083, China
b Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA

HIGHLIGHTS

- Pea-pod structured V$_2$O$_3$/carbon fiber network were successfully fabricated.
- V$_2$O$_3$ yolk-shell microspheres were wrapped into N, S co-doped carbon framework.
- PAN acts as both electrospinning polymer and carbon/nitrogen sources.
- The obtained composite exhibits excellent electrochemical performances.

ARTICLE INFO

Keywords: V$_2$O$_3$
Core-shell microspheres
Pea-pod structure
N, S co-doped
Electrospinning
Lithium ion batteries

ABSTRACT

High-capacity anode materials are widely studied for rechargeable batteries, which have the capability of storing more Li$^+$ ions per formula. However, they normally experience large volume expansion and suffer inferior cycling stability. Herein, we propose pea-pod structured V$_2$O$_3$ yolk-shell microspheres@N, S co-doped carbon fiber network as an excellent anode material for lithium ion batteries. The prepared vanadium dioxide precursor is uniformly embedded into the carbon fibers by electrospinning treatment and further converted into V$_2$O$_3$ yolk-shell microspheres during the calcination process. The conductive carbon fiber framework which links V$_2$O$_3$ microspheres enhanced the electrical conductivity and structural stability significantly. Moreover, the co-doped N and S atoms derived from polymer could produce extrinsic defects, thereby improving Li$^+$ diffusion and electrochemical active sites. When used as anodes for lithium ion batteries, the composite exhibits a high reversible capacity (793.7 mA h g$^{-1}$ after 100 cycles at 100 mA g$^{-1}$), excellent rate performance and cycle stability.

1. Introduction

The usage of large quantities of fossil fuels has been a monumental issue for creating serious environmental pollution which threatens the life of humans and other living organisms [1–8]. To avoid the fast consumption fuels, many countries take serious efforts to replace conventional fuel vehicles by electric vehicles. One of the issues with electric vehicles is their endurance which is based on the employed battery system. Lithium ion batteries (LIBs) are considered to be one of the most promising alternatives due to their obvious advantages such as long cycle life, excellent electrochemical performance, low cost and environmentally friendly [9–16]. Until now, the most widely used anode material is graphite. Nevertheless, its low theoretical capacity (372 mA h g$^{-1}$) limited its further applications for next generation batteries with high energy and power densities [17,18]. Transition metal oxides (TMOs) have drawn extensive attention as anode materials in view of their high theoretical capacities compared to commercialized carbon-based materials [19–24]. Among them, vanadium trioxides (V$_2$O$_3$) are considered as a promising alternative electrode material for LIBs due to its low cost, abundant resource and high theoretical capacity (1070 mA h g$^{-1}$) [19–25]. However, V$_2$O$_3$ suffers from the drawbacks of the insufficient intrinsic electronic conductivity, low lithium ion diffusion coefficient and the large volume variation during the repeated lithiation/delithiation process, which cause the inferior rate capability and cycling stability. Combining transition metal oxides with carbon to make the composites has been proven to be

https://doi.org/10.1016/j.cej.2019.05.144

Received 21 February 2019; Received in revised form 22 April 2019; Accepted 21 May 2019
Available online 23 May 2019
1385-8947/ © 2019 Elsevier B.V. All rights reserved.
an efficient strategy to suppress above-mentioned drawbacks [26–28]. In these composites, the carbons function as fast electron transportation media and make the composite structure more stable. To date, many V2O5/carbon composites have been reported to improve the electrochemical performance of the composites at different extent. Zhang et al. [25] reported the reduced graphene oxide (rGO) modified V2O5 as anode material for LIBs. The V2O5-rGO composite exhibited higher capacity and better cycle stability than bare V2O5 particles. An et al. [24] fabricated V2O5 and KB carbon nanocomposites as anode materials for LIBs and sodium ion battery.

More recently, heteroatom doping (such N and S) has recently emerged as an effective strategy to tailor and enhance the physical and chemical properties of carbonaceous materials [29–34]. The incorporation of heteroatoms can enhance the electronic conductivity of carbon, thereby accelerating the electron transport of carbonaceous materials. Moreover, the structural engineering of transition metal oxides, such as core-shell, multi-shell and hollow structures, is another effective strategy to suppress the volume changes upon repeated cycles [35,36]. Therefore, it would be interesting to make the TMOs and heteroatom-doped carbon composites, which can both improve the electronic conductivity and structural stability. Electrospinning is a facile and efficient approach to fabricate continuous carbon nanofibers with good uniformity [37,38]. Meanwhile, the heteroatom contained in polymer can be introduced into carbon fibers during carbonization. Herein, we successfully synthesized yolk-shell structured V2O5 microspheres@N, S co-doped carbon pea-pod structured nanofibers network by electrospinning followed by subsequent carbonization and sulfur doping process. The V2O5 yolk-shell microspheres are uniformly embedded into N, S co-doped carbon fibers network to form network structure. The 1D CNFs construct a continuous conductive network and facilitate the formation of stable SEI film. Core-shell structure accommodates the volume changes of V2O5 during repeated cycling. As anodes for LIBs, the composite exhibits excellent reversible capacity, long-term cycling stability and good rate capability. 2. Experimental section

2.1. Material synthesis

The vanadium dioxide microspheres were firstly prepared by our previous report [39]. In a typical synthesis, V2O5 (1.2 g) and H2C2O4·2H2O in a molar ratio of 1:3 were dissolved in 40 mL of deionized water under vigorous stirring at 80 °C for several hours until a transparent deep blue solution (VOC2O4) was formed. 2 mL of such obtained solution was then mixed with 30 mL of isopropanol and transferred into a 50 mL Teflon container. The container was sealed in a stainless-steel autoclave and moved to an electrical oven, heated at 200 °C for 2.5 h. After cooling down to room temperature naturally, the resulting black precipitate was collected by centrifugation and washed with absolute ethanol for three times and finally dried at 60 °C overnight. For the synthesis of V2O5/carbon nanofibers, 0.6 g of obtained VO2 microspheres were firstly dispersed into 2 mL of N, N-Dimethylformamide (DMF, AR, 99.5%) by ultrasonic for 0.5 h. Then 0.2 g Polyacrylonitrile (PAN, Mw = 1500000) was added into the solution and stirred continuously for 24 h. After that, the obtained homogenous viscous black dispersion was introduced into a 5 mL plastic syringe equipped with a stainless-steel needle (20 G), which was connected to a high voltage supply via a metal clip. A flat stainless-steel plate covered with a layer of aluminum foil was acted as the collector of nanofibers. Important parameter settings in the spinning process are summarized below: distance between needle tip and the collector is 15 cm and the direct current voltage was set as 12 kV, with a feeding rate of 0.7 mL h−1. The as-spun precursors were stabilized in a muffle furnace at 250 °C for 1 h with a heating rate of 3 °C min−1. To obtain N, S co-doped CNFs encapsulating V2O5 network (noted as V2O5@NCNFs), the stabilized precursors and sulfur powders (mass ratio, 1:3) were mixed together and annealed in 5% H2/95% Ar at 600 °C for 5 h with a heating rate of 3 °C min−1. For comparison, we also prepared pure CNFs, N-doped V2O5 (noted as V2O5@NCNFs) by electrospinning and pure V2O5 microspheres.

2.2. Materials characterization

The crystalline structures of all V2O5@CNF composites and CNFs were investigated by X-ray diffraction (XRD, Rigaku D/max 2500) with Cu Kα radiation collected in the range of 2θ = 10 °C 80° at a scanning rate of 8° min−1. X-ray photoelectron spectroscopy (XPS) was used to further analyze the surface chemistry of samples recorded on the ESCALAB 250Xi. The morphology and microstructures of the samples were characterized by scanning electron microscopy (SEM, Nova NanoSEM230) and transition electron microscopy (TEM, JEOL JEM2100F). Raman spectrometer (LabRAM HR800) and Fourier transform infrared radiation (FT-IR) were used for the corresponding characterization of carbon fibers and possible residual organic functional groups (Nicolet 6700).

2.3. Electrochemical measurement

The electrodes were prepared through the typical method. Briefly, as-prepared samples were mixed with carbon black (Super P) and sodium carboxymethyl cellulose (CMC) at the weight ratio of 80:10:10. After grinding for 20 min, the mixture was evenly dispersed in DI water to form a slurry, which was coated on copper foil and dried in a vacuum oven at 80 °C overnight. The electrode was punched into cells with a diameter of 12 mm, the mass loading of active material per electrode is approximately 1 mg cm−2. All the 2016 type coin cells were assembled in a glove box (Mbraun, Germany) filled with high purity argon. The lithium metal foil was used as counter electrode, 1 mol L−1 LiPF6 in a mixture of ethyl carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) (1:1:1 v:v:v) as the electrolyte, and polypropylene membrane as the separator. After standing for 12 h, the galvanostatic charge and discharge performance of the electrodes were evaluated by a Land Battery Tester (Land CT 2001A, Wuhan, China) in the voltage range between 0.01 and 3 V (vs. Li/Li+) at room temperature. Cyclic Voltammetry (CV; 0.01–3.0 V) measurements were carried out on an electrochemical workstation (CHI660E, China).

3. Results and discussion

Scheme 1 illustrates the formation of V2O5@NCNFs via VO2 microspheres by electrospinning. As shown in the schematic representation, VO2 microspheres and PAN polymer were uniformly dispersed in DMF solution by ultrasonication and continuous magnetic stirring to form a uniform dispersion. Then the obtained dispersion was transformed into VO2-PAN precursor by electrospinning. During this process, the VO2 microspheres are wrapped by PAN polymers to form a Pea-Pod like structure. After vulcanization (S) in H2/Ar atmosphere, the inner VO2 microspheres are in situ converted into V2O5, whereas the extrinsic polymer shells are transformed into N-doped carbon layers. The PAN polymer works as a linker of Pea-Pod structure, and also functions as source for both carbon and nitrogen. The carbon-coated V2O5 core-shell structure can greatly improve the structural stability of the electrode material.

Fig. 1a shows the XRD patterns of the CNFs, V2O5 core-shell microspheres and V2O5@NCNFs composite. After annealing under H2/Ar atmosphere, the polymer fibers are converted to CNFs. The corresponding XRD pattern shows a broad diffraction peak at 23.6°, which can be ascribed to (0 0 2) plane of amorphous carbon. For monodisperse core-shell microspheres obtained from solvothermal and annealing process, all the diffraction peaks located at 24.3°, 32.9°, 36.2°, 53.9°, 65.1° can be indexed to the (1 1 2), (1 0 4), (1 1 0), (1 1 6), (3 0 0) planes of rhombohedral-phase crystalline V2O3 (JCPDS: 034–0187),
respectively. No other residual peaks are detected, indicating the successful synthesis of pure V$_2$O$_3$ phase. For V$_2$O$_3$@NSCNFs, diffraction peaks of both carbon and V$_2$O$_3$ are detected, confirming the existence of V$_2$O$_3$ and CNFs. In addition, the weaker peak intensity than that of pure V$_2$O$_3$ could be attributed to the presence of amorphous CNFs, since it reduces the crystallization of V$_2$O$_3$@CNF composite. Besides, XRD pattern of V$_2$O$_3$@NCNFs is displayed in Fig. S3. All the diffraction peaks can be indexed to planes of rhombohedral-phase crystalline V$_2$O$_3$ (JCPDS: 034-0187), which also demonstrates the successfully synthesis of V$_2$O$_3$ phase.

In order to investigate the complete conversion of PAN into V$_2$O$_3$@CNFs, Fourier transform infrared radiation (FT-IR) measurement was carried out. As shown in Fig. 1b, the peak at 982 cm$^{-1}$ represents the existence of V$^{3+} = \text{O}$, which belongs to V$_2$O$_3$, in agreement with the XRD result. Besides, the absorptions at 1310, 1570, 2360 and 3420 cm$^{-1}$ are due to water and nitrate adsorbed on the KBr and can be ignored. No obvious peaks of organic functional groups are observed in FT-IR spectra, confirming that the VO$_2$-PAN precursor has been completely converted into V$_2$O$_3$@NSCNFs.

Raman spectroscopy test was conducted to investigate the in depth information on carbon fiber composition of the V$_2$O$_3$@NSCNFs and the result is shown in Fig. 1c. The peaks located at 141, 283, 689 and 989 cm$^{-1}$ can be ascribed to the characteristic peaks of V$_2$O$_3$ [40]. Other two characteristic bands of carbonaceous materials located at 1347 cm$^{-1}$ (D-band, disordered carbon) and 1579 cm$^{-1}$ (G-band, graphene carbon) are also clearly detected (inset in Fig. 1c). The intensity ratio of the D-band to the G-band (I_D/I_G) is 1.17, which confirms the existence of low crystallinity carbon with an amorphous structure in the
composites. Raman spectrum of V$_2$O$_3$@NCNFs, pure V$_2$O$_3$ and pure CNFs are displayed in Fig. S4. As the result shown, the characteristic bands of V$_2$O$_3$@NCNFs and V$_2$O$_3$ are consistent with V$_2$O$_3$@NSCNFs, meanwhile the intensity ratio of D-band to the G-band (I_D/I_G) of pure CNFs and V$_2$O$_3$@NCNFs are 1.24 and 1.25, respectively.

Thermogravimetric analysis (TGA) of V$_2$O$_3$@NSCNFs composite was conducted to investigate the mass content of V$_2$O$_3$ in the composite. As shown in Fig. 1d, the temperature rose from room temperature to 650°C with a heating rate of 10°C min$^{-1}$ in air, initial decrease in quality can be attributed to the evaporation of physical water adsorbed in the sample, the subsequent slight increase in mass is ascribed to the oxidation of V$_2$O$_3$ to V$_2$O$_5$ in air. Approximately 17.9% of the weight loss between 400 and 500°C was caused by the consumption of carbon fibers in the composite. Finally, the weight kept constant due to the burning out of CNFs and complete conversion of V$_2$O$_3$ to V$_2$O$_5$. From the obtained result, the mass content of V$_2$O$_3$ in the composites is calculated to be 64.6%.

BET characterizations were carried out to detect the pore structures of CNFs, V$_2$O$_3$@NCNFs, and V$_2$O$_3$@NSCNFs. Fig. S5 shows the nitrogen adsorption-desorption isotherm curves and corresponding pore size distribution of (a, b) CNFs, (c, d) V$_2$O$_3$@NCNFs, (e, f) V$_2$O$_3$@NSCNFs, which possess specific surface areas of 12.66 m2 g$^{-1}$, 7.92 m2 g$^{-1}$, and 25.65 m2 g$^{-1}$, respectively, indicating the enlarged surface area after Vulcanization. The introduction of heteroatoms can create large defects in carbon structure, which helps to enhance the adsorption of lithium ions and conductivity of active materials.

Field emission scanning electron microscopy (FESEM) was used to characterize as-prepared V$_2$O$_3$@CNF composites. As shown in Fig. S1, it is clearly observed that the solvothermal precursor presents as rough microspheres with a diameter of about 1 µm. Statistical analysis was conducted to get the average diameter shown in Fig. S6, the result in Fig. S6 indicates that their size ranged from 0.4 to 1.8 µm. Fig. S7 shows the nitrogen adsorption-desorption isotherms in the middle of the carbon fibers to V$_2$O$_3$. From the obtained result, the mass content of V$_2$O$_3$ in the composites is calculated to be 64.6%.

X-ray photoelectron spectroscopy (XPS) was conducted to obtain information about the elemental composition and chemical status of the as-prepared samples. As shown in Fig. 3a, the survey scan clearly revealed the presence of V, O, C, N and S. XPS spectrum of C 1s (Fig. 3b) was divided into three peaks located at 284.7, 285.6 and 286.9 eV corresponding to the binding energies of C–C bond, C–N/C–S bond and C–O bond [41], respectively. The peaks of N 1s (Fig. 3e) could be resolved into 398.4, 399.8, 400.7 and 404.1 eV, which are assigned to pyridinic N, pyrrolic N, graphitic N and oxidized N [42], respectively. The O 1s spectrum (Fig. 3d) shows two main peaks located at 530.5 and 531.5 eV ascribed to V–O bond and C–O bond, respectively, confirming that the as-prepared samples are pure vanadium oxide. Fig. 3e displays the high-resolution S 2p spectrum, three distinct characteristic peaks indicate the existence of C–S 2p$_{3/2}$ bond (163.8 eV), C≡S 2p$_{1/2}$ bond (165.1 eV) and oxidized S (168.7 eV) [30,43], respectively. In addition, the high-resolution V 2p spectrum is shown in Fig. 3f, two characteristic peaks at 517.5 and 524.3 eV can be indexed to V$^{4+}$ 2p$_{3/2}$ and 2p$_{1/2}$, respectively, the peak at 516.5 eV observed in the XPS spectrum of V 2p can be attributed to V$^{4+}$ [40]. The results indicate that some V$_2$O$_3$ microspheres have been partially oxidized. Obviously, the doping of N and S atoms on carbon fiber is successful. Co-doped heteroatoms could produce a large number of defects and active sites on the surface of carbon fibers, which helps to enhance the adsorption of lithium ions and conductivity of active materials.

Fig. 2 shows the initial three successive CV curves of the V$_2$O$_3$@
NSCNFs in the voltage range of 0.01–3 V vs. Li/Li⁺ at a scan rate of 0.1 mV s⁻¹. During the first cathode scan, there is a significant reduction peak at 0.16 V which disappeared in the next scans, corresponding to the insertion of lithium ions and the formation of SEI films. V₂O₃ was reduced to metal vanadium. In the anode scan, two broad peaks were recorded at 1.25 V and 2.64 V, respectively, which can be attributed to the subsequent oxidation reaction process. Interestingly, there is a distinct oxidation peak at 1.75 V, which is a sulfur reaction [44],

Fig. 3. (a) XPS survey scan, high-resolution XPS of (b) C 1s, (c) N 1s, (d) O 1s, (e) S 2p, (f) V 2p for V₂O₃@NSCNFs.

Fig. 4. Electrochemical performances of the V₂O₃@NSCNFs, pure V₂O₃ microspheres, V₂O₃@NCNFs and CNFs in the window of 0.01–3 V (vs. Li/Li⁺). (a) CV curves of the V₂O₃@NSCNFs at a voltage scan rate of 0.1 mV s⁻¹; (b) Charge-discharge curves for the 1st, 30th, 50th, 90th cycles at a current density of 100 mA g⁻¹; (c) Cycling performance and coulombic efficiency of the four electrode materials at a current density of 100 mA g⁻¹; (d) Rate capacities at various current densities.
indicating that sulfur doping can significantly improve the battery capacity not only by increasing the active site on the surface of the compound, but also for the storage of Li+ reaction, by participating in the redox reaction. The second and third cycle of the CV curves overlap closely, indicating good reversibility of the V\textsubscript{2}O\textsubscript{3}@NSCNFs during the electrochemical reaction. The Li+ intercalation process can be described as follows\cite{45-47}:
\begin{equation}
V_2O_3 + xLi^+ + xe^{-} \rightarrow 2Li\textsubscript{x}V_2O_3
\end{equation}
\begin{equation}
Li\textsubscript{x}V_2O_3 + (6 - x)Li^+ + (6-x)e^{-} \rightarrow 2 V + 3Li_2O
\end{equation}
XPS spectrum of V\textsubscript{2}O\textsubscript{3}@NSCNFs at fully discharged state was conducted to further investigate the change of valence state of components in the electrochemical process. The high resolution XPS spectra of V 2p for fresh and fully discharged V\textsubscript{2}O\textsubscript{3}@NSCNFs electrodes are shown in Fig. 59a, which exhibit similar profiles. However, the position of V 2p peak after full discharge obviously shifted to low energy region, suggesting the reduction of V++ to low-valent vanadium. High resolution spectrum of S 2p (Fig. 59b) demonstrates two peaks located at 163.8 and 165.1 eV are corresponding to C–S and C=–S bond, which is weakened significantly after fully discharged process. Testifying the reaction of doping S and Li.

To further test the electrochemical performance of the V\textsubscript{2}O\textsubscript{3}@NSCNF composites as an anode material for lithium-ion batteries, a galvanostatic charge-discharge cycle test was conducted. Fig. 4b presents the charge and discharge curves of the selected cycles at 100 mA g-1 between 0.01 and 3.0 V for the composites. The insertion mechanism of lithium ions during discharge is composed of two steps: the insertion process and the conversion reaction. When the voltage is between 1.0 and 0.5 V, the intermediate product of Li\textsubscript{x}V\textsubscript{2}O\textsubscript{3} is formed during the insertion process, resulting in a gradual decrease of the discharge plateau. Due to the conversion reaction of V\textsubscript{2}O\textsubscript{3}, there is a discharge plateau around 0.5 V. The composite has a specific discharge capacity of 1025.6 mA h g-1 for the first cycle, the corresponding charging specific capacity is 825.2 mA h g-1, and the coulombic efficiency is 80.5%, which is much higher than pure V\textsubscript{2}O\textsubscript{3}. The irreversibility of capacity is attributed to the formation of SEI film and irreversible phase transformation. The subsequent charge and discharge curves are close to coincide, indicating that the material retains a relatively complete structure and high lithium ion storage capacity after 100 cycles. Fig. S10a illustrates the V\textsubscript{2}O\textsubscript{3}@NSCNFs electrode possesses higher current densities than pure V\textsubscript{2}O\textsubscript{3}, indicating its better electrochemical reactivity due to the introduction of CNFs shell. Additionally, as shown in Fig. S10b, the V\textsubscript{2}O\textsubscript{3}@NSCNFs electrode exhibits higher discharge and lower charge plateaus than pure V\textsubscript{2}O\textsubscript{3}, suggesting its lower polarization as well as better reactivity. Besides, the larger slope of the discharge profile indicates more capacitive behavior during lithium ion storage.

Fig. 4c shows the cycling performance of the obtained samples at a current density of 100 mA g-1. For V\textsubscript{2}O\textsubscript{3}@NSCNFs, discharge specific capacity is 793.7 mA h g-1 after 100 cycles, which is even slightly higher than that of the 3th cycle (767.3 mA h g-1) and no obvious capacity fading or rising are detected, indicating good cycle stability.

Table 1

<table>
<thead>
<tr>
<th>Anode material</th>
<th>Test voltage</th>
<th>Discharge capacity (mAh g-1)</th>
<th>Cycle numbers</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yolk-shell V\textsubscript{2}O\textsubscript{3}</td>
<td>0.01–3 V</td>
<td>437.5 (100 mA g-1)</td>
<td>100</td>
<td>[20]</td>
</tr>
<tr>
<td>V\textsubscript{2}O\textsubscript{3}/CNF</td>
<td>0.01–3 V</td>
<td>500 (100 mA g-1)</td>
<td>100</td>
<td>[48]</td>
</tr>
<tr>
<td>V\textsubscript{2}O\textsubscript{3}/KB carbon</td>
<td>0.01–3 V</td>
<td>587 (100 mA g-1)</td>
<td>200</td>
<td>[24]</td>
</tr>
<tr>
<td>V\textsubscript{2}O\textsubscript{3}/GO</td>
<td>0.01–3 V</td>
<td>380 (100 mA g-1)</td>
<td>50</td>
<td>[49]</td>
</tr>
<tr>
<td>V\textsubscript{2}O\textsubscript{3}/CNFs</td>
<td>0.01–3 V</td>
<td>544 (500 mA g-1)</td>
<td>500</td>
<td>[50]</td>
</tr>
<tr>
<td>This work</td>
<td>0.01–3 V</td>
<td>793.7 (100 mA g-1)</td>
<td>100</td>
<td>—</td>
</tr>
</tbody>
</table>

However, pure V\textsubscript{2}O\textsubscript{3} delivers a capacity of only 115.7 mA h g-1 after 100 cycles with a capacity retention of 28%. Serious capacity fading of pure V\textsubscript{2}O\textsubscript{3} may be attributed to the destruction of the V\textsubscript{2}O\textsubscript{3} microspheres during the cycle. This result demonstrates that conductive carbon network can effectively enhance the cycling stability of V\textsubscript{2}O\textsubscript{3}. Despite good cycling stability, V\textsubscript{2}O\textsubscript{3}@NCNFs exhibits lower reversible capacity (576 mA h g-1) than that of V\textsubscript{2}O\textsubscript{3}@NSCNFs, suggesting that N, S co-doping improves the reversible capacity of V\textsubscript{2}O\textsubscript{3}@CNFs. CNFs exhibit a specific discharge capacity of 280 mA h g-1 with good cycling stability. The electrochemical performance of NSCNFs electrode is also tested to evaluate the effect of S-doping and shown in Fig. S11. NSCNFs exhibit a specific discharge capacity of 439.7 mA h g-1 with good cycling stability, much higher than pure CNFs. Fig. S12 presents the long cycling performance of V\textsubscript{2}O\textsubscript{3}@NSCNFs and a stable capacity of 420 mA h g-1 was available after 500 cycles even at 500 mA h g-1, indicating practical prospects for fast charge electrodes. The comparison between our work and previous reports based on V\textsubscript{2}O\textsubscript{3} is shown in Table 1 and the result shows that the advantages of pea-pod like nanostructure.

To further evaluate the electrochemical properties of electrodes, rate performance of the obtained samples is shown in Fig. 4d. V\textsubscript{2}O\textsubscript{3}@NSCNFs exhibits the highest specific capacity and optimal rate performance. The discharge specific capacities of 787.4, 767.2, 725.9, 594.1, 449.5, and 350.5 mA h g-1 are exhibited at a current density of 50, 100, 200, 500, 1000, and 2000 mA g-1, respectively. When current density is returned to 50 mA h g-1, the capacity is 839.0 mA h g-1, even higher than that of the initial cycles, which is attributed to the activation of electrodes. The results show that V\textsubscript{2}O\textsubscript{3}@NSCNFs has the best rate performance as anode materials for LIBs. Based on the electrochemical properties mentioned above, V\textsubscript{2}O\textsubscript{3}@NSCNFs exhibits the highest discharge specific capacity, optimum rate performance and cycle stability. The enhanced Li+ storage capability for the composite electrode can be attribute to the coherent synergistic effect of V\textsubscript{2}O\textsubscript{3} and CNFs as well as the doping of heteroatoms. Carbon fiber can improve the electrical conductivity of the electrode material and maintain the structural stability of the material during the cycle. The doping of heteroatoms increases the active site of the material, and the sulfur atom itself participates in the lithium storage reaction. Area capacity of synthetic electrode was calculated and shown in Fig. S13. The cell delivered a capacity of ~0.7 mA h cm-2 at 0.088 mA cm-2 (0.1 C) reveals good practical application potential.

To investigate the structural stability of the electrode, A flexible electrode was directly assembled into Li-ion batteries without milling and disclosed after 100 cycles at 100 mA g-1, the SEM and TEM results are shown in Fig. S14. The intact and continuous structure of the V\textsubscript{2}O\textsubscript{3}@NSCNFs can be reserved, demonstrating the good structural stability. As shown in TEM image, many nanoparticles are uniformly encapsulated in carbon fiber after cycling indicating carbon shell can effectively protect V\textsubscript{2}O\textsubscript{3}.

The electrochemical impedance spectroscopy (EIS) measurements were carried out to study the charge transfer resistance of the electrodes. Nyquist plots of V\textsubscript{2}O\textsubscript{3}@NSCNFs, V\textsubscript{2}O\textsubscript{3}@NCNFs, pure CNFs and pure V\textsubscript{2}O\textsubscript{3} and the V\textsubscript{2}O\textsubscript{3}@NSCNFs after 100 cycles (inset: the corresponding equivalent circuit) are shown in Fig. S15. The curves of all samples consist of a semi-circle in the high frequency region represents charge transfer resistance (Rct) and a linear slope in the low frequency region indicates the Warburg impedance (Zw). The V\textsubscript{2}O\textsubscript{3}@NSCNFs electrode exhibits smallest charge transfer resistance (116.9 \Omega), which contributes to the faster reaction kinetics and higher capacity as a result of both vertical and horizontal conductive paths for faster electron transportation networks. The increasing charge-transfer resistance after cycle (190 \Omega) can be ascribed to the formation of fractured SEI layers and slight damage to the surface structure of the V\textsubscript{2}O\textsubscript{3}@NSCNFs electrode.

Galvanostatic Intermittent Titration Technique (GITT) was used to measure the lithium diffusion coefficient (Fig. S16). The obtained GITT
The D in the V₂O₃@NSCNFs ranges from 3.8×10^{-9} to 1.1×10^{-8} cm2 s$^{-1}$ during the electrochemical process. The high lithium ion diffusivity is mainly attributed to the rational design of the pea-pod like network structure. Sulfur doping provides many mesoporous channels and active sites for fast ion diffusion.

Lithium storage processes can be divided into two main types, namely ion diffusion and surface induced capacitance processes. In order to investigate the contribution of capacitive charge and intercalated charge, a kinetic analysis was conducted for a half-cell. The CV curves at various scan rates from 0.1 to 2 mV s$^{-1}$ were tested. And as shown in Fig. 5a, a representative feature that current (i) at a permanent voltage increases with sweep rate. The slight voltage shift at different sweep indicates that the polarization of the electrodes is small at higher rates. According to the literatures [51–53], and have a relationship given by equations:

$$V = \nu i a b$$

$$\log i = \log a + \log \nu$$

where a and b are adjustable parameters. When the b value approaches to 0.5, it indicates that ion diffusion dominates the charge and discharge process, while the b value approaches to 1, it represents the ideal capacitive behavior. By drawing a diagram and fitting a straight line, the b value is calculated by determining the slope to study the charge storage mechanism. As shown in Fig. 5b, the calculated b value is 0.78, indicating that the redox process of V₂O₃ has partial pseudocapacitive behavior. This part of the pseudocapacitive behavior helps to promote the insertion and extraction of lithium ions at high rates and improve rate performance. According to previous literature reports [54,55], the ratio between diffusion control and capacitive charge storage can be further quantified. The current (i) at a permanent voltage can be expressed by

$$i = k_1 \nu + k_2 \nu^{0.5}$$

where k_1 and $k_2\nu^{0.5}$ represent the contribution of pseudocapacitive and ion diffusion, respectively. According to the calculation results in Fig. 5c and d, the capacitance contributions of pseudocapacitive at sweep rates of 0.1, 0.2, 0.4, 0.6, 0.8, 1, and 2 mV s$^{-1}$ are 57.8%, 62.4%, 66.8%, 69.4%, 72.2%, 73.9% and 82.3%, respectively. This indicates that the surface induced capacitance process plays an important role in the capacity of the composite, especially in terms of rate performance. At the same time, the contribution of the ion diffusion process decreases with sweep rate, which can be attributed to the slower embedding speed cannot satisfy the high speed electrochemical process [56].

4. Conclusion

In summary, V₂O₃@NSCNFs was synthesized via a combined hydrothermal and electrospinning method followed by subsequent calcination process. The V₂O₃ microspheres were uniformly embedded in the NSCNFs to form pea-pod structure. As anodes of LIBs, V₂O₃@NSCNFs exhibited good cycling stability (793.7 mA h g$^{-1}$ after 100 cycles at a current density of 100 mA g$^{-1}$), as well as good rate capability. Enhanced electrochemical performance is attributed to the synergistic effect of carbon fibers and V₂O₃, the doping of heteroatoms is also crucial.
References

doi.org/10.1016/j.cej.2019.05.144.

