Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors

Quan Zonga,b, Chaofeng Liub, Hui Yanga, Qilong Zhanga,⁎, Guozhong Caob,⁎

a School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, PR China
b Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA

Abstract

Supercapacitors (SCs) have been gaining a great deal of interest as the appealing energy storage devices because of the outstanding power density and ultralong cycling features. Electrode materials as the active energy reservoir store the electrons and/or ions in the electrochemical process, determining the performance of the devices. Being the battery-type materials, transition metal phosphides (TMPs) have been studied extensively as high energy-density electrode materials in recent years, owing to their high electronic conductivities, and large theoretical capacity as well as tunable surface properties. However, TMPs electrode materials often suffer from sluggish reaction kinetics and volumetric expansion, resulting in inferior rate capability and cycling stability. In this review, basic reaction mechanisms of TMPs electrodes were first clarified. We reviewed the latest progress in tailoring the chemical composition and crystal and nanostructures of TMPs to attain desired and enhanced electrochemical properties as electrodes in hybrid capacitors. We discussed the design and various strategies for synthesis of various TMPs with improved electrochemical and transport properties. Much efforts and progresses have been made recently in designing and optimizing various synthesis processes, controlled elemental doping, fine tuning the chemical composition and nanostructures, and exploring composite materials.

© 2021 Elsevier Ltd. All rights reserved.

Keywords:
Transition metal phosphides
Hybrid supercapacitors
Electrochemical properties
Nanostructures

ARTICLE INFO

Article history:
Received 31 October 2020
Received in revised form 17 April 2021
Accepted 16 May 2021
Available online 28 May 2021

Contents

Introduction .. 2
Overview of electrode materials for SCs .. 4
Electrode materials for ELDCs and pseudo-capacitors 4
Electrode materials for HSCCs .. 4
Synthesis methods of TMPs .. 5
TMPS composition chemistry .. 6
Single-metal phosphides .. 6
Binary-metal phosphides .. 6
Ternary-metal phosphides .. 8
Nanostructures of TMPs electrodes ... 9
Zero-dimensional TMPs ... 9
One-dimensional TMPs ... 11
Two-dimensional TMPs ... 11
Three-dimensional TMPs .. 12
Strategies for the improvement of TMP electrodes 14
Synthesis design ... 14
Elemental doping ... 16
Composition tuning ... 16

⁎ Corresponding authors.
E-mail addresses: mse237@zju.edu.cn (Q. Zhang), gzcao@uw.edu (G. Cao).

https://doi.org/10.1016/j.nantod.2021.101201
1748-0132/© 2021 Elsevier Ltd. All rights reserved.
Introduction

Energy has played an irreplaceable role in the modern human society, pervasive in all aspects of our daily life and often being a bottleneck for many emerging technologies. The consumption of fossil fuel has caused increasingly serious environmental problems and the non-renewable attributes of fossil fuels endanger the sustainable development of the world [1–5]. To address these challenges, the development of clean energy technologies, such as harvesting solar, wind, and tidal energy, becomes an imperative task [6–8]. The intermittent characters of those renewable energy require the energy storage systems. Electrochemical energy storage devices, including rechargeable batteries [9–11] and supercapacitors (SCs) [12,13], are among the most widely studied and used in consumer electronics, electric vehicles, and potentially in smart grids. As compared in Fig. 1, rechargeable batteries working through redox reactions in the electrodes offer high energy density because of their large operating voltages and large capacities, but their power density is often restricted by mass diffusion kinetics [14]. While the conventional dielectric capacitors rely on the rapid charge separation and recombination at the interfaces of the dielectric materials and the metallic electrodes, presenting a low energy density but ultra-high power output [15,16]. SCs bridge the gap between the batteries and conventional capacitors because of the exploration and introduction of the novel electrodes materials to improve both energy density and power density in the systems [17–20].

According to the charge storage mechanism of the electroactive materials, SCs can be divided into three categories: electric double-layer capacitors (EDLCs) [21,22], pseudo-capacitors [23,24], and hybrid supercapacitors (HSCs) [25,26]. The charge storage mechanisms, typical electrode materials and corresponding cyclic voltammetry (CV) plots are summarized in Fig. 2 [27–29]. EDLCs are based on the physical adsorption/desorption of ions in electrolytes at the electrode/electrolyte interfaces without the Faradaic process [30]. The discharge process is often finished in a very short period (less than 10 s), indicating the ultrahigh power density. The CV curve of EDLCs exhibits a rectangular shape. The capacitance of EDLCs can be calculated according to the following equation:

$$C = \frac{\epsilon_0 \varepsilon_1}{d} A / \log \left(\frac{b}{v} \right)$$

where C is the capacitance, ε_1 is the dielectric constant of the vacuum, A is the effective surface area, and d is the charge separation distance. The specific surface areas and surface properties of electrode materials have crucial effects on the specific capacitance of EDLCs.

Pseudo-capacitors store charges by fast and reversible faradic reactions on the surface or near-surface of the electroactive materials [32]. The specific capacitance and energy density of pseudo-capacitors can be increased compared to conventional EDLCs. The pseudo-capacitive materials are usually divided into three types according to Faradaic mechanisms: underpotential deposition, surface redox pseudo-capacitance and intercalation pseudo-capacitance [33]. Underpotential deposition means a phenomenon of electrodeposition of a metal cation at a potential less negative than redox potential, which is due to the strong interaction between metal and substrate, such as Pd on Au [34]. The working potential is very narrow because it must be below the cation redox potential. Surface redox pseudo-capacitance stores charges through faradaic redox reactions occurring on the surface of electrode materials, such as RuO$_2$, MnO$_2$, PANI and PPy [35–37]. The CV curve is a rectangular shape, similar to that of EDLCs. Intercalation pseudo-capacitive process involves reversible insertion/extraction of electrolyte cations into the structure of electrode materials rather than on the surface without any phase transition, such as V$_2$O$_5$ and Nb$_2$O$_5$ [38,39]. The CV curves exhibit redox peaks, but the kinetics is mainly controlled by the capacitive process. To clarify the electrochemical kinetics of these electrodes, low scan rate (<1 mV s$^{-1}$) CV plots should be measured and investigated. The peak currents (i_p) and scan rates (v) can be fitted in the Eqs. (1) and (2) as follows [28,40,41]:

$$i_p = a \cdot v^b$$

(1)

$$\log(i_p) = b \log(v) + \log(a)$$

(2)

where a and b are adjustable parameters. The b-value can be obtained from the slope of the plot of $\log(i_p)$ vs. $\log(v)$. To be more specific, a b-value of 0.5 indicates that the electrochemical process is dominated by the ion diffusion process while $b = 1$ represents a capacitive-controlled process [42,43]. The b-value of -1 can be calculated from these three types of pseudo-capacitive materials [44].

HSCs are simply a mixture of half battery and half supercapacitor assembled by one capacitor-type electrode for high power density and long cycling lifespan and one battery-type electrode for high energy density [44–46]. Benefit from the utilization of the potential gap between two electrodes, the operating potential window of HSCs can be enlarged, resulting in high energy density compared to EDLCs and pseudo-capacitors as it is determined by the equation:

$$E = \frac{1}{2} C V^2$$

[49]. The driving force towards the development of HSCs...
is achieving excellent energy density, long cycling stability, low cost and good security. It is essential to match the mass ratio of positive and negative electrodes to utilize the electrochemical performance when assembling the device, in addition to the consideration of the nature of electrode materials playing a desired role on the electrochemical performances of HSCs [50]. The materials used as capacitor-type electrodes are activated carbon, graphene and metal oxides, etc [51]. The current battery-type materials include lithium intercalation compounds and transition metal compounds [52–54]. The CV plots of battery-type materials show apparent and intense oxidative and reductive peaks and the galvanostatic charge/discharge (GCD) curves demonstrate an obvious plateau during the charging and discharging process [55]. The b-value is often between 0.5 and 1 for battery-type materials, which means that the kinetics is a combination of capacitive behavior and diffusion-controlled progress accompanying phase-transformation during the charging/discharging process [56]. The ratios of capacitive \(i(V) \) and diffusion-controlled \(i(V)^{1/2} \) contribution can be quantitated by the current density \(i \) at a specific potential \(V \) and scan rate \(v \), based on the following equation [2,57,58]:

\[
i(V) = k_1 v + k_2 v^{1/2}
\]

The above equation can also be reformulated as:

\[
i(V)/v^{1/2} = k_1 v^{1/2} + k_2
\]

It should be noted that the kinetics analysis for diffusion-controlled and surface capacitive charge storage can only provide a rough estimation [34].

Transition metal oxides (TMOs) have been investigated as electrode materials for supercapacitors due to their relatively high theoretical specific capacity [59–62]. However, the applications of TMOs are mainly restricted by their poor electrical conductivity and unsatisfactory rate capability because the band gap of TMOs implies the semiconductor properties [63,64]. To meet the requirements of practical applications, a large number of new materials, such as hydroxides, sulfides, selenides and phosphides, have been designed [65–67]. Transition metal phosphides (TMPs) comprised of the combination of phosphorus with one or several transition metal elements have been regarded as one of the most promising electrode materials for HSCs owing to the superior electrical conductivity, high electrochemical activity and metalloid properties [68,69]. Compared with TMOs, TMPs exhibit high specific capacity and excellent rate capability. The merits of phosphides derive from P that exhibits lower electronegativity (2.19 Pauling electronegativity of P to 3.44 Pauling electronegativity of O) and larger atomic radius of phosphorus (0.109 nm of P to 0.074 nm of O) in comparison with oxygen, exhibiting different physicochemical properties [70]. In addition, transition metal chalcogenides (TMCs, MX, X=S, Se) have also been extensively studied as electrodes in SCs. However, their electrochemical capacitance and energy density are humbled by their poor electrical conductivity due to large band gap, while transition metal phosphides are metallic with high electrical conductivity [71]. The bond length of metal-P is larger than those of metal-S and metal-Se due to the low electronegativity of P, contributing to high electrochemical activity [72]. Generally, TMPs materials possess desirable electrochemical properties as electrodes for SCs in comparison with their corresponding oxides, sulfides and selenides counterparts.

The nanostructured TMPs for batteries and SCs were presented in several reviews [69,70,73,74]. In 2015, Wang et al. discussed the relationship between nanostructures and electrochemical performances of metal phosphides-based materials for rechargeable batteries (lithium/sodium-ion batteries) and SCs, together with Li⁺/Na⁺ storage mechanisms [70]. In 2017, Li et al. summarized the synthesis methods of metal phosphides and phosphates as well as their electrodes for SCs [69]. Dinh et al. also overviewed the synthetic methodologies of metallic transition metal compounds including carbides, nitrides, phosphides, and borides as well as their applications in electrode materials and electrocatalysts in 2019 [73]. More recently, Li et al. briefly summarized the synthesis of metal phosphides and various nanostructures ranging from zero dimensions to three dimensions in rechargeable batteries [74]. However, comprehensive discussion on the impacts of various nanostructures, non-stoichiometric composition, and defects of TMPs on the redox reactions and transport properties for HSCs should be further discussed and elaborated. In this review, we focus on the most recent progress on the TMPs for HSCs with emphasis on the relationships between nanostructures, chemical composition, defects, electrochemical and transport properties as schematically illustrated in Fig. 3. We started with a brief overview of the basic characteristics of TMPs as electrodes for HSCs, and discussed the composition of TMPs studied for HSCs, followed by a detailed elaboration of nanostructures engineering including zero-, one-, two-, and

Fig. 2. Schematic illustration of the charge storage mechanism of three types of SCs, typical electroactive materials and corresponding CV curves.
Table 1 compared the advantages and disadvantages of typical electrode materials for ELDCs and pseudo-capacitors.

Electrode materials for HSCs

Battery-type materials, such as transition metal hydroxides, sulfides, selenides and phosphides, can react with OH\(^{-}\) in alkaline electrolyte [80–82]. These materials can be combined with capacitor-type materials to assemble HSCs. As mentioned before, the nature of battery-type materials is critical for the electrochemical performances of HSCs. Transition metal oxides/hydroxides, such as Ni/Co based oxides/hydroxides, have been regarded as battery-type materials due to phase transformation during electrochemical reaction. However, the metal hydroxides possess poor electrical conductivity and mechanical stability. For example, Ni(OH)\(_2\) has been successfully used in HSCs because of its high theoretical capacitance (2082 F g\(^{-1}\)) and low cost [82]. Nevertheless, α-Ni(OH)\(_2\) can be transformed into low conductive β-Ni(OH)\(_2\) during electrochemical reaction, resulting in poor cycling performance [83]. Transition metal sulfides are another important family of battery-type materials due to their good electrochemical activity and various stoichiometric chemistry, such as Ni$_x$S$_2$, CoS, Zn$_{10}$γCo$_{24}$S$_{44}$, etc [50,84,85]. Selenium is also the element of the chalcogen group, which has lower electronegativity and larger atomic radius than sulfur. Transition metal selenides are more conductive than their sulfides counterparts because the electrical conductivity of Se (10\(^{-3}\) S m\(^{-1}\)) is much higher than that of sulfur (5 × 10\(^{-28}\) S m\(^{-1}\)) [86,87]. Transition metal sulfides/selenides often suffer from the low rate capability and poor cycling performance because of the degradation of structures as well as the dissolution of sulfides/selenides [88]. In contrast, TMPs electrode materials exhibit outstanding electrochemical properties (capacity, rate capability and cycling stability) compared to their hydroxides, oxides or sulfides counterparts due to the high electrical conductivity and excellent electrochemical activity, such as Ni$_x$P$_y$, Zn-Ni-P, Ni-Fe-P and Ni$_x$Co$_y$-P$_z$ (summarized in Table 2). The compositions and crystal structures of TMPs are complex because of the multiple valent states of transition metal cations and variable coordination number [79]. Therefore, the desired physicochemical properties of TMPs can be acquired by controlling their compositions and structures [67, Fig. 4 gives four examples of crystal structures for metal phosphides (M$_x$P$_y$). Among them, MoP has the hexagonal WC-type structure with the stacked nonmetal-containing prisms. MnP, FeP, CoP and NiP belong to the orthorhombic structure, in which the phosphorus atoms form chains in MnP, FeP and CoP, while the phosphorus atoms form pairs in NiP [73]. A large number of metal-phosphorus bonds can be observed in Fe$_x$P$_y$-type structure including Ni$_x$P$_y$, Fe$_x$P$_y$ and Mn$_x$P$_y$. Abundant metal-metal bonds and metal-phosphorus bonds in these structures make it possible for M$_x$P$_y$ to be used as electrode materials for HSCs [43]. There are ionic, covalent, or metallic bonds in M$_x$P$_y$, depending on the stoichiometry and composition elements. P frameworks show high flexibility because phosphorus-phosphorus bonding angles and distances are various, which allow for various stoichiometries and crystal structures [89].

Metal-rich and phosphorus-rich phosphides used as electrode materials for HSCs exhibit different electrochemical performance. Metal-rich (M$_x$P$_y$, x > y) or mono-metal (x=y=1) phosphides exhibit semi-conducting and metallic character due to the plentiful metal-metal bonds and strong metal-phosphorus bonds, contributing to high electrical conductivity as well as good chemical and thermal stability [67]. In contrast, phosphorus-rich metal phosphides (x < y) with various phosphorus-phosphorus bonds exhibit unsatisfactory thermal stability because they are out of proportion to phosphorus at high temperatures [40]. Therefore, metal-rich phosphides show many free electrons for electrical conduction. The reaction mechanism of TMPs could be expressed as follows [93,95],

\[
M_xP_y + xOH^- \rightarrow M_xP_y(OH)_x + xe^- \quad (5)
\]

three-dimensional TMPs synthesized by various synthesis methods. The challenges and prospects for further enhancing the electrochemical and transport properties of TMPs for better HSCs performance are discussed. This overview may offer some guidance for the design and engineering of TMPs and TMPs-based materials for HSCs.

Overview of electrode materials for SCs

Electrode materials for EDLCs and pseudo-capacitors

Carbonaceous materials, such as carbon nanotubes (CNTs), graphene and activated carbon, are often used as electrode materials for EDLCs because of their large specific surface areas [75]. However, due to the relatively low specific capacitance, the energy density of EDLCs based carbonaceous materials could only reach up to ~10 Wh kg\(^{-1}\) [30]. RuO\(_2\) is the first reported as pseudo-capacitive materials and has been widely studied in the past several decades [35]. The theoretical specific capacitance of RuO\(_2\) could reach up to more than 1450 F g\(^{-1}\), but the high cost and the narrow voltage window hinder their wide applications [76]. MnO\(_2\) has also been extensively studied as pseudocapacitive materials because they are abundant, nontoxic, and exhibit high theoretical capacitance of >1000 F g\(^{-1}\) [23]. However, the poor electrical conductivity (~10\(^{-5}\)–10\(^{-6}\) S cm\(^{-1}\) of MnO\(_2\) restricts electron transport and the reaction window hinder their whole structure [77]. Conducting polymers exhibit high conductivities, such as polyaniline (PANI, 0.01–5 S cm\(^{-1}\)) and polypyrrole (PPy, 0.3–100 S cm\(^{-1}\)), and fast charge–discharge kinetics [78]. However, conducting polymers often suffer from disappointing cycling stability due to the expansion and shrinkage during the charge/discharge progress [36]. Vanadium oxides have become competitive electrode materials for intercalation pseudo-capacitance owing to the multivalence state of vanadium ions from 5+ to 2+ and tunable layer structure with sufficient active sites for ions intercalation and deintercalation [39]. The issues exist in vanadium oxides including poor electronic conductivity (10\(^{-2}\)–10\(^{-3}\) S cm\(^{-1}\)) and poor stability [79]. Table 1 compared the advantages and disadvantages of typical electrode materials for ELDCs and pseudo-capacitors.

Carbonaceous materials

Materials, such as carbon nanotubes (CNTs), graphene and activated carbon, are often used as electrode materials for EDLCs due to their large specific surface areas [75]. However, due to the relatively low specific capacitance, the energy density of EDLCs based carbonaceous materials could only reach up to ~10 Wh kg\(^{-1}\) [30]. RuO\(_2\) is the first reported as pseudo-capacitive materials and has been widely studied in the past several decades [35]. The theoretical specific capacitance of RuO\(_2\) could reach up to more than 1450 F g\(^{-1}\), but the high cost and the narrow voltage window hinder their wide applications [76]. MnO\(_2\) has also been extensively studied as pseudocapacitive materials because they are abundant, nontoxic, and exhibit high theoretical capacitance of >1000 F g\(^{-1}\) [23]. However, the poor electrical conductivity (~10\(^{-5}\)–10\(^{-6}\) S cm\(^{-1}\) of MnO\(_2\) restricts electron transport and the reaction window hinder their whole structure [77]. Conducting polymers exhibit high conductivities, such as polyaniline (PANI, 0.01–5 S cm\(^{-1}\)) and polypyrrole (PPy, 0.3–100 S cm\(^{-1}\)), and fast charge–discharge kinetics [78]. However, conducting polymers often suffer from disappointing cycling stability due to the expansion and shrinkage during the charge/discharge progress [36]. Vanadium oxides have become competitive electrode materials for intercalation pseudo-capacitance owing to the multivalence state of vanadium ions from 5+ to 2+ and tunable layer structure with sufficient active sites for ions intercalation and deintercalation [39]. The issues exist in vanadium oxides including poor electronic conductivity (10\(^{-2}\)–10\(^{-3}\) S cm\(^{-1}\)) and poor stability [79]. Table 1 compared the advantages and disadvantages of typical electrode materials for ELDCs and pseudo-capacitors.

Figure 3. Schematic illustration of the recent development of TMPs NAs materials such as various composition (single-metal, binary-metal, and ternary-metal phosphides), their dimensionalities (0D, 1D, 2D, and 3D), and strategies for the improvement of electrochemical properties including optimizing synthesis process, elemental doping, composition tuning and composites design.
Temperature, Time

\[
\begin{align*}
\text{M}_x\text{Py(OH)}_x + x\text{OH}^- & \rightarrow \text{M}_x\text{PyO}_x + x\text{H}_2\text{O} + xe^- \\
\end{align*}
\]

(6)

During the charging/discharging process, TMPs convert to different phases when reacting with the \(\text{OH}^-\) ions [96]. The \(\text{OH}^-\) adsorption energy can reveal the redox reaction kinetics, which will greatly affect the ion transfer efficiency between electrodes and electrolyte [71].

For EDLCs, the amount of charge stored (C) is constant within a fixed potential window. \(C = \Delta Q/\Delta U\), where \(\Delta Q\) is the amount of charge stored and \(\Delta U\) is the potential window [97]. Capacitance is the charge stored when the voltage window is 1 V and it is used to evaluate the capability of charge storage. For battery-type materials, the ratio of \(\Delta Q\) to \(\Delta V\) is not constant throughout the whole potential window [97]. The unit of F is still used in a large amount of literature [98–101], though, it is better to calculate capacity in the unit of C or mA h [29,44,102].

Synthesis methods of TMPs

During the past decades, the synthesis routes of TMPs have been greatly extended. In this section, we review some representative synthesis methods of nanostructured TMPs, including gas-solid method, solution-phase method and emerging method.

Gas-solid method has been extensively employed to prepare TMPs, in which metal oxides, hydroxides or other precursor are phosphatized by phosphorous resources (NaH2PO2, NH4H2PO2) through annealing treatment in inert gas. The mass ratio of precursor to phosphorous ranges from 1:1 to 1:40 [98,103]. During the annealing process, the \(\text{NaH}_2\text{PO}_2\) in the upstream is decomposed with the release of \(\text{PH}_3\) at a temperature over 250 °C. Then, the \(\text{PH}_3\) gas reacts with metal precursor in the downstream to form TMPs, described as following equations [104].

\[
\begin{align*}
2\text{NaH}_2\text{PO}_2 & \xrightarrow{\Delta} \text{Na}_2\text{HPO}_4 + \text{PH}_3 \\
3\text{yMO} + 2\text{xyPH}_3 & \rightarrow 3\text{M}_y\text{P} + 3\text{xyH}_2\text{O} + (2\text{xy} - 3)\text{P}_4 \\
\end{align*}
\]

(7)

(8)

Another kind of methods is solution–phase reaction, such as hydrothermal/solvothermal method, thermal decomposition and electrochemical deposition. In the hydrothermal/solvothermal process, metal salt and phosphorous resources were dissolved in ultrapure water, ethanol or N,N-Dimethylformamide (DMF). The mixture was transferred to Teflon-lined autoclave and heated at high temperature [105]. To control the structure, surfactants also need to be added into the solution. The phosphorous sources can be white phosphorous and NaH2PO2. The phosphorization process of hydrothermal/solvothermal reaction can be described by Eqs. (9) and (10) [89]. In the thermal decomposition, metal acetylacetonates and TOP react in hot organic solvents under an inert atmosphere [Eq. 11] [106]. The chemical bonds in TOP are broken at the temperature over 300 °C and the P atoms connect with metal atoms to form TMPs. However, it is difficult to remove the flammable organic solvents and wash the products. In the electrodeposition process, TMPs can be directly deposited on the conductive substrates in the electrolyte containing metal ions and \(\text{H}_3\text{PO}_4\) [107]. This method tends to obtain amorphous metal phosphides and the structure may be destroyed [105].

\[
\begin{align*}
\text{MCl}_2 + \text{P}_4 & \xrightarrow{\text{Temperature, Time}} \text{M}_x\text{Py} \\
\text{MCl}_2 + \text{NaH}_2\text{PO}_2 & \xrightarrow{\text{Temperature, Time}} \text{M}_x\text{Py} \\
\text{M(acac)}_2 + \text{C}_2\text{H}_5\text{OP} & \xrightarrow{\text{Temperature, Time, octadecene}} \text{M}_x\text{Py} \\
\end{align*}
\]

(9)

(10)

(11)

(12)

Apart from the above strategies, TMPs converted from P-containing metal–organic-flamework (MOF) materials have attracted

Table 1

Comparison of the advantages and disadvantages of typical electrode materials with different charge storage mechanisms.

<table>
<thead>
<tr>
<th>Categories</th>
<th>Materials</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDLCs</td>
<td>Activated carbon</td>
<td>Low cost</td>
<td>High specific capacitance (<200 F g⁻¹)</td>
<td>[21]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High surface area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High cycling stability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo-capacitors</td>
<td>RuO₂</td>
<td>High theoretical capacitance (1450 F g⁻¹)</td>
<td>High cost, Rareness</td>
<td>[76]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High cycling stability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MnO₂</td>
<td>Nontoxic</td>
<td>Poor electrical conductivity (10⁻³–10⁻⁶ S cm⁻¹)</td>
<td>[37]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High theoretical capacitance (>1000 F g⁻¹)</td>
<td>Dissolution in alkaline or neutral aqueous electrolyte</td>
<td>[79]</td>
</tr>
<tr>
<td></td>
<td>V₂O₅</td>
<td>Multiple oxidation states</td>
<td>Poor structural stability</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Various crystalline structures</td>
<td>Dissolution in aqueous electrolyte</td>
<td></td>
</tr>
<tr>
<td>PANI</td>
<td>Good mechanical properties</td>
<td>Fast charge/ion transport</td>
<td>Expansion and shrinkage of materials volume</td>
<td>[36]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High conductivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

Comparison of electrochemical performances of the recently reported transition metal compounds.

<table>
<thead>
<tr>
<th>TMPS (corresponding hydroxides/oxides/sulfides)</th>
<th>Specific capacity</th>
<th>Rate capability</th>
<th>Cycling stability (cycles)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni₃P₃ (Ni(OH)₂)</td>
<td>1272 C g⁻¹ at 2 A g⁻¹</td>
<td>64% retention at 15 A g⁻¹</td>
<td>90.9% (5000)</td>
<td>[90]</td>
</tr>
<tr>
<td></td>
<td>620 C g⁻¹ at 2 A g⁻¹</td>
<td>87.3% retention at 15 A g⁻¹</td>
<td>75.9% (5000)</td>
<td></td>
</tr>
<tr>
<td>Zn-Ni-P (Zn-Ni LDH, Zn-Ni-O)</td>
<td>384 mA h g⁻¹ at 2 mA cm⁻²</td>
<td>79.43% retention at 50 mA cm⁻²</td>
<td>96.45% (10,000)</td>
<td>[91]</td>
</tr>
<tr>
<td></td>
<td>310 mA h g⁻¹ at 2 mA cm⁻²</td>
<td>68.63% retention at 50 mA cm⁻²</td>
<td>76.81% (10,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>215 mA h g⁻¹ at 2 mA cm⁻²</td>
<td>56.42% retention at 50 mA cm⁻²</td>
<td>64.62% (10,000)</td>
<td></td>
</tr>
<tr>
<td>Ni-Fe-P (Ni-Fe-O)</td>
<td>1358 C g⁻¹ at 5 mA cm⁻²</td>
<td>799 C g⁻¹ at 50 mA cm⁻²</td>
<td>94.7% (10,000)</td>
<td>[92]</td>
</tr>
<tr>
<td></td>
<td>416.6 C g⁻¹ at 5 mA cm⁻²</td>
<td>190 C g⁻¹ at 50 mA cm⁻²</td>
<td>76.9% (10,000)</td>
<td></td>
</tr>
<tr>
<td>Ni₄Co₃P₃ (NiCo₅S₄)</td>
<td>492 mA h g⁻¹ at 1 A g⁻¹</td>
<td>62% retention at 20 A g⁻¹</td>
<td>91.7% (1000)</td>
<td>[93]</td>
</tr>
<tr>
<td></td>
<td>436.7 mA h g⁻¹ at 1 A g⁻¹</td>
<td>68% retention at 20 A g⁻¹</td>
<td>96% (10,000)</td>
<td></td>
</tr>
</tbody>
</table>
Cu₃P/carbon nanosheet can be prepared by annealing the Cu/PTA-phosphides. The Ni₂P nanosheets exhibit a specific capacitance of [109]. After Fe³⁺ ions etching and carbonization treatment, hollow show higher conductivity of 1.2 × 10³ S cm⁻¹ than that of Ni(OH)₂ shown in Fig. 6a, the interconnected Ni₂P nanosheets were grownNickel phosphides possess high theoretical capacitance while cobalt and ternary-metal phosphides used as electrode materials for HSCs display multiple valent states. Herein, single-metal, binary-metal and ternary-metal phosphides used to design TMPs for HSCs are shown in Fig. 5. Most of them form a series of TMPs. The metallic elements that are frequently used to form TMPs for supercapacitors are shown in Fig. 4. Crystal structures of metal phosphides. Generally, element P coordinates with many transition metals to form a series of TMPs. The metallic elements that are frequently used to design TMPs for HSCs are shown in Fig. 5. Most of them display multiple valent states. Herein, single-metal, binary-metal and ternary-metal phosphides used as electrode materials for HSCs are discussed below in detail.

Single-metal phosphides

Nickel and cobalt are the most frequently used to form TMPs. Nickel phosphides possess high theoretical capacitance while cobalt phosphides show good electrochemical stability [110–112]. As shown in Fig. 6a, the interconnected Ni₃P nanosheets were grown uniformly on the Ni foam surface, which can provide sufficient space for ion diffusion [113]. The active Ni and P with rich valences facilitate electron transfer and produce abundant active sites for redox reactions, enhancing the specific capacitance. The Ni₃P nanosheets show higher conductivity of 1.2 × 10⁵ S cm⁻¹ than that of Ni(OH)₂ (10 S cm⁻¹) which confirms the improved conductivity of metal phosphides. The Ni₃P nanosheets exhibit a specific capacitance of 3496 F g⁻¹ at 2.5 A g⁻¹, which is higher than that of Ni(OH)₂ nanosheets (~1000 F g⁻¹) at the same current density, and maintain 1109 F g⁻¹ at 83.3 A g⁻¹. When cycled at 10 A g⁻¹, a rapid capacitance fading can be observed before 2000 cycles which may be ascribed to the Ni(OH)₂ generated from the reaction of Ni₃P nanosheets and electrolyte. After 2000 cycles, the Ni(OH)₂ on Ni₃P could protect the whole structure and ensure good cycling stability (Fig. 6b). Ni₅P nanoflakes consist of hexagonal Ni₅P₂ phase, hexagonal Ni₅P₄ phase and tetragonal Ni₁₂P₅ phase as shown in Fig. 6c [114]. Benefiting from the outstanding electrical conductivity enhanced by the mixed-phase in Ni₅P nanoflakes, an ultrahigh volumetric capacitance of 817 F cm⁻³ is achieved at 2 mA cm⁻² and the capacitance retains 434 F cm⁻³ even at 100 mA cm⁻², exhibiting excellent rate capability. Co₅P nanoflakes were synthesized via a facile mechanical alloying method under argon protection (Fig. 6d) [111]. Pure CoP phase could be formed when annealing Co-P precursor at 200 °C and exhibit the best electrochemical performance (Fig. 6e). When the annealing temperature is increased to 500 °C, these small particles agglomerate together, leading to the decrease of specific surface area and active sites. The pure CoP electrode delivers specific capacitances of 447, 437, 421, 342, and 314 F g⁻¹ at current densities of 1, 2, 4, 8, and 10 A g⁻¹, respectively. After 5000 cycles at 1 A g⁻¹, the specific capacitance maintains 84.3% of initial capacitance due to the stable crystal structure (Fig. 6f). Apart from nickel phosphides and cobalt phosphides, Cu₃P tube-like nanostructure was fabricated by electro-oxidation and phosphorization on copper foil [115]. The electrode delivers a specific capacitance of 301 F g⁻¹ at 2.5 mA cm⁻², while the capacitance decreases to 130 F g⁻¹ at 4.5 mA cm⁻², which is due to the large IR drop from high resistance. This problem can also be found in one dimension MoP, which exhibits specific capacitance of 470 and 122 F g⁻¹ at 2 and 15 A g⁻¹, respectively (Fig. 6g) [116]. The poor rate capability was not carefully discussed in this paper. However, the MoP electrode shows excellent long-term cycling stability of 92% after 10,000 cycles (Fig. 6h).

Binary-metal phosphides

Most single-metal phosphides often suffer from either low electrical conductivity or poor structural stability, which result in poor rate capability and poor long-term cycling stability as discussed in Section 3.1 [111,117,118]. Compared to single metal phosphides, binary-metal phosphides usually have better electrochemical reactivity, higher electronic conductivity and richer redox reactions, which are ascribed to the synergistic effects of various transition metal elements [71,119]. On the one hand, both metal cations participate in the redox reaction and contribute to the charge storage, such as Ni-Co phosphides [93,95], Ni-Fe phosphides [92] and Co-Mn phosphides [120]. The multiple oxidation states of different metals could provide higher capacity than single-metal phosphides [121]. On the other hand, one metal cation participates in the redox reaction to provide capacity, while another not related to redox reaction promotes the electrochemical activity and stabilizes the structure during the cycling process [122], including Ni-Mo phosphides [123], Co-Mo phosphides [124], and Zn-Ni phosphides [91].
Among various binary-metal phosphides, nickel cobalt phosphides (NiCoP) are paid wide attention on. The typical crystal structure of NiCoP is shown in Fig. 7a [125], which has the Fe2P-type structure. Partial Ni atoms are substituted by Co atoms in Ni2P structure without changing the crystal structure. NiCoP possesses both covalent and metallic metal-phosphorus bonds in which covalent bonds can store charges through faradaic redox reactions to provide capacity while metallic bonds offer free electrons to enhance the electrical conductivity [110]. For instance, hollow NiCo-P nanocages derived from MOFs possess synergistic effects between Ni and Co ions and high electrical conductivity after phosphorization treatment as shown in Fig. 7b [71]. The NiCo-P nanocages present low OH− adsorption energy, indicating facile OH− adsorption on the electrode materials during electrochemical reactions and fast reaction kinetics compared to the corresponding single metal counterparts [Fig. 7c]. In addition, NiCo-P without a band gap is metallic, further indicating the superior electrical conductivity [Fig. 7d] [71]. The NiCo-P nanocages deliver a high specific capacity of 894 C g−1 at 1 A g−1 with a capacity retention of 72.4% even at 40 A g−1. Free-standing amorphous nanoporous Ni-Co-P was synthesized by an electrochemical dealloying process [119]. In this amorphous phase, the coordination numbers of Ni-Ni, Ni-P and Co-P are lower than theoretical values, indicating abundant Ni and P vacancies, which provide a large number of active sites. New phases such as Ni12Co10−x OOH and (Ni12Co10−x)2P2O7 are formed during the electrochemical activation process, which increase the species of redox reactions. The amorphous np-Ni-Co-P exhibits a capacity of 171.4 mAh cm−3 at 1 A cm−3, which is higher than that of np-Ni-P (102 mAh cm−3) and np-Co-P (64.4 mAh cm−3). Even at a high current density of 100 A cm−3, np-Ni-Co-P still shows a capacity of 108.5 mAh cm−3 with a capacity retention of 63.2% (Fig. 7e). After 20,000 cycles, a capacitance retention of 84% is presented by np-Ni-Co-P. The NiCoP nanosheets grown on Ni foam exhibit a higher specific capacitance of 2143 F g−1 at 1 A g−1 than that of NiCoO2 (775 F g−1 at 1 A g−1), with an outstanding rate capability (1615 F g−1 at 20 A g−1) due to the high electrical conductivity [126]. However, a poor cycling stability (73% after 2000 cycles) of NiCoP nanosheets is not explained compared to the NiCoO2 electrode without phosphorization treatment (Fig. 7f).

Beyond bimetallic nickel cobalt phosphides, other binary-metal phosphides are also investigated. For example, compared to Co2+, Zn2+ possesses higher redox reaction kinetics and stronger coordination capability, which could boost the electrochemical properties [91]. The high value of the potential gap between anodic and cathodic peaks in Zn-Ni-P (~186 mV) demonstrates the quasi-reversible reaction kinetics. In addition, the charge-transfer resistance...
of Zn-Ni-P is smaller than that of Zn-Ni LDH and Zn-Ni-O as shown in the Nyquist plots (Fig. 7g), ensuring fast electron transport. Zn-Ni-P nanosheets exhibit a high specific capacity of 384 mA h g\(^{-1}\) at a current density of 2 mA cm\(^{-2}\) and outstanding cycling stability (retaining 96% after 10,000 cycles) [91]. After repeated charging/discharging process, the morphology of Zn-Ni-P and porous structure can still be maintained, ensuring the good cycling performance. The surface composition of Zn-Ni-P is slightly changed to NiOOH and ZnOOH due to the electrochemical oxidation. Ni–Fe phosphides nanosheets are also considered as one kind of promising binary transition metal phosphides for HSCs. The conductivity of Ni-Fe-P is increased compared with that of Ni\(_2\)P because of the strong internal bonding of Fe–P and the excess electrons distribute near the Fermi level [92]. The Ni–Fe–P electrode exhibits a specific capacity of 1358 C g\(^{-1}\) at 5 mA cm\(^{-2}\), which is higher than that of Ni\(_2\)P (1100 C g\(^{-1}\)), Ni-Fe-LDH (805 C g\(^{-1}\)) and Ni-Fe-O (417 C g\(^{-1}\)), with excellent rate capability (799 C g\(^{-1}\) at 50 mA cm\(^{-2}\)) (Fig. 7h). The 3D architecture of Ni-Fe-P and porous nanosheets are not much affected during the cycling test. In addition, the small content of metal oxides/hydroxides are formed on the surface of metal phosphides. The metal phosphides act as core materials which are protected by the oxidation layer, contributing to the electrochemical properties.

Ternary-metal phosphides

Ternary-metal phosphides may offer more redox active sites and higher conductivity than their corresponding single-metal and binary-metal phosphides because of the synergistic effects, multiple phase and abundant structural defects introduced by the incorporation of multi-metal ions, which are beneficial to the electrochemical energy storage [127,128].

ZnNiCo-P nanosheets were grown on Ni foam via a facile chemical bath deposition process and phosphorization treatment (Fig. 8a–c) [129]. Zn ions possess high chemical activity and good electrical conductivity as mentioned before and Ni ions could produce more polarons, thus increasing electrical conductivity [55,130–133]. More active sites and redox reaction species are introduced due to the increase of Co\(^{3+}\) after the introduction of Zn and Ni ions. ZnNiCo-P presents large charge density around the Fermi level and Ni and Co become more active compared with pristine

![Fig. 7. (a) Crystal structure of NiCoP. (b) Compositional design of NiCo-P. (c) OH\(^{-}\) absorption energy. (d) Densities of states. (e) Rate capability. (f) Cycling stability of NiCoP@NF, NiCo-LDH@NF and NiCoO@NF. (g) EIS of Zn–Ni LDH, Zn–Ni–O, and Zn–Ni–P electrodes. (h) Specific capacity at different current densities. (a) Reproduced from ref [125]. Copyright 2020 Elsevier. (b–d) Reproduced from ref [71]. Copyright 2019 Wiley-VCH. (e) Reproduced from ref [119]. Copyright 2019 Elsevier. (f) Reproduced from ref [126]. Copyright 2018 Royal Society of Chemistry. (g) Reproduced from ref [91]. Copyright 2018 Royal Society of Chemistry. (h) Reproduced from ref [92]. Copyright 2019 Royal Society of Chemistry.](image-url)
CoP, NiCo-P and ZnCo-P, which provide more charge carriers for the redox reactions (Fig. 8d). In addition, the OH\(^-\) absorption energy of ZnNiCo-P is the lowest because all cations can serve as OH\(^-\) adsorption sites, indicating a fast OH\(^-\) adsorption/desorption process and rapid reaction kinetics (Fig. 8e). When cycled 6000 cycles at 20 A g\(^{-1}\), the electrode retains 90% of initial capacity. The whole nanosheets can be well preserved while the surface becomes rough and agglomerate during the cycling test. The ZnNiCo-P nanosheets show the highest specific capacity of 958 C g\(^{-1}\) at 1 A g\(^{-1}\) and a considerable rate capability (787 C g\(^{-1}\) at 20 A g\(^{-1}\)) than NiCo-P nanowires, ZnCo-P nanosheets and Co-P nanowires. Another similar work also reports that Zn-Ni-Co-P nanowires deliver high specific capacities of 1269 C g\(^{-1}\) at 3 A g\(^{-1}\) and 920 C g\(^{-1}\) at 20 A g\(^{-1}\), respectively, much higher than that of ZNCO [133]. The introduction of zinc ions could adjust the band gap to modify electronic properties, and produce lattice defects, which result in the increased electron-conduction channels for electrochemical reactions.

Nickel-cobalt-molybdenum ternary phosphide with different mole ratios of Mo is another system to have been investigated [134]. Fig. 8f shows the CV curves of different NCMP@CC electrodes. The electrodes with the introduction of Mo resulted in a larger integral area of the CV curves compared with NiCoP@CC electrode, which is possibly attributed to the improved electrical conductivity. The electrode with the ratio of 1:1:1 attained the highest specific capacitance of 508 C g\(^{-1}\) at 1 A g\(^{-1}\) and a considerable rate capability (787 C g\(^{-1}\) at 20 A g\(^{-1}\)) than NiCo-P nanowires, ZnCo-P nanosheets and Co-P nanowires. Another similar work also reports that Zn-Ni-Co-P nanowires deliver high specific capacities of 1269 C g\(^{-1}\) at 3 A g\(^{-1}\) and 920 C g\(^{-1}\) at 20 A g\(^{-1}\), respectively, much higher than that of ZNCO [133]. The introduction of zinc ions could adjust the band gap to modify electronic properties, and produce lattice defects, which result in the increased electron-conduction channels for electrochemical reactions.

Nickel-cobalt-molybdenum ternary phosphide with different mole ratios of Mo is another system to have been investigated [134]. Fig. 8f shows the CV curves of different NCMP@CC electrodes. The electrodes with the introduction of Mo resulted in a larger integral area of the CV curves compared with NiCoP@CC electrode, which is possibly attributed to the improved electrical conductivity. The electrode with the ratio of 1:1:1 attained the highest specific capacitance of 508 C g\(^{-1}\) at 1 A g\(^{-1}\) and a considerable rate capability (787 C g\(^{-1}\) at 20 A g\(^{-1}\)) than NiCo-P nanowires, ZnCo-P nanosheets and Co-P nanowires. Another similar work also reports that Zn-Ni-Co-P nanowires deliver high specific capacities of 1269 C g\(^{-1}\) at 3 A g\(^{-1}\) and 920 C g\(^{-1}\) at 20 A g\(^{-1}\), respectively, much higher than that of ZNCO [133]. The introduction of zinc ions could adjust the band gap to modify electronic properties, and produce lattice defects, which result in the increased electron-conduction channels for electrochemical reactions.

Nickel-cobalt-molybdenum ternary phosphide with different mole ratios of Mo is another system to have been investigated [134]. Fig. 8f shows the CV curves of different NCMP@CC electrodes. The electrodes with the introduction of Mo resulted in a larger integral area of the CV curves compared with NiCoP@CC electrode, which is possibly attributed to the improved electrical conductivity. The electrode with the ratio of 1:1:1 attained the highest specific capacitance of 508 C g\(^{-1}\) at 1 A g\(^{-1}\) and a considerable rate capability (787 C g\(^{-1}\) at 20 A g\(^{-1}\)) than NiCo-P nanowires, ZnCo-P nanosheets and Co-P nanowires. Another similar work also reports that Zn-Ni-Co-P nanowires deliver high specific capacities of 1269 C g\(^{-1}\) at 3 A g\(^{-1}\) and 920 C g\(^{-1}\) at 20 A g\(^{-1}\), respectively, much higher than that of ZNCO [133]. The introduction of zinc ions could adjust the band gap to modify electronic properties, and produce lattice defects, which result in the increased electron-conduction channels for electrochemical reactions.
facile solvothermal method [118]. The loose structure and nanosized particles (Fig. 9a, b and c) are in favor of the effective contact between nanoparticles and electrolyte. The amorphous Ni-P delivers high specific capacitances of 1597 F g⁻¹, 1338 F g⁻¹, 1119 F g⁻¹, 964 F g⁻¹, and 800 F g⁻¹ at current densities of 0.5 A g⁻¹, 1 A g⁻¹, 2 A g⁻¹, 4 A g⁻¹, and 8 A g⁻¹, respectively. However, when cycled Ni-P electrode at 4 A g⁻¹, 26.2% capacitance loss occurs during the first 100 cycles, which is due to the irreversible faraday reactions and degradation of the structure. After 100 cycles, the electrode shows good cycling stability. Yolk-shell and multi-shelled particles often possess short ions/electrons transfer paths, high shell-permeability and abundant active sites [140, 141]. In addition, the energy density can be enhanced by increasing the weight fraction of the electroactive materials in the hollow interior space [142]. The yolk-shell Ni₃P nanospheres were fabricated via a solvothermal method following by selective etching (Fig. 9d) [143]. The as-synthesized yolk-shell nanospheres (diameter ~130 nm) consist of many small nanoparticles (Fig. 9e and f), thus the electrolyte can easily penetrate through the shell for efficient redox reactions. The BET analysis shows that the yolk-shell Ni₃P nanospheres have a high specific surface area of 62 m² g⁻¹ (Fig. 9g), which provides ample contact areas between electrode and electrolyte to facilitate the electrochemical reaction. The yolk-shell Ni₃P delivers high specific capacitances of 750 C g⁻¹ and 476 C g⁻¹ at the current densities of 1 A g⁻¹ and 10 A g⁻¹, respectively. Another multi-shelled copper cobalt phosphide hollow spheres were prepared by a facile template-free method (Fig. 9h) and exhibited a high specific capacitance of 1946 F g⁻¹ at 5 mA cm⁻² with excellent rate capability even at 150 mA cm⁻² (retaining 61% of its capacitance) [144]. After 6000 cycles, the electrode retains 92.7% of initial capacitance, indicating excellent cycling stability. The outstanding properties are attributed to the ultrathin shells (~20–30 nm) (Fig. 9i) and high surface area.
(54 m² g⁻¹), which provide short transport pathways for electron transfer, resulting in fast reaction kinetics. The abundant space between the shells act as reservoirs for electrolyte, improving the accessibility of electrolyte throughout the whole structure, thereby ensuring sufficient electrochemical reaction (Fig. 9j).

One-dimensional TMPs

0D materials often suffer from the agglomeration of nanoparticles which restricts the sufficient use of surface areas and the single morphology cannot provide special active sites to further facilitate the redox reactions [74]. One-dimensional (1D) nanomaterials have attracted increasing interest in energy-related applications due to their unique physical and chemical characteristics, such as high length-to-diameter ratio and 1D electronic pathways [145]. In addition, 1D nano-architectures possess the “highway” for charge transport along the axial direction and high ion-accessible surface area [27,139], 1D Ni₁₂P₅ nanowires were synthesized using a one-step facile hydrothermal method [146]. The formation process of Ni₁₂P₅ nanowires is the reaction of Pδ⁻ on the surface of red P and Ni²⁺ ions in aqueous solution with the consumption of red P (Fig. 10a). With the increase of reaction time, the length of Ni₁₂P₅ nanowires becomes longer with the width of ~20 nm (Fig. 10b, c and d) and the structure becomes more stable according to the stronger diffraction peaks around 50–60° in XRD patterns. The nanowires possess a large specific surface area of ~60 m² g⁻¹ and exhibit a high conductivity of 13.8 S cm⁻¹. The Ni₁₂P₅ nanowires show specific capacities of 707 C g⁻¹ and 481 C g⁻¹ at the current densities of 1 A g⁻¹ and 10 A g⁻¹ (68% of retention rate), respectively (Fig. 10e). However, the cycling stability of Ni₁₂P₅ nanowires is unsatisfactory (only 53% after 1000 cycles).

Fig. 10. (a) Schematic illustration of the formation of Ni₁₂P₅ nanowires. (b and d) SEM and (c) TEM images of Ni₁₂P₅ nanowires. (e) Rate capability. (f) Schematic illustration of the formation of Cu-Co-Ni-P nanotubes. TEM of (g) Cu-Co-Ni-MOF, (h) Cu-Co-Ni-oxide and (i) Cu-Co-Ni-P nanotubes. (j) Rate capability. (k) Cycling stability of Cu-Co-Ni-P nanotubes. (a–e) Reproduced from ref [146]. Copyright 2020 Elsevier. (f–k) Reproduced from ref [149]. Copyright 2020 Royal Society of Chemistry.

Two-dimensional TMPs

Two-dimensional materials have attracted increasing interest in energy storage and conversion due to their considerable mechanical stability and short ion transfer paths [150]. Compared to 1D materials, the ultra-thin 2D nanosheets can enhance the rate capability by alleviating the phenomenon of electrode materials pulverization at high current densities and improve cycle lifespan by accommodating the volume change during the cycling test [151]. A sheet-like NiCoP structure was synthesized via a hydrothermal method and phosphorization treatment (Fig. 11a) [152]. The porous and sheet-like structure (Fig. 11b and c) is in favor of the diffusion of electrolyte and transmission of electrons. The S-NiCoP electrode with a mass loading of 4 mg cm⁻² shows a specific capacitance of 1206 F g⁻¹ at 1 A g⁻¹, much higher than that of Ni–Co precursor (566 F g⁻¹), CoP–300 (404 F g⁻¹) and NiP–300 (436 F g⁻¹). Even at a high current density of 20 A g⁻¹, the S-NiCoP electrode can retain a discharge capacitance of 612 F g⁻¹ (Fig. 11d). When the mass loading is increased to 13.5 mg cm⁻², the S-NiCoP sample still shows a high capacitance of 1095 F g⁻¹, and the areal capacitance is increased from 4.9 F cm⁻² to 14.8 F cm⁻². The improvement of areal capacitance may be assigned to the dense and stacked sheet-like structure, which could facilitate
the electrons transfer from the electrode surface to the current collector even at high mass loading.

To avoid the restacking of 2D nanomaterials, which could restrict the electron and mass transport and reduce the utilization of electrode materials, the 2D nanomaterials are directly grown on a conductive substrate [151]. Low temperature PH3 plasma was employed to fabricate 2D NiCoP nanoplates grown on carbon cloth (Fig. 11e–g) [153]. The conductivity of NiCoP (909 S cm−1) could be achieved from the linear I-V characteristics indicative of ohmic contact behavior, which is higher than that of CoP (370 S cm−1) and Ni2P (244 S cm−1) (Fig. 11h). In addition, the DOS of NiCoP is closer to the Fermi level, which suggests that NiCoP is intrinsically more reactive and have better electrochemical activity. The NiCoP electrodes can deliver an excellent specific capacity of 194 mA h g−1 at 1 A g−1, which is higher than that of Ni2P (166 mA h g−1) and CoP (108 mA h g−1). After increasing the current density to 10 A g−1, a specific capacity of 169 mA h g−1 is maintained with a high rate capability of 87%. When cycled at 20 A g−1, 81% of the initial capacity is achieved for NiCoP after 5000 cycles. After the cycling test, the nanoplates are well preserved while some nanoparticles are formed on the surface. The surface of NiCoP has been oxidized with the generation of CoOOH and Ni(OH)2. The better cycling stability of NiCoP than that of Ni2P (10% capacity retention after 1000 cycles) is attributed to the Co hydroxides act as a protective layer that prevents Ni from being oxidized and thus maintains the whole structure.

Three-dimensional TMPs

The effective surface areas between electrode materials and electrolyte can be enlarged and more active sites can be exposed in the electrolyte via increasing the dimensionality. Three-dimension architectures often possess a continuous conductive network for the high-speed electron/ion transfer and abundant voids to alleviate the volume change and self-aggregation during the charge storage process [15]. Rational design of 3D structures and synthesis of novel 3D architectures show new promising for enhancing electrochemical performance. Self-assembly three-dimension nanostructures exhibit high surface area, more active sites and synergistic effects. Three-dimension micro flower-like Ni–Co–P is assembled by crosslinked porous nanoplates as shown in Fig. 12a [95]. The micro flowers assembled by crosslinked thin nanoplates (~70–150 nm) (Fig. 12b and c) provide multi-dimensional channels for ion/electron transport,
enlarge the electrolyte-electrode interface, ensure sufficient penetration of electrolyte, and enhance the mechanical stability, which contribute to rapid kinetics and long lifespan of Ni–Co–P. The porous structure with large specific surface area (22.97 m² g⁻¹) and high pore volume (0.135 cm³ g⁻¹) provides relatively high accessible area and short ion transport pathway, which significantly improve redox reactions. The Ni–Co–P electrode delivers a specific capacity of 653 C g⁻¹ at 1 A g⁻¹, much higher than that of Ni–P (520 C g⁻¹) and Co–P (169 C g⁻¹). Even at a high current density of 30 A g⁻¹, it still shows a capacity of 470 C g⁻¹ (Fig. 12d).

The 3D core–shell or hierarchical nanoarchitectures have shown significantly electrochemical improvement due to large surface areas, abundant surface redox reactions and fast transport of ions or electrons [41]. The core acts as both the backbone of core-shell structure and highway for charge transfer. The shell grown on the core would increase the contact area with the electrolyte, leading to
Therefore, staggering voltage hysteresis, side reactions and volume formed in strong alkaline electrolytes, such as metal hydroxides, doping elements, tuning composition, and designing TMPs for HSCs, including optimizing synthesis processes, improving the specific capacity, rate capability, and cycling stability of electrodes. Herein, we summarize four effective strategies that can significantly facilitate the infiltration of OH\(^{-}\) and charge transfer (Fig. 12 f and g).

NiCoP@NiCoP arrays exhibit a higher specific capacity of 1861 F g\(^{-1}\) at 1 A g\(^{-1}\) than single NiCoP nanowires and NiCoP nanosheets (Fig. 12h and i). Table 3 summarizes the recent representative TMPs electrodes materials for HSCs applications.

Strategies for the improvement of TMP electrodes

Although pristine TMPs exhibit outstanding physicochemical properties, their practical applications for HSCs are still limited by some shortcomings: 1) the volume expansion leads to poor cycling stability, 2) sluggish reaction kinetics of active materials hinder capacity as well as rate capability, and 3) unstable phase is easy to be formed in strong alkaline electrolytes, such as metal hydroxides, oxygen evolution reaction often occurs on the electrode surface. Therefore, staggering voltage hysteresis, side reactions and volume expansion are some serious issues that need to be addressed.

Some TMPs nanostructures consist of enormous interconnected nanoparticles, which could be attributed to the release of CO\(_2\) and H\(_2\)O during the heat treatment of precursor [164]. Annealing temperature has a crucial effect on the growth and crystalline of particles. The low annealing temperature may decrease the crystallinity while a high temperature could result in the aggregation of nanoparticles, reducing the surface areas. Fig. 13a-c illustrate the morphologies of Ni-Fe-P nanosheets phosphatized at different temperatures [92]. At a low temperature (300°C), few small pores appeared on the nanosheets because of the decomposition of the precursors. With the increasing temperature, the pores became larger due to the grain growth process accompanied by the growth of pores and the phase transition process from Ni–Fe LDH to Ni-Fe-P [153]. The porous structures possess micropores, mesopores, and macropores at the different annealing temperature. The Ni–Fe–P-350 nanosheets possess a superior specific surface area of 75 m\(^2\) g\(^{-1}\) in comparison with that of Ni–Fe–P-300 (61 m\(^2\) g\(^{-1}\)) and Ni–Fe–P-400 (65 m\(^2\) g\(^{-1}\)), providing more efficient paths for the ion/electron transmission and effective contact between electrode and electrolyte. The Ni–Fe–P-350 electrode delivers a highest capacity of 1358 C g\(^{-1}\) at 5 mA cm\(^{-2}\), which is higher than other two metal phosphide electrodes.

Synthesis design

Most of TMPs are fabricated by annealing precursors (hydroxides or oxides) in inert gas using Na\(_2\)HPO\(_4\) as the phosphorus source [99,162,163]. The annealing temperature, annealing time, and P source dosages could have different effects on the nanostructures and composition of electrode materials, which in turn determine the electrochemical properties [98,111].

Table 3

<table>
<thead>
<tr>
<th>Electrode materials</th>
<th>Nanostructures</th>
<th>Electrolyte</th>
<th>Specific capacity (cycles)</th>
<th>Rate capability (cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiCoMnP Nanosheets</td>
<td>2 M KOH</td>
<td>874 C g(^{-1}) at 15 A g(^{-1})</td>
<td>814 C g(^{-1}) at 20 A g(^{-1})</td>
<td>60% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanorods</td>
<td>3 M KOH</td>
<td>767 C g(^{-1}) at 1 A g(^{-1})</td>
<td>787 C g(^{-1}) at 20 A g(^{-1})</td>
<td>90% (5000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>6 M KOH</td>
<td>948 C g(^{-1}) at 1 A g(^{-1})</td>
<td>977 C g(^{-1}) at 20 A g(^{-1})</td>
<td>92% (5000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>2 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanosheets</td>
<td>6 M KOH</td>
<td>931 C g(^{-1}) at 1 A g(^{-1})</td>
<td>967 C g(^{-1}) at 20 A g(^{-1})</td>
<td>95% (5000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
<tr>
<td>NiCoP Nanowalls</td>
<td>3 M KOH</td>
<td>909 C g(^{-1}) at 1 A g(^{-1})</td>
<td>920 C g(^{-1}) at 10 A g(^{-1})</td>
<td>94% (10,000)</td>
</tr>
</tbody>
</table>
hollow NiCoP nanorods exhibit a capacity of 273.4 μAh cm⁻² at a current density of 1 mA cm⁻², higher than that of NiCo-precursor (190.4 μAh cm⁻²), and NiCo₂O₄ (209.3 μAh cm⁻²). The enhanced specific capacity is attributed to the hollow nanorods providing large electrode/electrolyte contact area, more active sites and shorten charge transport channel. After 4000 cycles, the NiCoP nanorods maintain 82% of its initial capacity because the hollow structure could accommodate the volumetric change during cycling test.

Vacancies can be introduced by adjusting the content of P source in the phosphorization process, which produce more active sites and increase surface reactivity, resulting in the enhanced capacity [168]. For example, the introduction of oxygen vacancies into CoMoO₄ crystal lattices by using different P source dosages shows an improved electrochemical property. After the oxygen vacancies are introduced, the P-CoMoO₄ₓ-3 shows higher electrical conductivity (3.9 × 10⁻² S m⁻¹) than pristine CoMoO₄ (5.7 × 10⁻³ S m⁻¹), which facilitates electron transport, resulting in fast reaction kinetics [124]. In addition, P incorporation decreases the Co–O bond energy, resulting in high surface redox activity, and forms Mo ions with lower valence state (Mo⁵⁺ or Mo⁴⁺), increasing redox reaction species. The P-CoMoO₄ₓ-3 exhibits a higher specific capacity of 1368 C g⁻¹ at 2 A g⁻¹ than that of pristine CoMoO₄ (651 C g⁻¹). The obtained capacity exceeds the theoretical Faradaic capacity value, which is possibly attributed to the P-CoMoO₄ₓ-3 nanostructure contributing to both Faradaic and non-Faradaic processes. The structure and morphology also reflect the effect of the amount of P source. With the increase of phosphorus source, the interconnected nanoparticles show an increase in size and the interspace between nanoparticles was blocked gradually as shown in Fig. 13e-g, which may originate from the lattice expansion to form NiₓPᵧ [90]. The NiₓPᵧ-2 nanosheets exhibit a specific capacity of 1272 C g⁻¹ at 2 A g⁻¹ and excellent cycling stability (90.9% after 5000 cycles) due to the large surface-to-volume ratio and the abundant interspace between the interconnected particles, which provide abundant active sites and

![Fig. 13. SEM images of (a) Ni–Fe–P–300, (b) Ni–Fe–P–350 and (c) Ni–Fe–P–400 networks. (d) Schematic illustration of the formation mechanism of hollow NiCoP nanorods. (e–g) TEM images of the NiₓPᵧ nanosheets phosphatized by different amounts of phosphorus source. (a–c) Reproduced from ref [92]. Copyright 2019 Royal Society of Chemistry. (d) Reproduced from ref [160]. Copyright 2020 Elsevier. (e–g) Reproduced from ref [90]. Copyright 2017 American Chemical Society.](image-url)
accommodate the volumetric expansion. After repeated charge/discharge, the initial structure can be maintained except for a slight aggregation, resulting in the degradation of capacity to some extent.

Elemental doping

Doping is an effective way to improve the rate capability and cycling stability of electrode materials because foreign atoms could change the physical and chemical character of original materials, such as nanostructures and the strength of chemical bonds, and introduce defects as well as rebuild electron density, which could enhance the ionic or electronic conductivity and increase electrochemically active sites, enabling fast redox reaction kinetics [169,170]. The elemental doped TMPs could be divided into anions doped TMPs (O, S, Se ions, etc), cations doped TMPs (Mo, Mn, Fe, Zn ions, etc) and anions and cations dual-doped TMPs. For example, after the introduction of sulfur into the CoP, the P to P-O ratio is increased as shown in Fig. 14a, leading to the decrease of surface passivation layers of CoP and the increase of metallicity of Co, which could increase the conductivity [171]. The porous nanowires in CoP are converted into nanotube structures in sulfur-doped CoP (Fig. 14b and c). The formation mechanism of nanotubes could be explained by the nanoscale Kirkendall effect as mentioned before. S^{2-} first reacts with CoP to form a thin layer of Co(P,S) on the surface. The Co (PS) layer could restrict outward S^{2-} reacting with the inward CoP. As the CoP core moves outwardly to react with S^{2-}, voids are formed at the center of the nanowire, resulting in the formation of Co(P,PS) nanotubes. The Co(P, S) nanotubes show a higher specific capacity of 296 mA h g$^{-1}$ at 1.0 A g$^{-1}$ than that of CoP (Fig. 14f). In another system, Mn ions and S ions are introduced into Ni–P nanosheets together [172]. The Zn doping could improve electrical conductivity, accelerate electron transmission and promote redox kinetics due to the high chemical activity of Zn and the narrow band gap. The strong interactions between the new phase of Ni$_3$S$_2$ and intrinsic Ni$_2$P optimize the electronic structure to facilitate electrons transfer and enhance reaction activity. The values of R_{ct} for ZNPS, ZNP and ZNS are 0.09, 0.13 and 0.12, respectively, suggesting that ZNPS electrode shows enhanced reaction kinetics and electrical conductivity compared with ZNP and ZNS. The ZNPS nanosheets demonstrate a specific capacity of 1180 C g$^{-1}$ at 2 A g$^{-1}$ and maintain high capacity of 780 C g$^{-1}$ at 20 A g$^{-1}$.

Composition tuning

Controlling the ratio of different elements is an effective strategy to tune the composition of electroactive materials away from stoichiometry [86,100]. Adjusting different metal ions with an appropriate ratio can increase the number of electronic states near the Fermi level and promote Faradaic charge transfer, thus increasing the capacity [68]. Additionally, the cyclic stability could achieve considerable improvement because the structure could avoid collapse and aggregation during the charge storage process by making full use of the characteristics of different metal ions [67,173]. For nickel cobalt phosphides, the ratio of Ni/Co has a significant effect on the specific capacity and cycling stability [174]. The molar ratio of Ni$^{2+}$ and Co$^{2+}$ can be adjusted because of the similar solubility constant (K_{sp}) of Co(OH)$_2$ (2.5 ×10$^{-16}$) and Ni(OH)$_2$ (2.8 ×10$^{-16}$) at
25 °C [110]. As shown in Fig. 15a-c, the interconnected Ni-Co-P nanosheets provide abundant interspaces for the diffusion of electrolyte and active sites for redox action. The size and thickness of nanosheets are increased with the increase of cobalt content, which result in large surface areas and good structural stability [110]. The thin and rough Ni-Co-P-1(Ni 2P) nanosheets show a high specific capacity of 125 mA h g−1, while the Ni-Co-P-5 (CoP) nanosheets exhibit excellent cycling stability (94% after 5000 cycles) (Fig. 15d). The Ni-Co-P-3 nanosheets with optimal Ni/Co ion ratio provide a higher specific capacity of 213 mA h g−1 than that of Ni-Co-P-5 and better cycling performance (85% after 5000 cycles) than Ni-Co-P-1 because of the electron interaction between Ni2P and CoP as well as the full integration of advantages of Ni2P and CoP. A similar change of electrochemical performance can be observed in NiCo2Py nano-needle arrays [174]. The discharge time becomes longer with the increase of Ni/Co ratio and reaches up to the maximum value of NiCo2Py due to the enhanced electrical conductivity. As the Ni/Co ratio is further increased, the discharge time decreases, which could be attributed to the increased charge transfer resistance (Fig. 15e).

Composites exploration

Designing composite materials has been regarded as an effective strategy to improve the property of matrix materials. Composites not only own the advantages of different components, but also achieve the synergistic (1 + 1 > 2) performance [175]. Moreover, the interfaces between different components possess a large number of defects, which provide abundant active sites for redox reaction. The composites design should consider the following principles, including 1) high specific surface area and desirable electroactive sites, which are related to the specific capacity, 2) high electronic conductivity, which is beneficial to the rate capability, 3) high thermal stability and chemical stability, which are crucial to the cyclic stability [176]. In this section, composite materials based TMPs are classified into four types: 1) TMPs and carbon-based materials composites, 2) TMPs and conductive polymers composites, 3) TMPs and transition metal hydroxides composites, 4) TMPs and transition metal sulfides/selenides composites.

TMPs and carbon-based materials composites

Carbon-based materials, such as amorphous carbon, graphene and carbon nanotubes, have been extensively adopted to improve the performance of electrode materials [13,177,178]. Carbon-based materials possess high electrical conductivity and good chemical stability, which are in favor of fast charge transportation and storage, protecting the whole structure and thus enhancing the cycling performance [147,179]. To fabricated amorphous carbon coating electrode materials, the as-synthesized sample is dipped in the glucose solution and subsequently put into a tube furnace by carbonization in inert gas at high temperature [179,180], and the synthesized carbon layer is ultrathin as shown in Fig. 16a [181]. After coating amorphous carbon, NiCoO@C showed a high specific capacitance of 2638 F g−1 and excellent cycling stability (increased from 57% to 84% after 3000 cycles) (Fig. 16b) [178]. The enhanced cycling performance can be attributed to the increased mechanical strength by the efficient coating of the carbon layer. Beyond the carbon layer, carbon nanoparticles could also provide sufficient active sites, shorten the ion transfer path and prevent the mechanical distortion through filling the interspaces of nanoarrays. Fig. 16c shows that carbon nanoparticles are deposited on the 3D porous nickel phosphides nanosheets and fill the voids between nanosheets. Due to the incorporation of carbon particles, the Ni3P-C shows a higher surface area of 29.7 m² g⁻¹ than Ni3P (17.7 m² g⁻¹), increasing active sites and accessibility of electrolyte ions, thereby leading to an enhanced specific capacity of 498 mAh g⁻¹. In addition, owing to the suspending carbon nanoparticle, which alleviates the volume change of Ni3P nanoarrays, the capacity retention was increased from 80% to 94% compared to pristine Ni3P nanoarrays after 2000 cycles (Fig. 16d).

One-dimensional carbon nanotubes (CNTs) are also used to improve the electrochemical performance due to the excellent electronic and mechanical properties [182]. Fig. 16e shows the synthesis process of the novel NiCoP nanoflake-surrounded CNT nanoarrays, in
which CNT nanoarrays are helpful to improve the electrical conductivity and provide extra electron transfer channels [183]. In addition, CNT network provides enlarged specific surface area for the growth of NiCoP nanoarrays, which ensures the enhanced cyclic stability (Fig. 16f and g). The NiCoP/CNT delivers a high specific capacitance of 215.6 mAh g⁻¹ at 5 mA g⁻¹ and an outstanding rate performance (57.4% of the original capacity at a current density of 30 mA g⁻¹). In another study, the nanostructured Ni-CoP@C were anchored on the surface of CNTs to promote effective electron transfer [177]. Due to the existence of CNTs, a crosslinked conductive network was built to shorten the ions transfer paths. The amorphous carbon in the Ni-CoP@C ensured a close and strong contact between Ni-CoP@C and CNTs. Thus, the interconnected Ni-CoP@C@CNTs show better specific capacitance and rate capability compared to Ni-CoP@C.

Two-dimensional reduced graphene oxide (RGO) has huge application prospects in energy storage, owing to its unique physical and chemical properties such as large surface area, superior electronic properties and excellent mechanical stability [184]. The electrode combining graphene sheets with NiP exhibited a higher specific capacity of 215.6 mAh g⁻¹ at 5 mA cm⁻² than that of NiP (1568 F g⁻¹) and the capacitance retention was increased from 68.8% to 77.1% [185]. The improved electrochemical performance is due to the GS matrix with high electrical conductivity which can host the nanosized NiP and enable nanosized NiP well exposed to the electrolyte, leading to fast electron and ion transfer. The NiP nanoparticles on the surface of GS act as spacer to prevent the re-stacking of sheets, avoiding the loss of active surface. The O–NiCoP materials modified with PDDA to achieve positive Zeta potential are combined with GO nanosheets with negative surface charge via a facile self-assembly way in solution to synthesis O–NiCoP@rGO composites (Fig. 16h) [168]. The surface area of O–NiCoP@rGO has been increased dramatically from 23.4 m² g⁻¹ to 284.4 m² g⁻¹. The active charge transfer in the composite is significantly promoted because more charge can be found near graphene that confirms the improved electrical conductivity with the introduction of rGO. When the current density is increased from 1 A g⁻¹ to 20 A g⁻¹, the specific capacitance of O–NiCoP@rGO decreases from 1663 F g⁻¹ to 800 F g⁻¹, indicating a good rate capability, which is attributed to the conductive network of rGO (Fig. 16i and j). After 3000 cycles, the capacitance retention of O–NiCoP@rGO is increased from 43.8% to 84.1% compared to O–NiCoP due to the excellent mechanical stability of rGO.

TMPs and conductive polymers composites

In the TMPs/conductive polymers composite materials, conductive polymers coating is applied to improve the electrical conductivity and mechanical stability, which in turn promotes electrode kinetics and stabilizes the structure of TMPs, respectively [187]. Conductive polymers can not only be coated on the surface of nanoarrays, but also interconnect the neighboring nanoparticles to improve the whole electrical conductivity and ion diffusion ability [188]. For example, the thin PEDOT layer is coated on the surface of FeP nanorods without destroying the structure via an in-situ polymerization method (Fig. 17a and b) [189]. The FeP/PEDOT electrode shows a lower Rct of 5.8 Ω compared to that of FeP electrode (7 Ω), which demonstrates that the highly conductive PEDOT coating would promote the charge transfer in the electrode/electrolyte interface and improve the electrode conductivity, resulting in the enhanced capacitance. The pristine FeP nanoarrays exhibit poor stability of only 24% retention after 5000 cycles. After PEDOT coating, the stability can be greatly increased up to 82% because...
PEDOT serving as a protection layer to enhance the mechanical stability of FeP nanorods. Apart from PEDOT, PPy has high electrical conductivity (10–100 S cm\(^{-1}\)), which can undoubtedly improve electron transport in TMPs [190]. PPy/Ni\(_2\)P was prepared via a facile polymerization reaction in which Ni\(_2\)P particles were uniformly dispersed on the surface of PPy (Fig. 17c) [191]. The strong interaction between PPy and Ni\(_2\)P facilitates ion diffusion and the pore structure provides large surface areas for fast charge transfer. PPy/ Ni\(_2\)P (30\%) composite delivers a discharge capacitance of 477 F g\(^{-1}\) at a current density of 1 A g\(^{-1}\). Comparing the cycling stability of different electrodes, PPy/Ni\(_2\)P (30\%) composite maintains about 89% of its initial capacitance after 3000 cycles (Fig. 17d) because the Ni\(_2\)P nanoparticles prevent the expansion and shrinkage of PPy.

TMPs and transition metal hydroxides composites

Transition metal hydroxides are promising electrode materials because of their low cost, abundance and high theoretical specific capacity [192]. The layered transition metal hydroxides can enlarge specific surface areas significantly and facilitate the ion diffusion from electrolytes to active materials, resulting in a high specific capacity [193]. Many transition metal hydroxides, such as \(\alpha\)-Ni(OH)\(_2\), \(\beta\)-Ni(OH)\(_2\) and Co(OH)\(_2\) [194–196], have been employed to enhance the ability of electric energy storage. Fig. 18a shows that the Ni(OH)\(_2\) nanosheets are directly grown on the NiCoP@C nanowires and nanoflakes uniformly [181]. The NiCoP@C@Ni(OH)\(_2\) nanosheets possess narrow bandgap and enhanced electrical conductivity due to the much increased density-of-states near the Fermi level [194]. As shown in Fig. 18c, the interconnected Co(OH)\(_2\) nanosheets form plentiful voids, which contribute to short ion-transport pathways and effective electrolyte accessibility. The NiCoP/Co(OH)\(_2\) nanorays show a high specific capacity of 304 mA h g\(^{-1}\) at 1 A g\(^{-1}\) compared with 230 mA h g\(^{-1}\) of NiCoP (Fig. 18d).

In addition, transition metal layered double hydroxides (LDHs) with a general formula of \([\text{M}^{II}_{x}\text{M}^{III}_{y}(\text{OH})_2]^{x+}[\text{A}^{n-}]_x_n\cdot m\text{H}_2\text{O}\), where M\(^{II}\) and M\(^{III}\) are divalent and trivalent metal cations, and \(\text{A}^{-}\) represents the charge balancing anions [198–200], have been chosen to synthesize composites with TMPs. The specific capacity and rate capability could be improved because of the large surface area, special layered structure and tunable element composition of LDHs, which could expose abundant electroactive sites and accelerate ion/electron transport [65]. Moreover, the inherent high stability of LDHs can accommodate the volume expansion during the repeated charging/discharging process, thus enhancing the cycling stability of matrix materials [201]. For instance, FeNiP nanosheets act as a second substrate for the growth of CoNi-LDH to form the nanosheet on nanosheet hybrid (Fig. 18e) [202]. The two organized nanosheets provide plentiful voids between the interconnected nanosheets, which provide more active sites for the redox reactions, offer enough space for the diffusion of electrolyte, and accommodate the volume change. The specific capacitance of FeNiP@CoNi-LDH nanosheets could reach up to 2280 F g\(^{-1}\) at 1 A g\(^{-1}\), and the electrode shows good...
cycling stability (70.4% of the initial capacitance after 5000 cycles) compared to FeNiP (35.8%) and CoNi-LDH (54.9%) (Fig. 18f), due to the electrochemical activity and good stability of CoNi-LDH coating layer. In addition, other LDHs, such as NiMn LDH [203], NiFe LDH [204] and CoAl LDH [205], have also been reported to improve the electrochemical performance of TMPs.

TMPs and transition metal sulfides/selenides composites

Beyond hydroxides, transition metal sulfides can also be used to design composites with TMPs, due to their large theoretical capacity (~1000 mA h g\(^{-1}\)), high electric conductivity, high electrochemical activity, and rich redox reactions [64,206]. In addition, they have a narrow band gap during anion exchange reactions, which could enhance the electron transport efficiency compared to transition metal hydroxides [207,208]. For example, the well-designed interconnected NiCo\(_2\)S\(_4\) nanosheets coating on NiFeP nanosheets provide abundant open pore channels and accessible 2D surface, which could facilitate the electrolyte ion/electron transfer and alleviate the volume expansion of electrode material during repeated charging/discharging test [209]. The movements of Ni 2p and Co 2p peaks indicate the strong chemical bond between NiFeP nanosheets and NiCo\(_2\)S\(_4\) nanosheets, which might promote charge transfer at the interface and improve electrical conductivity. The NiFeP@NiCo\(_2\)S\(_4\) electrode shows a high specific capacity of 874 C g\(^{-1}\) at a current density of 1 A g\(^{-1}\), which is 3.4 times of pristine NiFeP nanosheets (Fig. 19a). After 5000 charging/discharging cycles at 5 A g\(^{-1}\), NiFeP@NiCo\(_2\)S\(_4\) exhibits capacity retention of 85.6%, higher than that of NiFeP (64.9%) and NiCo\(_2\)S\(_4\) (67.8%), due to the stable heterostructure (Fig. 19b). NiVS/NiCuP/CW was synthesized by electrodeposition and hydrothermal method in which the NiVS nanoparticles were grown on the NiCoP film [210]. The oxidation and reduction diffusion coefficients for NiCuP/CW are 1.7×10\(^{-5}\) and 1.4×10\(^{-5}\) cm\(^2\) s\(^{-1}\) and for c-NiVS/NiCuP/CW are 2.39×10\(^{-5}\) and 2.52×10\(^{-5}\) cm\(^2\) s\(^{-1}\), respectively (Fig. 19c). The higher diffusion coefficients for c-NiVS/NiCuP/CW indicate the faster OH\(^-\) ion mobility, which results in fast redox reactions. According to the Trasatti analysis, the charges stored on the inner and outer surfaces are 18.5 C cm\(^{-2}\) and 2.8 C cm\(^{-2}\), respectively, indicating abundant active sites in the inner surfaces of c-NiVS/NiCuP/CW. The c-NiVS/NiCuP/CW electrode shows a specific capacitance of 13.4 F cm\(^{-2}\) at 4 mA cm\(^{-2}\), which is higher than that of NiV-LDH/NiCuP/CW (11.9 F cm\(^{-2}\)), NiCuP/CW (3.8 F cm\(^{-2}\)) and c-NiVS/CW (0.6 F cm\(^{-2}\)). Even at a high current density of 80 mA cm\(^{-2}\), a high specific capacitance retention of ~70% can be obtained for c-NiVS/NiCuP/CW (Fig. 19d).

Selenides, similar to sulfides, possess excellent electrical conductivity and electrochemical activity due to the weak metal-sele-nium bonding and narrow band gap [211]. Layer MoSe\(_2\) nanosheets are studied for energy storage due to the large interplanar spacing,
Fig. 19. (a) Rate capability of three samples. (b) Cycling stability at 5 A g\(^{-1}\) after 5000 cycles. (c) Oxidation and reduction peak current as a function of the square root of scan rate. (d) Rate capability.
(a, b) Reproduced from ref [209]. Copyright 2020 Elsevier. (c, d) Reproduced from ref [210]. Copyright 2020 Elsevier.

Fig. 20. (a) XPS spectra of Mo 3d. (b) The interaction model between the MoSe\(_2\) and NiCoP to expand interlayer of MoSe\(_2\). (c) Rate capability of MoSe\(_2\), NiCoP and NiCoP@MoSe\(_2\). (d) Cycling performance of NiCoP@MoSe\(_2\) after 8000 cycles. Reproduced from ref [213]. Copyright 2020 Elsevier.
rich redox reactions and small band gap [212]. When anchoring MoSe 2 nanosheets on NiCoP nanowires, the interplanar spacing of MoSe 2 nanosheets could be increased from 6.5 Å to 7.6 Å and the number of the layers is decreased from 15–23 to 1 due to the interaction between NiCoP and MoSe 2 [213]. As shown in Fig. 20a, the peaks of NiCoP@MoSe 2 shift to low binding energies compared to MoSe 2, indicating the electron transfer from NiCoP to MoSe 2, similar as metal sulfides above. Due to the electron transfer process, the orbital electron density of Mo and Se is increased, which results in an expansion of interplanar spacing. Few layers and large interlayer spacing can provide more active sites and accelerate the diffusion of electrolyte ions, and 3D open heterostructure offers abundant mass transfer channels, contributing to rapid redox kinetics (Fig. 20b). The NiCoP@MoSe 2 electrode exhibits a high areal capacitance of 5613 mF cm −2 at a current density of 1 mAC m −2, and retains 79.3% of initial capacitance at 40 mAC m −2, which is better than that of NiCoP (57.6%) and MoSe 2 (55.3%) (Fig. 20c). After 8000 cycles at 20 mAC m −2, 91.9% retention can be achieved (Fig. 20d) because of the strong interaction between two components, which improves the stability of electrode.

Summary and outlook

TMPs have been recognized as attractive electrode materials for SCs because of their unique metalloid character, outstanding electronic conductivity and excellent electrochemical activity. In particular, differentiating from EDLCs and pseudo-capacitors, TMPs show phase transformation that is the feature of battery-type electrodes during charge storage process. Both simple and complex transition metal phosphides have been studied as electrode materials for hybrid supercapacitors. Various nanostructured TMPs synthesized via different methods have demonstrated much improved electrochemical and transport properties. However, the sluggish reaction kinetics and volumetric expansion during charging/discharging progress remain as a bottleneck hindering the rate capability and cycling stability of TMPs capacitors. Optimizing synthesis process, doping, tailoring composition away from stoichiometry and designing composites have been representing approaches to improve the electrochemical performance: 1) properly designed and synthesized nanostructures benefit electrolyte penetration, ion diffusion and electron transfer, 2) doping tunes the electronic structure, and introduces defects, promoting electron transfer and facilitating redox reactions, 3) tailoring the composition away from stoichiometry could make full use of the nature characteristics of transition metal components, and 4) synergistically mixing of different phases to form composites has demonstrated to improve electrochemical properties. In spite of all the great progresses made, many challenges remain to be addressed in the synthesis, characterization further property improvement, and fundamental understanding of TMPs.

1) Most TMPs are synthesized through phosphorization of precursors (hydroxides and oxides) in inert gas using an excessive amount of P, such as NaH 2 PO 2 , which means a severe waste of phosphorus resources. Typical phosphorization releases flammable poisonous gaseous PH 3 . Recently, other synthesis/processing methods, such as electrodeposition and hydrothermal reaction, have been studied, though attaining or retaining of desired morphologies remained unfinished tasks [214]. Gas-solid phosphating method is another way to synthesize TMPs; though easy to operate, it is difficult to control composition of the final products or the degree of phosphorylation. Desirable eco-friendly and adjustable phosphorylation process is still to be developed [108].

2) Metal foams, metal foils, and carbon clothes are commonly used as conductive substrates for the growth of TMPs. The performance of TMPs hybrid capacitors are strongly affected by the density, electrical conductivity and hydrophilicity of substrates. Metallic substrates are easily oxidized and corroded during the hydrothermal synthesis and thermal annealing. The oxides between metal foams or substrates as current collectors and TMPs active materials destroy the mechanical stability and energy storage performance of the hybrid capacitors. Carbon cloth, on the other hand, often suffers from low electrical conductivity in comparison with metallic substrates. New substrates with large specific surface areas, outstanding mechanical property and excellent electrical conductivity, such as 3D graphene foam [215,216] and melamine formaldehyde resin foam [25,217], are promising for the further improvement of the performance of TMPs hybrid capacitors.

3) Alkaline aqueous solution, such as KOH, is commonly used as electrolyte in TMPs hybrid capacitors. Oxygen evolution reaction (OER) is easy to occur in strong alkaline. Further work is required to develop new electrolytes, such as organic electrolyte, water-insalt electrolyte and all-solid-state electrolyte. Appropriate electrolytes may broaden the potential window of TMPs and further enhance the energy density of SCs.

4) Complex phase transformation and structure reconstruction of TMPs often occur during the charge and discharge process when used as electrodes in hybrid capacitors. Advanced in-situ or ex-situ characterization techniques may be able to shed some light for a better understanding of the electrochemical behaviors during the charging/discharging process. Theoretical calculation and models are another way to analyze redox reactions in electrode materials.

CRediT authorship contribution statement

Quan Zong: Conceptualization, Writing - original draft, Writing - review & editing. Chaofeng Liu: Conceptualization, Writing - review & editing. Hui Yang: Supervision, Funding acquisition. Qilong Zhang: Conceptualization, Supervision, Funding acquisition. Guozhong Cao: Conceptualization, Writing - review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51772267), the National Key R&D Program of China (Grant No. 2016YFB0401501), the Key R&D Program of Zhejiang Province (Grant No. 2020C01004), and the National Science Foundation (CBET-1803256). The author acknowledges the financial support from China Scholarship Council (No. 201906320198) and 2019 Zhejiang University Academic Award for Outstanding Doctoral Candidates.

References

[31] Y.-J. Guo, W. Wen, J.-M. Wu, Wide potential window TiO2@carbon cloth and high capacitance MnO2@carbon cloth for the construction of a 2.6 V high-performance aqueous asymmetric supercapacitor, J. Power Sources 469 (2020) 228425.

[27] D. Zhao, H. Liu, X. Wu, Bi-interface induced multi-active NiC03O4@MOCS2−PPy (M=Ni, Zn) sandwich structure for energy storage and electrocatalysis, Nano Energy 37 (2019) 396–404.

[38] L. Wan, D. Chen, J. Liu, Y. Zhang, J. Chen, J. Xie, C. Du, Construction of FeNiP@Ni@Co layered double hydroxide hybrid nanohybrids on carbon cloth for high energy asymmetric supercapacitors, J. Power Sources 465 (2020) 228293.

