In/Ce Co-doped Li$_3$VO$_4$ and Nitrogen-modified Carbon Nanofiber Composites as Advanced Anode Materials for Lithium-ion Batteries

Yuanlang Wan, Zhi Chang, Xuefang Xie, Jialin Li, Simin Chai, Shuang Zhou, Qiong He, Chunyan Fu, Mingyang Feng, Guozhong Cao, Shuquan Liang, and Anqiang Pan*

cite this: ACS Appl. Mater. Interfaces 2022, 14, 52702−52714

1. INTRODUCTION

The continuous proliferation of electric vehicles, drones, and smartphones has put forward higher requirements for the energy density, power density, and cycle life of lithium-ion batteries (LIBs). Presently, graphite and Li$_x$Ti$_y$O$_z$ (LTO) still dominate the market of anode materials for LIBs. However, the theoretical capacity of graphite (372 mA h g$^{-1}$) is low, and the working potential is close to 0 V versus Li$^+/Li$, which easily induce the formation of lithium dendrites and raise catastrophic battery safety issues. The spinel LTO, on the other hand, as a typical "zero-strain" material, possesses a low theoretical capacity (152 mA h g$^{-1}$), which greatly limits the energy density and power density of the batteries. Li$_3$VO$_4$ (LVO) based on the intercalation/extraction mechanism was first reported in 2013 and triggered widespread attention to be used as a potential anode material for LIBs. LVO belongs to the orthorhombic system with a space group of Pnm$_2_1$. Its crystal structure is composed of tetrahedra of LiO$_4$ and VO$_4$ connected by shared angles. The cations occupy the positions of ordered tetrahedra, while octahedra are vacant and connected to each other, forming a tunnel-type structure that can facilitate the diffusion of Li$^+$. The prominent advantages of LVO involve high theoretical capacity (394 mA h g$^{-1}$, higher than that of graphite and LTO), much safer platform voltage (~1 V vs Li$^+/Li$, higher than that of graphite but lower than that of LTO, which can effectively avoid the formation of lithium dendrites), high ionic conductivity (10$^{-4}$ to 10$^{-6}$ S cm$^{-1}$), small volume expansion (~4% when discharged to 0.7 V), and easy and cheap to be manufactured. Hence, LVO is considered as a novel alternative material for the next generation of high energy and high power density LIB anodes.

Unfortunately, with the wide band gap, LVO is virtually an electronic insulator (the electronic conductivity is less than 10$^{-10}$ S cm$^{-1}$), which leads to large resistance polarization and dramatically damages its rate performance. Structural design (nanosphere, microcubic structure, honeycomb nanoclusters, nanorods, nanowires, etc.) and composites with conductive materials (N-doped graphite, porous carbon, carbon nanotubes, MXene, Ni or NiO) can be retained after 600 cycles at 1 A g$^{-1}$, implying an inspiring potential for practical application in high-efficiency LIBs.

KEYWORDS: Li$_3$VO$_4$, In/Ce co-doping, DFT, electronic conductivity, lithium-ion batteries

Received: June 13, 2022
Accepted: August 12, 2022
Published: November 17, 2022
Scheme 1. Synthesis of In/Ce Co-doped Li$_3$VO$_4$ and N-doped Carbon (IC-LVO/NC) Nanofibers

etc.) are effective methods to enhance the electrochemical performance of LVO. However, designing materials with hollow nanostructures (such as nanospheres and nanorods) frequently decreases the tap density of materials and results in the loss of the battery volume energy density, which is unfavorable for their practical applications. A tight structure incorporated with primary nanoparticles may be a better choice. Meanwhile, structural design and making composites with conductive materials cannot improve the intrinsic electronic conductivity of LVO considerably, and giant polarization of the battery seriously deteriorates the rate performance.

Ion doping is an effective method to promote a stable bulk phase structure, directly change the band gap, and effectively increase the intrinsic electronic conductivity of LVO. For example, Liang et al. synthesized Cr and Si co-doped γ-crystalline LVO nanowires (γ-LCSV-O-NW) via electrospinning, which notably enhanced the rate and cycling performance of LVO. Huu et al. synthesized 3% Ca$^{2+}$-doped LVO (3LCVO-ABR) based on an acid–base reaction (ABR). Theoretical calculations show that Ca$^{2+}$ as a doping modifier combined with the reaction characteristics of the ABR can provoke the formation of materials with mesoporous structures on their surface. Meanwhile, Ca$^{2+}$ directly provides electrons for the reduction of V$^{5+}$ to V$^{4+}$ and significantly improves the electrode capacitive contribution with a high capacity of 477.1 mAg$^{-1}$ when 3LCVO-ABR is used as an anode material for LIBs. In addition, Cu$^{2+}$, Ni$^{2+}$, Mg$^{2+}$, Nb$^{5+}$, Ti$^{4+}$, and other ions have also been applied to modify LVO, illustrating that ion doping is an effective method to improve the intrinsic electronic conductivity of LVO. Rare earth elements usually possess a high charge state, large radius, and low self-polarization. Nevertheless, there are still a few studies on doping modification of LVO with rare earth elements. Indium is also a superb dopant modifier and has an important role in defect and energy level structure modulation of electrode materials.

Herein, considering the unique effects of rare earth elements and indium, nitrogen-modified carbon-supported In/Ce co-doped LVO (nLICVO/NC, n = 3, 5, 7, represents the molar ratios of In$^{3+}$/Ce$^{4+}$, where the molar amount of Ce$^{4+}$ was fixed) were investigated to acquire a high-performance LIB material with high tap density. The conductive nanofibers (5SICVO/NC, sample with the best performance) tightly incorporated by 5LCVO nanoparticles were synthesized via electrospinning with subsequent one-step carbonization. The In/Ce co-doped LVO nanoparticles embedded in a N-modified highly amorphous carbon matrix of the nanofibers are obtained. The nanoparticles can enable the complete infiltration of the electrolyte, while the unique carbon nanofiber framework can buffer the strain and guarantee rapid electron transport. Density functional theory (DFT) calculations reveal that the LVO band gap is substantially reduced, and the carrier transport capacity is improved with the synergistic effect of In/Ce, which can significantly improve the Li$^{+}$ diffusion coefficient and electronic conductivity of the LVO material. With these merits, SICVO/NC exhibits superior rate and long-term cycling performance. When the SICVO/NC anode assembles with commercial LiNi$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_2$ (NCM111) into a full cell, a high discharge capacity of 190.9 mA h g$^{-1}$ can be retained after 600 cycles at 1 A g$^{-1}$, implying an inspiring potential for practical application in high-efficiency LIBs.

2. RESULTS AND DISCUSSION

2.1. Crystal Structure and Morphology. Scheme 1 illustrates the synthesis process of LICVO/NC nanofibers. In the process of stirring and electrospinning, the lithium source (CH$_3$COOLi), vanadium source (NH$_4$VO$_3$), indium source (In$_2$(SO$_4$)$_3$), and cerium source (Ce(SO$_4$)$_2$·4H$_2$O) can be dispersed in a continuous and uniform carbon precursor matrix, thereby alleviating drastic volume changes and inhibiting particle agglomeration. In the subsequent carbonization process, the PVP-derived nitrogen-doped carbon and the nucleation of LICVO occurred simultaneously, forming a compact hybrid structure/composite between LICVO and carbon on the nanoscale. The integration of LICVO crystals led to the formation of a carbon framework on the aggregates,
sustaining the fiber morphology of the precursor.\(^{40}\) (Figure S1). The formation of the carbon layer suppressed the growth of LICVO grains, shortened the diffusion path of Li\(^+\), and maintained high electrochemical activity. Moreover, the In/Ce co-doping can improve the structural stability and electronic conductivity of LVO. Based on the above-mentioned merits, the LICVO and carbon nanofibers exhibit good rate capability and cycling stability.

The X-ray diffraction (XRD) spectra of the samples obtained by the co-doping of In\(^{3+}\)/Ce\(^{4+}\) with different molar ratios are shown in Figure S2. When the molar ratio of In\(^{3+}/\)Ce\(^{4+}\) was 5:1, the doped LVO product (5LICVO/NC) without noticeable impurities, while the impurity phase of Li\(_2\)V\(_{1.16}\)O\(_2\) (PDF \#76-2448) situated at around 44.44°, appeared in both 3LICVO/NC and 7LICVO/NC. Moreover, the excessive In\(^{3+}\) source reduction during the high-temperature carbonization process resulted in an impurity phase of In (PDF \#85-1409) in 7LICVO/NC. Excellent rate performance generally indicates higher ionic and electronic conductivity of the samples. Hence, to further ascertain the optimal doping ratio, the rate performance of all composite samples was compared [Figures S3 and 4d (it will be further discussed in the following contents)]. The results reveal that 5LICVO/NC has the best rate performance, and a doping molar ratio of 5:1 for In\(^{3+}/\)Ce\(^{4+}\) is the best choice.

The XRD diffraction spectra of 5LICVO/NC (Figure 1a), LCVO/NC (Figure S4a), and LVO/NC (Figure S4b) were Rietveld refined by using the GSAS software with the EXPGUI interface. The calculated results of all samples are in good agreement with the experimental results. For 5LICVO/NC, LCVO/NC, and LVO/NC, the diffraction peaks located at 16.22, 21.44, 22.72, 24.22, 28.1, 32.68, and 36.18° correspond to the (100), (110), (011), (101), (111), (120), and (002) planes of Li\(_3\)VO\(_4\) (PDF card No. 38-1247), respectively, with orthorhombic and space group of Pnm\(_2\)\(_1\). There is no other impurity phase in 5LICVO/NC, which indicates the successful doping of the two ions. In and Ce prefer to occupy the V-site in the LVO tetrahedra (Figure 1b), and the ionic radius of In\(^{3+}\) (0.80 Å) and Ce\(^{4+}\) (0.87 Å) are larger than that of V\(^{5+}\) (0.54 Å) which leads to the expansion of the unit-cell volume after doping. A larger unit-cell volume can provide more space for the diffusion of Li\(^+\) and facilitate the reduction of polarization.\(^{26,25}\) The detailed 5LICVO/NC fractional atomic parameters and the relevant lattice parameters of three samples

![Figure 1](https://doi.org/10.1021/acsami.2c10471)
are shown in Tables S1 and S2. The small weighted profile error factors (\(R_{WP}\)) suggest the rationality of the In/Ce co-doping in this work.

The Raman spectrum of 5LICVO/NC (Figure 1c) shows two peaks situated at 1330 and 1593 cm\(^{-1}\), reflecting the D-band of lattice defects and the G-band of stretching vibrations in the sp\(^2\) hybridization plane of graphitic carbon,\(^{41,42}\) respectively (\(I_D/I_G = 1.13\) indicates the highly amorphous state of the carbon layer). 5LICVO/NC consists of carbon-based nanofibers with a lateral size of about 400 nm, and each fiber is entirely composed of a tightly packed irregular nanoparticles of 8–40 nm in diameter (Figure 1d,e) which ensures the good infiltration of the electrolyte. The tightly packed fibers with nanoparticles provided a high tap density and constructed a conductive framework for rapid electron transport. The carbon layer can suppress the grain growth of 5LICVO, shorten the path of Li\(^{+}\) diffusion, improve the reaction kinetics, and buffer the structural strain during Li\(^{+}\) intercalation/extraction of 5LICVO/NC.

The scanning electron microscopy (SEM) images of 5LICVO/NC (Figure 1e), LCVO/NC (Figure S5a), and LVO/NC (Figure S5d) are compared. It can be found that 5LICVO/NC along with LCVO/NC are all composed of smaller LVO particles that are uniformly distributed on the carbon matrix than that of LVO/NC, which is more favorable for electrode reactions. The high resolution TEM (HRTEM) image (Figure 1f) shows that 5LICVO nanoparticles are randomly distributed in the amorphous carbon layer. The high angle annular dark-field image (HAADF) of 5LICVO/NC and the corresponding elemental mapping image (Figure 1j) further verify the successful doping of In/Ce. The elemental mapping suggests that C and N are uniformly distributed throughout the nanofiber, while V, O, In, and Ce display slight bias aggregation on the nanoscale, consisting of the above-mentioned morphology of 5LICVO/NC. It should be noted that N was derived from the decomposition of PVP at high temperatures,\(^{17}\) which will be further discussed in the following contents.

The high-resolution XPS spectra of 5LICVO/NC (Figure 2a,b,c,d,e,f) can be deconvoluted into peaks located at 284.87, 286.17, and 290.24 eV, which can be assigned to the C–C sp\(^2\) hybrid orbital, C–N or C\(\equiv\)N, and O–C\(\equiv\)O bonds,\(^{44,45}\) respectively. This demonstrates the presence of nitrogen and oxygen-containing functional groups in the surface carbon layer, implying the presence of N-doped carbon.\(^{46,47}\) This conclusion can be further confirmed through the high-resolution spectrum of N 1s. The three peaks located at 397.84, 399.88, and 401.72 eV in Figure 2b can be ascribed to the spin–orbit levels of pyridinic N, C–N or C\(\equiv\)N, and pyrrolic N, respectively, further demonstrating the successful preparation of N-doped carbon.\(^{21,48}\) This conclusion can be further confirmed through the high-resolution spectrum of N 1s. The three peaks located at 397.84, 399.88, and 401.72 eV in Figure 2b can be ascribed to the spin–orbit levels of pyridinic N, C–N or C\(\equiv\)N, and pyrrolic N, respectively, further demonstrating the successful preparation of N-doped carbon.\(^{21,48}\) N doping can modify the carbon matrix to generate extrinsic defects in the amorphous carbon layer, which will act as active reaction sites and enhance the electrode reaction kinetics.\(^{19}\) On the other hand, N-doped carbon is favorable for
the formation of the fixed-domain sender level close to the Fermi level, which can increase the Fermi-surface density and improve the electronic conductivity.

Figures 2c, S7c, and S9c represent the V 2p high-resolution spectra corresponding to 5LICVO/NC, LCVO/NC, and LVO/NC, respectively. The peak deconvolution of three samples of V 2p is similar. It can be found from Figure 2c that V 2p can be deconvoluted into five peaks. 521.82 eV is an O satellite peak, and the two peaks located at 517.08 and 524.86 eV reflect the spin−orbit levels of V 2P\(^{3/2}\) and V 2P\(^{1/2}\), respectively, indicating the presence of V\(^{5+}\). The two peaks located at 515.69 and 523.34 eV indicate the presence of V\(^{4+}\) in 5LICVO/NC.

It is worth noting that the V\(^{4+}\)/V\(^{5+}\) hybrids are present in all samples from the XPS analysis. However, the convolution ratio of V\(^{4+}\)/V\(^{5+}\) in 5LICVO/NC is 0.92, which is 1.02 times higher than that of LCVO/NC and 1.08 times higher than that of LVO/NC. This result illustrates that V\(^{4+}\) increases with more Ce\(^{4+}\) doping, while the introduction of In\(^{3+}\) combines with Ce\(^{4+}\) to provide electrons for the reduction of V\(^{5+}\) to V\(^{4+}\), promoting the generation of more V\(^{4+}\). V\(^{4+}\) in LVO/NC is caused by the reducing atmosphere during the high-temperature carbonization process. The V\(^{4+}\)/V\(^{5+}\) hybrids play an important role in improving the electrochemical performance of SLICVO/NC. First, the partial loss of V\(^{5+}\) can cause the disappearance of the associated VO\(_4\) tetrahedra in the LVO structure, thus extending the diffusion space of Li. Second, V\(^{4+}\)/V\(^{5+}\) hybrids can regulate the LVO energy level structure, and the unpaired 3d\(^{1}\) electrons in V\(^{4+}\) are easily transported into the bulk phase lattice, which may lead to a smaller band gap and improve the electronic conductivity. In addition, in order to maintain charge balance, the presence of V\(^{4+}\) means that O\(^{2-}\) in the system loses electrons and form O\(_2\), followed by the release from the lattice (V\(^{5+}\) + e\(^-\) → V\(^{4+}\), 1/2O\(_2^{-}\)− e\(^-\) → 1/2O\(_2\)↑), resulting in the generation of oxygen defects, as shown in the O 1s spectrum (Figure 2d). In the high-resolution spectrum of O1s, the two peaks located at 530.11 and 531.99 eV can be ascribed to O\(^{2-}\) and oxygen defects. The oxygen defects combined with the extrinsic defects derived from N-modified carbon provide more active sites for enhancing the adsorption of cations, promoting rapid ion and electron transportation and producing a significant capacitive effect.

The two peaks at 444.19 and 451.73 eV in the high-resolution spectrum of In 3d (Figure 2e) can be assigned to the spin−orbit levels of In 3d\(^{5/2}\) and In 3d\(^{3/2}\), respectively, indicating the presence of In\(^{3+}\).

The XPS high-resolution spectrum of Ce 3d in Figure 2f displays two peaks at 881.83 and 901.33 eV, indicating the presence of Ce\(^{4+}\).

Figure 3. Crystal structures of (a) LVO, (b) Ce-33.3-b, (c) In-33.3-b, and (d) D4. (e) Schematic illustration of bond lengths (LVO on the left and Ce-33.3-b on the right). (f) Calculated energy band structure (blue based on PBE method), DOS and charge density diagrams of the conduction band edge (CBM) and valence band edge (VBM) and (g) calculated energy band structure of D4 based on the HSE method.
To understand the reasonable doping position and the effect of the doping concentration on the electronic properties (band gap) of the structure, Ce or In was used to replace the V atom. Initially, the mono-doping of LVO with Ce or In atoms was carried out separately. While replacing V atoms with Ce doping, the doping concentrations are 16.7, 33.3, and 50%, respectively, wherein 33.3% doping concentration consists of three different positions of doping sites (labeled a, b, and c). The doping models are denoted as Ce-16.7, Ce-33.3-a, Ce-33.3-b, Ce-33.3-c, and Ce-50, respectively (Figure S10). The doping formation energy of the system steadily becomes larger with increasing doping concentrations (Table S3), demonstrating that the structure becomes unstable with increasing doping concentrations. For example, the energy gap and dopant formation energy of the Ce-16.7 structure are 2.05 and -1.03 eV, respectively, while those of the Ce-50 structure are 2.27 and 2.06 eV, respectively. At 33.3% doping concentration, the dopant formation energy of the system is -0.72 eV, and the energy gap is 1.84 eV (only in the case of doping site b). Thus, the doping that can be performed with a diminished band gap is 33.3% doping of Ce at the b site, theoretically. In Ce-33.3-b, the VO tetrahedra will shift to VO octahedra (Figure 3b).

When the VO tetrahedra are undoped, the V–O bond lengths are 1.67, 1.75, 1.74, 1.75, and 2.75 Å, respectively (Figure 3e), matching well with the XRD Rietveld refinement analysis. Then, the V atoms were substituted by In doping: with doping concentrations of 16.7, 33.3, and 50%, similarly denoted as In-16.7, In-33.3-a, In-33.3-b, In33.3-c, and In-50, respectively (Figure S11). The results demonstrated that the doping of In has a restricted effect on altering the energy gap toward this structure, and the system is stable at 33.3% doping concentration. In-33.3-b is doped in the same way as Ce-33.3-b; even though there is no VO tetrahedral distortion in In-33.3-b (Figure 3c), the energy gap of this structure is still the smallest among the In single-doped structures (Table S3). Consequently, we paid extra attention to the way of Ce-33.3-b substitution doping.

Under the premise of computational rationality, the binary substitution doping of the 1 × 1 × 2 superlattice of LVO to V was carried out following the 33.3%-b-Ce substitution doping method. After the optimization of the doped structure, both the PBE method and a much more accurate HSE06 method were employed to calculate the energy bands and DOS of the system to make the theoretical calculations closer to the actual values. The PBE method underestimates the band gap, and the HSE method calculates the band gap much in line with the actual values, as reported in previous studies.60,61 PBE and HSE are basically the same in terms of the energy band

Figure 4. (a) CV curves for the first four cycles at 0.2 mV s$^{-1}$ and (b) discharge/charge curves for the first three cycles at 0.1 A g$^{-1}$ of 5LICVO/NC. (c) Cycling performance at 0.1 A g$^{-1}$, (d) rate performance, and (e,f) long-term cycling performance of three samples.
structure profile and energy band curvature, except for the difference in the calculated energy gap values.

For In/Ce binary doping, seven types of doping were designed (Figure S13), and all of them were found to have VO tetrahedral distortion to VO octahedra in the structure, so the energy gap of the LVO binary doped structure was broadly reduced (Table S4). In the D4 doping type (Figure 3d), the system has the lowest energy gap value which is 0.64 eV (1.03 eV), calculated by the PBE (HSE06) method, matching well with the energy gap results obtained from UV-Vis-NIR tests (Figure S14). In its energy band structure, the conduction band minimum (CBM) position consists of electrons from Ce and V, while the valence band maximum position (VBM) consists of holes from O and In. The same result is obtained from the energy band edge charge density diagram (Figure 3f), where the electrons are localized in the V and Ce atoms and the holes are localized in the O and In atoms (the calculated energy band structures, DOS plots), and band edge charge density plots for the remaining six structures are shown in the Figure S15. At the CBM position, the V atom gains electrons, implying that there is a change flow from V$^{5+}$ to V$^{4+}$, which is in agreement with the results of the XPS analysis. To further examine whether the In/Ce binary doping is beneficial for improving the electron or hole mobility, a simple and effective way to qualitatively evaluate the carrier transport ability based on the effective mass of the band edge in the energy band structure is carried out. The effective masses in both D1 and D4 types are smaller than those in the other types (Table S4), indicating a relatively strong carrier transport capacity.

In a quantitative and qualitative sense, DFT calculations revealed that the introduction of Ce atoms in LVO can induce the transformation of VO tetrahedra into VO octahedra. On the other hand, the introduction of In atoms can serve to stabilize the structure and reduce the doping formation energy of the system. Therefore, the binary doping of Ce and In can provoke synergistic effects in reducing the energy gap and stabilizing the structure of the LVO system. The small band gap of the D4 type, with the CBM near the Fermi energy level and very small effective mass, is favorable for the carrier transport and crucial for improving the intrinsic conductivity of LVO.

2.3. Electrochemical Performance

To further clarify the electrochemical modification of SLICVO/NC, the 2016-type coin cells were assembled for electrochemical testing. Figure 4a shows the first four cycles of cyclic voltammetry (CV) curves of SLICVO/NC at 0.2 mV s$^{-1}$. Three reduction peaks located at 0.367, 0.511, and 0.615 V in the first cyclic cathodic scan, reflecting the intercalation of Li$^+$ into SLICVO/NC and the formation of the solid electrolyte film (SEI). In contrast, the oxidation peak located at 1.353 V in the first anodic scan reflects the extraction of Li$^+$. The small potential gap between the reduction with oxidation peaks illustrates the small polarization of the battery. In the subsequent second scan of SLICVO/NC, the three reduction peaks move toward higher potential and decrease to two reduction peaks at 0.487 and 0.857 V. Simultaneously, the oxidation peak in the first cycle also moves to a lower potential of 1.338 V, which means that the battery achieves activation, and the internal polarization gradually decreased. After the activation, the CV curves from the second to the fourth cycle almost overlapped with each other, indicating good reversibility of the SLICVO/NC sample. Figure S16a-c represents the first four cycles of CV curves for LCVO/NC and LVO/NC, respectively. It can be found that three reduction peaks at 0.3−0.5, 0.526, and 0.633 V and one oxidation peak at 1.365 V are presented in the first cycle CV of LCVO/NC (the unsmooth curve in the low potential region may originate from the influence of the test environment). Only two reduction peaks at 0.5 and 0.618 V and one oxidation peak at 1.363 V were observed for LVO/NC. The occurrence of a third reduction peak in the low potential region indicates a deeper lithiation of SLICVO/NC and LCVO/NC, with higher specific capacity and better reaction kinetics. For the first cycle, the characteristics of CV curves of three samples were highly similar, indicating that the In/Ce co-doping does not affect the crystalline phase structure of LVO, matching well with the results of XRD analysis.

The galvanostatic discharge/charge curves of SLICVO/NC for the first three cycles at 0.1 A g$^{-1}$ are presented in Figure 4b. In the first cycle, SLICVO/NC delivers a discharge capacity of 611.8 mA h g$^{-1}$ and a charge capacity of 418.0 mA h g$^{-1}$, corresponding to a 68.3% initial coulombic efficiency (ICE). The irreversible capacity loss can be ascribed to two main factors. One aspect is the irreversible intercalation of partial Li$^+$ into the active material lattice during the first discharge of the electrode, which forms a new phase and leads to the loss of Li$^+$. The other is the further depletion of Li$^+$ caused by the formation of the SEI, which greatly decreases the ICE. In/ex situ modulation of electrolytes and surface modification are probably effective methods to improve the ICE of this material in subsequent work. The charge/discharge curves of the second and third cycles are well overlapped with each other, indicating the enhanced reversibility of the electrode material. As shown in Figure 4c, when cycled at 0.1 A g$^{-1}$, the capacity of LVO/NC fades faster than that of the LCVO/NC cell, demonstrating that the Ce doping can stabilize the structure in the bulk phase lattice. SLICVO/NC has the best cycling stability and specific capacity, maintaining a high discharge capacity of 386.3 mA h g$^{-1}$ after 100 cycles (while the low reversible capacities of 324.6 and 317.8 mA h g$^{-1}$ could be retained for LCVO/NC and LVO/NC, respectively). This displays the outstanding advantages of N-modified carbon-supported In/Ce co-doping for improving the structural stability and cycling performance of LVO. The excellent rate performance of SLICVO/NC at various current densities is demonstrated in Figure 4d. SLICVO/NC delivers high capacities (Figure S17a) of 592.0, 377.8, 353.6, 338.1, 324.5, 320.9, 296.2, and 277.9 mA h g$^{-1}$ at 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, and 5 A g$^{-1}$, respectively. These are apparently higher than those of LCVO/NC (Figure S17b), with 582.5, 334.8, 312.5, 294.7, 280.6, 275.1, 259.5, and 248.6 mA h g$^{-1}$ and LVO/NC (Figure S17c), with 571.8, 289.0, 268.3, 250.4, 233.1, 221.5, 193.5, and 169.0 mA h g$^{-1}$). SLICVO/NC demonstrates only small capacity fading with rising current densities and still maintains desired capacity at high current densities. This undoubtedly benefits from the strong structural stability and attractive reaction kinetics of the SLICVO/NC material. When the current density is reset to 0.1 A g$^{-1}$, the capacity retrieved to 387.0 mA h g$^{-1}$, illustrating the high reversibility of the electrode (exhibiting a slightly higher capacity than the initial cycles at 0.1 A g$^{-1}$, possibly due to the electrochemical reconstruction that occurred during the cycle of the SLICVO/NC).
Figure 4e represents the long-term cycling performance of three samples at 0.5 A g\(^{-1}\) with the first five cycles as the activation processes. A high capacity of 335 mA h g\(^{-1}\) can be retained after 1200 cycles for the 5LICVO/NC, corresponding to a high capacity retention of 98.4%. In sharp contrast, the LCVO/NC-based cell can only preserve 285.0 mA h g\(^{-1}\) capacity after 1200 cycles (with a capacity retention of 88.0%). For LVO/NC, however, only a low capacity of 235.9 mA h g\(^{-1}\) is retained after 1200 cycles, corresponding to only 69.3% retention. In particular, LVO/NC has the lowest discharge capacity (127.6 mA h g\(^{-1}\)) at a higher current density of 1.6 A g\(^{-1}\) after 2000 cycles (Figure 4f) and more visible capacity fading than that of LCVO/NC and 5LICVO/NC. The inferior electrochemical performance was caused by the poor electrode kinetics and structural stability of LVO/NC. These results also indicate that Ce can stabilize the structure of the bulk phase and improve electrode kinetics. The introduction of In will further enhance the stability of the LVO bulk phase structure and promote the battery reaction kinetics so that 5LICVO/NC can still preserve a high capacity of 259.5 mA h g\(^{-1}\) at 1.6 A g\(^{-1}\) after 4000 cycles, equal to 78.7% capacity retention (Figure 4f). Although the coulombic efficiency is lost in the initial cycle due to the decomposition of the electrolyte and the formation of SEI, it can consequently maintain nearly 100% in the subsequent cycles, showing the good kinetics of the 5LICVO/NC material. In addition,
SLICVO/NC exhibits better rate and cycling performance than most previously reported LVO materials (Table S5), demonstrating that the N-modified carbon-supported In/Ce co-doping is a highly efficient modification strategy in this work.

2.4. Reaction Kinetics and Li\(^{+}\) Intercalation Mechanism. The superior electrochemical performance of SLICVO/NC can be better appreciated by kinetic analysis. In the Nyquist plots (Figure 5a), the intercept (R\(_s\)) at the high-frequency region represents the sum of the electrolyte resistance and ohmic resistance of the battery components, the semicircle mainly reflects the charge transfer resistance (R\(_{ct}\)), and the slope in the low-frequency region is mainly related to the Weber diffusion in the electrodes. The impedance spectrum can be better understood by fitting with an equivalent circuit model (Figure 5a inset). In this model, except for R\(_s\) and R\(_{ct}\), CPE1 is the constant-phase component related to the double-layer capacitance, while CPE2 is the capacitance related to the accumulation or loss of Li\(^{+}\) in the electrode. After fitting, the R\(_{ct}\) of SLICVO/NC is 127.4 \(\Omega\), which is much smaller than that of LCVO/NC (197.0 \(\Omega\)) and LVO/NC (323.0 \(\Omega\)). More importantly, the R\(_{ct}\) of SLICVO/NC is steadily decreasing after 10 and 20 cycles (Figure 5b), reducing to 59.5 and 36.7 \(\Omega\), respectively. This benefits from the higher Li\(^{+}\) diffusion coefficient and electronic conductivity of SLICVO/NC.

The high ionic diffusion coefficient and electronic conductivity are the keys to excellent rate performance. According to the Randles–Sevchik eq S3, the trend of the Li\(^{+}\) diffusion coefficient (D) in three samples can be observed from the linear fitting (Figure S18) collected from oxidation peak currents (I\(_p\)) versus the square root of the scan rate (\(\sqrt{v}\)) of SLICVO/NC (Figure 5c), LCVO/NC (Figure S16b), and LVO/NC (Figure S16d). As shown in eq S3, D\(^{1/2}\) is proportional to the slope of the fitted curves and steadily becomes bigger from LVO/NC to SLICVO/NC, corresponding to the above analysis of the above content. D-values can be calculated by the galvanostatic intermittent titration technique (GITT), which can illustrate the effect of multistep intercalation/extraction on ion diffusion and conductivity. Figure 5g represents the GITT curves of three samples during the first two cycles of discharge/charge and the distribution of the calculated log \(D_0\) points (E vs \(i\) curves) of the SLICVO/NC electrode for a single GITT during the discharge process, as shown in Figure S19. The average value of \(D_0\) for SLICVO/NC is 9.82 \(\times\) 10\(^{-4}\) cm\(^2\) s\(^{-1}\), higher than that of LCVO/NC (9.45 \(\times\) 10\(^{-4}\) cm\(^2\) s\(^{-1}\)) and LVO/NC (9.17 \(\times\) 10\(^{-4}\) cm\(^2\) s\(^{-1}\)). Four probe tests were conducted to verify that the electronic conductivity of LVO could be improved by doping. The results showed that the electronic conductivity of SLICVO/NC is 1.38 \(\times\) 10\(^{-2}\) S cm\(^{-1}\), which is remarkably higher than that of LCVO/NC and LVO/NC (7.11 \(\times\) 10\(^{-4}\) and 2.79 \(\times\) 10\(^{-4}\) S cm\(^{-1}\), respectively). LVO/NC has a higher electronic conductivity than that in previous literature.\(^{11,29,32,33,36}\) This implies that the N-modified conductive carbon nanofibers can provide a good electron transport framework, which emphasizes the superiority of the modification strategy in this work. Simultaneously, the synergistic effect of In/Ce co-doping improved the LVO intrinsic electronic conductivity and enhanced the electrode dynamics.

Superior rate and long-cycling performance are generally dependent on a high electrode capacitive contribution. In the SLICVO/NC material, the oxygen defects resulting from the V\(^{4+}\)/V\(^{5+}\) hybrids combined with the extrinsic defects that form the N-modified carbon will provide more active sites to absorb numerous cations and produce a significant capacitive effect. This can be verified by the following discussion in eqs 1 and 2.\(^{46,69}\)

\[
I(V) = aV^b \quad (1)
\]

\[
I(V) = k_1V + k_2V^{1/2} \quad (2)
\]
where \(v \) is the scan rate (mV s\(^{-1}\)); \(I(V) \) is the current (mA) at the corresponding \(v \). \(a \) and \(b \) are constants; when \(0 < b < 0.5 \), it indicates that the electrode reaction is mainly controlled by the diffusion behavior, while if \(0.5 < b < 1 \), it indicates that the electrode reaction is mainly controlled by the capacitive behavior. Figure 5d shows the fitting results collected from \(\log(I) \) to \(\log(v) \) of the oxidation and reduction peaks (Figure 5c) in SLICVO/NC at 0.2−1.5 mV s\(^{-1}\). The \(b \)-values can be calculated from the slope, and all are close to 1, suggesting that the electrode reaction is mainly controlled by the capacitive behavior. According to eq 2, \(k_1 \) (slope) and \(k_2 \) (intercept) can be obtained by plotting \(I(V)/V^{1/2} \) versus \(V^{1/2} \) at different potentials, and the capacitive contribution \((k_1/k_2)\) was calculated, where the results are shown in Figure 5e. The percentage of diffusion in SLICVO/NC decreases with increasing scan rate, while the contribution of the capacitance gradually increases, reaching 90.48% at 1.5 mV s\(^{-1}\) (Figure 5f), which is higher than that of LCVO/NC (90.06%, Figure 20c) and LVO/NC (89.61%, Figure S20i). The high capacitive contribution results from the rich active sites in the SLICVO/NC nanofibers, which endow the material with superior rate and long-term cycling performance.

2.5. Full-cell Performance. A full cell with Li-Ni\(_{1/3}\)Co\(_{1/3}\)Mn\(_{1/3}\)O\(_2\) (NMC111) as the cathode and the SLICVO/NC anode was assembled to evaluate the potential of SLICVO/NC to be used as an anode in practical applications (Figure 6a). Pre-lithiation was first carried out in the half-cell for SLICVO/NC to compensate for the lithium loss in the initial cycle. To ensure the full utilization of the capacity of SLICVO/NC, the full cell was assembled at a low N/P ratio (a cathode/anode capacity ratio) of 12:1 (the range of potential was 2.5−4.5 V). A capacity of 242.6 mA h g\(^{-1}\) could be retained after 100 cycles at 0.1 A g\(^{-1}\) (Figure 6b) for the NMC111//SLICVO/NC full cell, demonstrating good cycling stability. The discharge capacities of 157.3 and 130.0 mA h g\(^{-1}\) could be obtained at high current densities of 3.2 and 5 A g\(^{-1}\) (Figure 6c), respectively, and the capacity was reversibly retrieved to 242.6 mA h g\(^{-1}\) when reverted to 0.1 A g\(^{-1}\) (Figure 6d). Figure 6e shows the long-term cycling performance of the NCM111//SLICVO/NC full cell at 1 A g\(^{-1}\) (the first five cycles are the activation processes); a high discharge capacity of 191.9 mA h g\(^{-1}\) could be retained after 600 cycles. Despite the slightly lower coulombic efficiency in the initial several cycles caused by the electrolyte decomposition and the SEI formation, it was sustained at about 100% in the successive cycles. The superior rate and cycling performance of the full cell benefit from the favorable structural stability and electrode kinetics of SLICVO/NC. These merits reveal the potential of SLICVO/NC for application in the field of battery systems with high energy density and high power density.

3. CONCLUSIONS

In summary, SLICVO/NC as an anode material for LIBs exhibits superior electrochemical performance, including high reversible specific capacity, excellent rate performance, and long cycle stability. The high discharge capacities of 386.3 and 277.9 mA h g\(^{-1}\) could be obtained for SLICVO/NC at 0.1 and 5 A g\(^{-1}\), respectively. 335 and 259.5 mA h g\(^{-1}\) capacities can be maintained after ultra-long cycling of 1200 and 4000 cycles at 0.5 and 1.6 A g\(^{-1}\), corresponding to capacity retention of 98.4 and 78.7%, respectively. The superior electrochemical performance of SLICVO/NC is ascribed to the synergistic effect generated by In/Ce co-doping, which improves the structural stability of the material, effectively reduces the LVO energy gap, improves the carrier transport capacity, and leads to orders of magnitude increase in the conductivity of LVO (from 2.79 × 10\(^{-4}\) to 1.38 × 10\(^{-2}\) S cm\(^{-1}\)). Simultaneously, the good electron transport framework and buffered structural strain benefit from the N−C nanofibers incorporated with LICVO nanoparticles. Thereby, the SLICVO/NC anode material has great potential application in safe, stable, and high-efficiency LIBs.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.2c10471.

Experimental section (material preparation and characterization, electrochemical test, and theoretical calculations); XRD spectra of different In\(^{3+}/\)Ce\(^{4+}\) molar ratio doped Li\(_{2}\)VO\(_4\); rate performance of 3LICVO/NC and 7LICVO/NC; SEM images of the precursor of SLICVO/NC nanofibers; Rietveld refined XRD spectra of LCVO/NC and LVO/NC; fractional atomic parameters of SLICVO/NC; lattice parameters of all samples; FESEM, TEM, and HRTEM images of LCVO/NC and LVO/NC; TG and DTA curves of SLICVO/NC; high-resolution XPS spectra of LCVO/NC and LVO/NC; crystal structures, calculated energy band structures, and related DOS of mono- and binary-doped Li\(_{2}\)VO\(_4\) UV−vis−NIR spectrum of SLICVO/NC; CV curves of LCVO/NC and LVO/NC; discharge/charge curves from 0.05 to 5 A g\(^{-1}\) of all samples; comparison of electrochemical performances of the Li\(_2\)VO\(_4\) material for lithium-ion batteries; relationship between the oxidation peak current and the square root of the scan rate of all samples; \(E \) versus \(t \) curves of the SLICVO/NC electrode for a single GITT during the discharge process; and analysis of capacitive contribution in LCVO/NC and LVO/NC electrodes (PDF)

AUTHOR INFORMATION

Corresponding Author

Anqiang Pan − School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan 410083, China; orcid.org/0000-0002-7605-1192; Email: pananqiang@csu.edu.cn

Authors

Yuanlang Wan − School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan 410083, China

Zhi Chang − School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan 410083, China

Xuefang Xie − School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China

Jialin Li − School of Physics and Electronics, Key Laboratory of Super Micro-structure and Ultrafast Process of Hunan Province, Central South University, Changsha, Hunan 410083, China; orcid.org/0000-0003-4598-8326
Simin Chai — School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan 410083, China.

Shuang Zhou — School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan 410083, China.

Qiong He — School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan 410083, China.

Chunyan Fu — School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan 410083, China.

Mingyang Feng — School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan 410083, China.

Guozhong Cao — Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States; orcid.org/0000-0001-6539-0490

Shuquan Liang — School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan 410083, China; orcid.org/0000-0001-9227-5498

Complete contact information is available at: https://pubs.acs.org/10.1021/acsami.2c10471

Author Contributions

Y.W.: methodology (lead), data curation (lead), validation (lead), and writing (lead). Z.C.: writing-review and editing (lead), project administration (supporting), and resources (supporting). X.X.: project administration (supporting), data curation (supporting), and methodology (supporting). J.L.: investigation (supporting) and data curation (supporting). S.C.: methodology (supporting) and data curation (supporting). S.Z.: methodology (supporting) and data curation (supporting). Q.H.: resources (supporting) and data curation (supporting). C.F.: validation (supporting). M.F.: validation (supporting). G.C.: conceptualization (supporting). S.L.: resources (supporting). A.P.: conceptualization (lead), methodology (equal), resources (lead), writing-review and editing (equal), and project administration (lead). All authors have approved the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (grant no. 51874362, 51932011).

REFERENCES

(7) Liang, Z.; Lin, Z.; Zhao, Y.; Dong, Y.; Kuang, Q.; Lin, X.; Liu, X.; Yao, D. New understanding of Li3VO4/C as potential anode for Li-ion batteries: Preparation, structure characterization and lithium insertion mechanism. J. Power Sources 2015, 274, 345–354.

(8) Shao, G.; Gan, L.; Ma, Y.; Li, H.; Zhai, T. Enhancing the performance of Li3VO4 by combining nanotechnology and surface carbon coating for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 11253–11260.

(11) Zhao, L.; Duan, H.; Zhao, Y.; Kuang, Q.; Fan, Q.; Chen, L.; Dong, Y. High capacity and stability of Nb-doped Li3VO4 as an anode material for lithium ion batteries. J. Power Sources 2018, 378, 618–627.

(31) Huan, H. T.; Vu, N. H.; Ha, H.; Moon, J.; Kim, H. Y.; Im, W. B. Sub-micro droplet reactors for green synthesis of Li3VO4 anode materials in lithium ion batteries. Nat. Commun. 2021, 12, 3081.

(36) Dong, Y.; Zhao, Y.; Duan, H.; Singh, P.; Kuang, Q.; Peng, H. Li2.97Mg0.03VO4: High rate capability and cyclability performances anode material for rechargeable Li-ion batteries. J. Power Sources 2016, 319, 104–110.

(58) Han, X. Y.; Cui, Y. P.; Liu, H. W. Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries. J. Alloys Compd. 2020, 814, 152348.
(64) Zhang, M. X.; Dong, L.; Zhang, C. W.; Yin, F. X.; Peng, H. F.; Wang, G. K. Heterogeneous nucleation of Li3VO4 regulated in dense graphene aerogel for lithium ion capacitors. J. Power Sources 2020, 468, 228364.
(66) Yang, C.; Ran, Y.; Gao, C.; Wang, Z.; Ding, Y.-L. Hierarchical hybrid architectures assembled from carbon coated Li3VO4 and in-situ generated N-doped graphene framework towards superior lithium storage. J. Alloys Compd. 2022, 918, 165668.

Recommended by ACS

NiCo2O4 Nanosheets on Hollow Carbon Nanofibers for Flexible Solid-State Supercapacitors
Dong Li, Anqi Ju, et al.
OCTOBER 10, 2022
ACS APPLIED NANO MATERIALS

Realizing High-Performance Lithium Storage by Fabricating FeTiO3 Nanoparticle-Impregnated Multichannel Carbon Nanofibers with Promoted Reaction Kinetics
Jiemin Dong, Chunhua Chen, et al.
OCTOBER 05, 2022
ACS APPLIED MATERIALS & INTERFACES

N-Doped Graphene-Modified Li-Rich Layered Li1.33Mn1.7Ni0.2O2 Cathode for High-Performance Li-Ion Batteries
Min Chen, Weishan Li, et al.
MARCH 28, 2022
ACS APPLIED ENERGY MATERIALS

Compressible Neuron-like 3D Few-Layered MoS2/N-Doped Graphene Foam as Freestanding and Binder-Free Electrodes for High-Performance Lithium-Ion Batteries
Fuyu Chen, Ronghua Wang, et al.
MAY 20, 2022
ACS APPLIED ENERGY MATERIALS

Get More Suggestions >