gro

Tutorial 1

Eric Klavins

Install gro

Go to

http://depts.washington.edu/soslab/gro/download.php

and download the latest version of gro to your computer.

Follow the installation guide at

http://depts.washington.edu/soslab/gro/docview.html

Note that wherever you put gro, you need to have the include file and the
examples file in the same directory as the gro executable.

Write a gro program

Using a text editor, such as TextEdit, emacs, Notepad++, etc, make a new file called
examplel.gro with the the following program in it. We recommend that you
actually type it and all subsequent examples in, instead of cutting and pasting, just

to get used to the syntax.

include gro €Tells gro to include standard definitions from include/gro.gro

rogram =
prog] P() { €Your first program. It doesn’t do anything interesting.
skip();
};
ecoli ([], program p()); €Declares a new program and associates your program it.

Launch gro and load example.gro. A single E. coli cell should show up in the center
of the viewer.

Start the simulation, and the cell starts growing and dividing. The simulation stops
when you reach 1000 cells. Notice the number of cells and the time are updated at

the top left of the viewer.

Play with the User Interface
/Name of current file.

e OO0 gro: [Users/ericklavins/Development/grocode/examplel.gro

Open a gro file. =——————> ?
Reload the current file. —ee—""" e

Start/stop the smulation.
Simulate one step.
Zoom in =

C

Zoom out.

Note: All Ul functions are
available in the menu and
most have keyboard
shortcuts.

Messages and errors show up here. —

Cells: 481, Max: 1000, t = 188.22 min

gro: The Cell Programming Language

Version beta.5

Programmed by Eric Klavins, University of Washington, Seattle, WA, USA
Copyright © 2011-2012, University of Washington (GNU V. 2)

See http://depts.washington.edu/soslab/gro for more information.

Add a Fluorescent Marker

Change examplel.gro so that you have some green fluorescent protein.

include gro

program p() := {
gfp := 1000; €This line runs only when you first associate the program
}; with a cell. It declares a special variable, gfp, which gro
interprets as the number of gfp molecules in the cell, and

. initializes its value to 1000;
ecoli ([], program p());

In gro, reload examplel.gro and start the simulation. You should grow an initially
green population of cells that become dimmer and dimmer as the population

increases.

What is happening? The initial cell has 1000 gfps. As it grows, its volume
increases and the concentration of gfp drops. When the cell divides,
approximately half the gfp goes to one cell, the other half to the other cell. Thus
after one division, there should be about 500 gfps in each cell.

See Inside the Cell

Change examplel.gro so that you print out the number of gfp proteins in the cell
when it divides.

include gro

program p() := {
gfp := 1000;
selected & just_divided : {
print ("After division, cell ", id, " has ", gfp, " gfp molecules")

}
}i

ecoli ([], program p());

Reload examplel.gro, then select the cell with the mouse. Start the simulation and
and notice that whenever the cell divides, it prints out how many gfp molecules are
in it in the message window at the bottom of the Ul.

Try selecting other cells to see what they say.

1000 Copies of Your Program!

|
gfp: 70
z: L= =1, ¢ =21;
just _divided: false;
daughter: false;
gfp: 36
r:[x:sl,y:=2]:. gfp: 34
PON[Ex e m] Ryl im0 B
just divided: true;
daughter: true;

just divided: true;
daughter: false;

What’s happening?

The program p() that you defined gets stuck in the
first cell you declare with the ecoli keyword.

When the cell divides, the program is copied, and any

numerical variables, like gfp, get cut approximately in
half.

After n divisions, there are 2" independent copies of
your program being simulated in 2" cells running in
parallel.

That’s life. You write one program, stick it in a cell,
and the next thing you know you have billions of
copies of the program, all running in different cells!

Guarded Commands

A guard. Any true/false statement goes
here. The Boolean variables selected and
just_divided are supplied by gro for your

program p() := { convenience.
gfp := 1000;
[selected & just_divided |: {
[print ("After division, cell ", id, " has ", gfp,
}
}i

include gro

gfp molecules")]

A command. As many commands as you want
go in the brackets after the colon, separated by
commas or colons. This command prints
something. You can also assign variables, etc.

ecoli ([], program p());

Gro programs are not sequential! Instead, you define a bunch of guarded
commands. The list of guarded commands in a program are evaluated over and over
as the simulation runs. Any time a guard is true, the associated commands are
executed.

The idea is to model parallelism. All the guarded command programs run all the
time — just like all the reactions in a cell are going all the time.

the bigger the cell is, the faster it can make gfp.

You can define constants
with easy to remember
names. Here we called the
protein production rate
alpha.

Now we are starting
with no gfp.

rate(expr) is true every dt
timesteps with probability
expr*dt.

Thus, this guarded command
executes approximately
alpha*volume times per

simulated minute.

A Reaction

Modify examplel.gro so that your cell makes gfp as it grows. We'll assume that

include gro

y alpha := 0.75;

program p() := {

selected & just_divided :
print ("After division, cell ",

}

rate (alpha * volume)
gfp :=gfp + 1
}
}i

ecoli ([], program p());

{

: {

id,

" has

 9fp,

gfp molecules"

Reload the example and run it. Select some cells to see how much gfp they make.
Now the amount of gfp in the cells does not crash. Instead, the dilution of the gfp
is balanced by the production of gfp.

)

Keep Track of the Time

Modify examplel.gro so that your cell keeps track of the time.

include gro

Because numerical variables are cut in half
when the cell divides, we have to hide the
variable for the time in a record. This record
has only one field, named t and initialized to O.

alpha := 0.75;

program p() := {

gfp := 0;
t

=0];

selected & just_divided : {
print ("At time ", r.t, ": After division, cell ",
id, " has ", gfp, gfp molecules"”)

}

rate (alpha * volume) : {
gfp := gfp + 1

}
) true : {
This guarded _= r.t := r.t + dt
command executes }
step and increments
r.t with dt, which is
the simulation }i
timestep. Reload the example and run it.

ecoli ([], program p());
Select some cells to see that they

now report the time.

Save Data

Modify examplel.gro so that every simulated minute, it prints the time, the

amount of gfp, and the volume to a file.

include gro

alpha := 0.75;
fp := fopen ("/tmp/examplel.csv",

program p() := {

id =0 & r.s > 1.0 : {
fprint (fp, r.t, ", "

r.s := 0;

 9fp,

}

rate (alpha
gfp :=
}

* volume) : {
+ 1

true :
r.t :

N~

+ dt,
+ dt

}i

ecoli ([], program p());

Change this to whatever makes sense on your
machine.

W)

Only the first cell prints out data.
The rest of the cells stay silent.

"\n"),

;, volume,

Reload the example and run it until
you get to 1000 cells. Then quit.
You should be able to find the file
examplel.csv and open it with a
text editor, Excel, MATLAB, etc.

View the Data in Mathematica

In Mathematica, you can plot the data as follows.

In[14]:= ListPlot[Thread[{T, GFP}], PlotRange -» All, Joined -» True, AxesLabel » {"time (min)", "gfp (number) "}]
ListPlot[Thread[{T, VOL}], PlotRange -» All, Joined - True, AxesLabel » {"time (min)", "volume (fL) "}]
gl = ListPlot[Thread[{T, GFP/VOL}], PlotRange » All, Joined -» True, AxesLabel » {"time (min)", "gfp concentration(1/fL)"}]

Out[14]=

Out[15]=

gfp(number)

70

60

50

volume(fL)
30F
2.5

201

05F

50

100

150

200

50

100

150

time(min)

time(min)

Out[16]=

gfp concentration(1/fL)

25

20

15

—— time(min)

50 100 150 200

Overlay an ODE Model

. This number is the growth rate,
0.75is alpha which you can find in include/

c[t] is the from your gro.gro.

concentration of examplel.gro
gfp. \ \

In[11]:= sol = NDSolve[{c[0] ==0, c'[t] ==0.75-0.0346574c[t]}, {c[t]}, {t, O, 200}];
g2 = Plot[c[t] /. sol, {t, O, 200}, PlotRange » All, PlotStyle » Orange];
Show[gl, g2]

gfp concentration(1/fL))

zz /\/\M\MMWN‘W
o il

Out[13]= I ,‘/
L N
10 - :

time(min)

50 100 150 200

View the Data in MATLAB

First load the data:

data=load ('/tmp/examplel.csv');

T=data(:,1);
GFP=data(:,2);
VOL=data(:, 3);

Then you can the plot the data as follows:

plot (T, GFP);
xlabel ('time (min) ") ;

ylabel ('gfp (number) ') ;

plot (T, VOL) ;
xlabel ('time (min) ") ;
ylabel ('volume (£fL) ") ;

plot (T,GFP./VOL) ;
xlabel ('time (min) ") ;
ylabel ('gfp concentration(1l/fL)"');

3.2 80 30
3 70k
25
2.8r
60
2.6 T 20f
50 =
— = c
= 24 2 2
T €]
£ 5 40 £ 15}
3 22 = g
o . o
> “6’ é
30 o
2r S 10}
20
1.8r
5k
16 10
1.4 | | | | 0 | | | | 0 | | | |
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
time(min) time(min)

time(min)

Overlay an ODE Model

Make a new file, £.m

cis the

function [dc] = f£(t,c) €&
dc = 0.75 - 0.0346574*c

= concentration of
gfp.

end 'r ‘K\‘

/ AN

0.75 is alpha This number is the growth rate
from your which you can find in include/ 30¢
examplel.gro gro.gro.
25
Then use ode45 to solve your differential (/j\\ Al
equation, and overlay the plots: 320} W PN,
cO = 0; =
t0 = 0; ®
tf = max (T); g 151 /\
[T2,C] = ode45(Rf, [t0,tf],cO); £ W
:9’_ A
hold on; © 101

plot (T2,C, "Color"', [255 127 0]/255);
hold off;

xlabel ('time (min) ") ;
ylabel ('gfp concentration(1/fL)"'");

O | | | |

0 50 100 150 200
time(min)

250

gfp(number)

View the Data in R

First load the data:

data = read.csv("/tmp/examplel.csv",header=FALSE) ;
T <- datasvil;

GFP <- data$v2;

VOL <- data$v3;

Then you can the plot the data as follows:

plot (T, GFP, type="1",col="blue",xlab="time (min) ", ylab="gfp (number)")
plot (T, VOL, type="1",col="blue",xlab="time (min)", ylab="volume (fL) ")
plot (T,GFP/VOL, type="1",col="blue", xlab="time (min)", ylab="gfp concetration(1l/fL)")

70
1
25
1

60
L
20
L

40
L

30

volume(fL)
gfp concetration(1/fL)
10
1

20
L

10
L

T T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100

time(min) time(min) time(min)

150

200

Overlay an ODE Model

Load the odesolve package and define

your ODE model:

require ("odesolve”)
f <- function(t,x,p) {

Then solve the differential equation, and

overlay the plots:

params <- c()
x0 <= c(0)

X is a vector

containing the

/ concentration of
xdot = 0.75 - 0.0346574*x[1]
return (list(c(xdot)))

gfp.

times <- seqg(0,max (T),by=max (T)/100)
out <- lsoda (x0,times, f,params)

lines(out[,1l], outl[, 2],
col="orange")

typezulu ,

gfp concetration(1/fL)

25

20

15

10

P yaun

0 50

I I I
100 150 200

time(min)

