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Random walk on random subgraphs of Z¢

Let G(w) = (Z¢, E(w)) be a family of random subgraphs of Z¢,
defined on (2, F,P). Write d(x,y) = d,,(x,y) for the graph distance
on G(w) = (Z4,E(w)).
Let X be the lazy SRW on G(w): this moves to a (uniformly chosen)
neighbouring point with probability %, and stays where it is with
probability .
Write P, for the law of X started at x € Z¢. Let y1,(w) be the degree
of x. Quenched (discrete time) heat kernel on G:

PL(Xn =)

Pe(x,y) =py(y,x) = T, neZly, xye€ 74,
y

The annealed or averaged heat kernel is

Epy (x, 7).



Example 1: Percolation on Z¢

This was introduced by Broadbent and Hammersley (1957).
Fix p € [0, 1]. For each edge e = {x, y} keep the edge with probability
p, delete it with probability 1 — p, independently of all the others.
Let O(w) be the set of edges which are kept, which are called open
edges. The connected components of the graph (Z¢, O) are called
(open) clusters.
There exists p. = p.(d) € (0, 1) such that, with probability 1:

» if p < p. all clusters are finite (subcritical regime),

» if p > p, then there exists a unique infinite cluster, Coo

(supercritical regime),

If p = p. (critical regime) it is conjectured that all clusters are finite,
but only proved in some cases (d = 2,d > 11).
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Percolation
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Random walk an percolation on Z¢

Subcritical case, i.e. p € [0, p.). For a fixed p little interesting to say:
the random walk is trapped in a ‘small’ finite cluster and rapidly
reaches equilibrium.

Critical case (i.e. p = p.) — we know exponents in high dimensions
(Kozma & Nachmias, 2009), but little known in detail about the heat
kernel.

Supercritical case i.e. p € (p, 1]. In this case there exists a unique
infinite cluster Coo. This looks roughly like a d-dimensional net: given
a cube A side k, with probability about 1 — e~ the cluster Co has
many connected crossings between all the faces of A. We expect the
SRW on Co, to behave in a similar fashion to SRW on Z¢.

What is the effect on the r.w. of the small irregularities in Coo?



Supercritical percolation — quenched bounds

Theorem A. (MB, 2004). Letd > 2, p > p.. There exist
(non-random) constants ¢; = c;(d), § = §(d), and r.v. Ty, x € Z¢ with

P,(Ty > n) < e

such that for x,y € Coo(w), n > Ty(w) V dy(x,y),
Py () Z ein” 2 exp(—caduy(x,y)* /).

Remarks. 1. The r.v. T, handles possible irregularities in C, close to
X.
2. Antal, Pisztora (1996): c|x — y| < d,,(x,y) < c’|x — y| with
probability greater than 1 — e~



Supercritical percolation — averaged bounds

Why no log type oscillations in the quenched bounds?

In a box of side n, the largest irregularities in Co, are of size (logn)©,
and heat homogenizes over these on a time scale of at most
(logn)* < n.

Theorem B. (MB, 2004). There exist constants c¢; such that for
x,yeZi n> lx — v,

X,y € Coo) < cn~? exp(—calx — y|*/n),

Ep (P(;: (x, y)

E, (p% (x,9)]x,y € Coo) > c3n™ % exp(—calx — y*/n).




Which part of the graph affects p,(x, y)?

To calculate p,(x,y) completely we need to know about the structure
of G in the region

{ze V:d(x,z) +d(z,y) < n}.

However, good bounds can be obtained with less information:
-If d(x,y) < n'/? we need to know about B(x, cn'/?),

-if n > R = d(x,y) > n'/? then we need to know about the ‘sausage’
width
n
r=—
R
which connects x and y.



Example 2: Uniform spanning tree (UST)

On a finite graph the UST is a spanning tree (i.e. a connected
subgraph which is a tree and contains all the vertices) chosen
uniformly at random.

Pemantle (1991) defined UST on Z¢ as limit of UST on cubes
[~N,NJ4. (One gets a forest if d > 5).

Haggstrom (1995): UST is a limit as ¢ — 0 of the FK(p, ¢) random
cluster model.

Wilson (1996): algorithm for construction of UST from loop erased
random walk (LERW).



Wilson’s algorithm (1996)

Write LEW (x, A) for the loop-erased RW from x to A C Z?; this is
obtained by chronological erasure of the loops in a SRW started at x
and run until it hits A.

Wilson’s algorithm:

(0) Choose (z) so that Z? = {zg,z1, ... }.

(1) Let To = {zo0}-

) Fork>1letT,=Ti1 U LEW(Zk, 7271).

(3) U = Uy Ty is the UST in Z2, and the law does not depend on the
particular sequence (zx).

This implies that the geodesic path between x and y has the same law
as a LEW from x to y.



UST in two dimensions

Key estimate (Lawler (2014)). Let X(*) be SRW on Z2 run until it
first hits dB(0, n) and L be the loop erasure of X"). Then

E°|L| = n/4,

Let U be the UST in Z2. Write dy, for the shortest path metric in I/,
and By (x, r) for balls in (U, dyy). Write Bg(x, r) for balls in the
Euclidean metric.

Set k = 5/4. We should expect that very roughly

Bg(x,r) ~ By(x,r").
So for the UST in Z? one expects (and finds) that
|Bu(x, R)| ~ |Bg(x.RV/%)| = R¥/",

Since the UST has ‘fractal’ properties, look at SRW on some simpler
fractals.



Intrinsic ball (radius 43) in UST in 50 x 50 box
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Example of an exact fractal graph: Sierpinski gasket

Mean number of steps to cross triangle is 5.



Example of an exact fractal graph: Sierpinski gasket

Mean number of steps to cross triangle is 5.
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Example of an exact fractal graph: Sierpinski gasket

Mean number of steps to cross triangle is 5*.



General picture for exact symmetric fractal graphs

The behaviour of the RW is described by two indices, dr and d,,.
The fractal dimension dy is given by the geometry of the set:

cir < |B(x,r)| < cor,  (or |B(x,r)| < r¥.)

The walk dimension d,, gives the space/time scaling of the RW; in
time 7 it moves distance roughly n'/%, and one finds that

E'd(x, Xn)2 = n¥%  (anomalous diffusion if d,, #2).

In time 7 the SRW X moves about R = n'/%. Since
|B(x,R)| < R¥ = n%/® _if the RW "mixes well" then

P (X, =x) < n=b/

Note that d¢(Z?) = d and d,,(Z%) = 2.



Theorem C. (MB-Perkins, Kumagai, Hambly-Kumagai, MB-Bass,
Jones ...) For various classes of exact fractal graphs one finds that

de d dy 17
Pu(x,y) z c1n_73 exp ( cz((x’ny) )dw l).

Remarks. 1. These are often called sub-Gaussian estimates.

2. Taking dr = d, d,, = 2 gives the usual Gaussian bounds for 74,
3. If these estimates hold on a graph then 2 < d,, < 1 + dj.

4. The SRW is recurrent if and only if dr < d,,.

5. The proofs are much simpler if dy < d,,; sometimes called the
strongly recurrent case. The bounds above follow if we can prove a
‘volume’ and an ‘electrical resistance’ estimate.

Volume: |B(x,r)| < r¥ for all x, r.

dy

Resistance: Reg(x,y) =< r®»~% for all x, y.



Quenched heat kernel on UST

Set
_2—}—/—;

K

;o dy

Rwyqu

2
dr = —
! K T

&(T,R) = (

Theorem D. (MB, Masson 2012) There exist r.v T, with
P(T, > n) < exp(—c(logn)?) such that writing

A = A(x,y,n) = (lognd,,(x,y))"
one has forn > T, V d,(x,y),

pE(x,y) < =4/ Aexp(—A7 B (n, d(x,y)),
PE(x,y) > n= 4/ A exp(—A®(n, d(x, y)).

(Bounds of the same type as for exact fractal graphs, but, so far
anyway, with log type errors. )



What about annealed bounds?

Recall

RdW>1/(dw—1).

n

®(n,R) = (

Since d(0, x) is roughly |x|® we conjectured that averaging would
remove the log type errors, and we would have

T pr(0,2) Z exp (~ex(T, [f).

(Lower bound is easy from MB-Masson.)

We tried several times to prove the upper bound...



Theorem 1. (MB, Croydon, Kumagai 2020+) There exist
0 < B2 < By < 1 such that for x € Z4, T > |x|*,

crexp(—c1®(T, |x|™)™)
< TH/BE pr(0,x) < ¢ exp(—c2®(T, |x[%)%).

Remark. Our value of 3, is poor, but we have

d,—1
ﬁl_lﬁdw—l’

and we conjecture that this is the right exponent, i.e. that the upper
bound also holds with this value of ;.



Main ideas for proofs

Our proofs use Wilson’s algorithm to construct exceptional events for
the UST, which then force exceptional behaviour of the heat kernel.
To show that the averaged bound Ep, (0, x) is larger than our
(incorrect) conjectured value, one looks for an event F such that on F
the graph distance d,, (0, x) is much smaller than the ‘usual’ value of
e[



Short paths in the UST

By Wilson’s algorithm d(0, x) and |[LEW (0, {x})| have the same law.
Theorem 2. (MB, Croydon, Kumagai 2019+) For A > 1

exp(—ci M) < ]P’(]LEW(O, ()| < |’;|H) < exp(—eab).

Upper bound. A bound with exponent A*5~¢ was obtained by MB
and Masson (2011). Small changes give the much better estimate
above.

The 4 here is actually 1/(x — 1); recall that k = 5/4.



Sketch for lower bound.

Choose m € N, let N > 1 and for simplicity take x = (mN, 0). Tile
7?2 with boxes side m and centres in mZ>.

Let zo = 0, zj = (jm, 0) for 1 < j < N and write Q; for the box side m
centre z;.

Run WA with the initial part of the sequence being {zo, z1,...,2n}-
Recall that at stage k > 1 we take S%* to be a SRW started at z; and
killed on its first hit on 7;_;, and set

LEW(Zk, kal) = LE(SZk), Ty = T U LEW(Zk, kal)-

We declare stage k a success if S hits Ty before it leaves

Ok U Og—1, and
ILEW (zx, Tx—1)| < m".



k+1




k+1




Sketch for lower bound II

NS e | Al

For k > 1 the probability of success, given that the previous stages
have all been successful, is at least p = e~ > 0. (Independent of m.)
Let F be the event that all N stages are successful, so that

P(F) > e P,

On F we have d(0,x) < Nm", while |x| = Nm. So

d(0,x) < Nm® 1 1
x| = NEm~ TONK-L T N4

Set A = N/ to obtain the lower bound.



Averaged heat kernel lower bounds

Letx € Z%, R = |x|* and let R% >> T >> R. Recall that

Réw ) 1/(de1).

®(T, R) :( .

We expect that for most w
P2(0,x) ~ T~%/% exp(—c®(T, d,,(0,x))).
Let A\>> land F = Fy = {w : d,(0,x) < X7 '|x|*} so
P(F) > exp(—cX/(+1),

Then
Epr(0,x) > E(1ppr(0,x)).



We can hope that on F since d,,(0,x) < R/\, we will have
T4/d 520, ) > cexp(—c®(T, A" 'R)).
If so then
1
T4/ W E(1ppr(0,x)) > exp(—cAT 0 ) exp(—c®(T, A\~'R)).

(Minus) the term in the exponential is

s _
A1) 4 (;SIWT)I/(dw )

)

and optimizing over A\ one obtains

= &(T, R)(dw—l)/("idw—l).

(Rdw ) 1/(kdw—1)
T



Remarks

1. We have the ‘usual’ heat kernel lower bound
P7(0,x) > T~4/% exp(—c®(T, d,(0, x)))

on typical environments, but we have conditioned w to be in an
atypical set F C ) which has very small probability.

So we need ‘separation of scales’: we want I/ conditioned on F to be
well behaved over Euclidean distances of order m, and the
conditioning only to have an effect on scales of order km with k > 1.

This is proved by first requiring an unusual event F in the early stages
of WA, but then making sure that the later stages behave as expected.

2. The lower bound on the probability of having d(0, x) small uses
boxes of side mj, and the chaining argument to obtain the heat kernel
lower bound uses boxes of side m;. Fortunately m; =< m,.



3. What about supercritical percolation?

Recall for the UST one gets for x with R = |x|",

R > 1/(f€dw*1)) .

Epr(0,2) = T~/ exp (— (=

For supercritical percolation one has
P(d,,(0,x) > c|x|) < e~

so the index x = 1.
Since d,, = 2, dy = d the formula above does give Gaussian lower
bounds.



