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Abstract

We present an efficient method for computing resonance fields for cw EPR that adaptively models the state energies

over a given field range with cubic splines. The method diagonalizes the spin Hamiltonian matrix for suitably chosen

fields, which are determined by an adaptive iterative bisection procedure. Resonance fields are computed from the cubic

spline model. The new method adapts to the complexity of the spin system and keeps the number of diagonaliza-

tions minimal. For systems with field-independent interactions (FII) small compared to the spectrometer frequency

m0 only three diagonalizations are needed, for high-spin systems with FII larger than m0 up to 60 diagonalizations are

necessary.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

The extraction of spin Hamiltonian (sH) pa-

rameters from the positions of resonances is the

essential part in the analysis of continuous-wave

(cw) EPR spectra. For that purpose, resonance

fields or full spectra are computed for different sets

of sH parameters and compared to the experi-

mental data.

There exist two different approaches to compute
resonance fields. One uses approximate analytical

formulas derived mainly by means of perturbation
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theory. Although important for gaining physical

insight, such formulas are less useful for general
spectral simulations, since their validity is often se-

verely restricted. They have been entirely super-

seded by schemes that use fully numerical methods.

Thesemethods construct amatrix representationH
of the sH and compute the states and state energies

from its eigenvalues Eu and eigenvectors jui using
standard numerical diagonalization algorithms.

Resonance fields and transition intensities are then
determined from Eu and jui.

There are several methods described in the lit-

erature for computing resonance fields based on

matrix diagonalization. However, they are not

generally applicable and rely on certain assump-

tions about the spin system. In this Letter we in-

troduce a method which is based on an adaptive
ed.
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segmentation procedure [1]. It is general, robust

and quick.

In the next section we present the relevant

equations for computing the resonance fields and

their direct numerical solution by the eigenfield

approach. Then we classify and discuss known
approximate methods and their problems. This is

followed by a presentation of the new adaptive

iterative bisection method. Finally, characteristics

and advantages of the new scheme are discussed.
2. Resonance fields

Suppose we have a spin system consisting of an

arbitrary number of coupled electron and nuclear

spins with a total of N spin states. For our purpose

it is sufficient to use the sH H in the general form

HðBÞ ¼ Fþ B GðnÞ; ð1Þ
with the magnitude B ¼ jBj of the external mag-

netic field. All field-independent interactions are

collected in matrix F, all Zeeman interactions are

contained in matrix G, which depends on the ori-

entation n ¼ B=B of the magnetic field with respect

to a molecule-fixed frame. The spin system and its

interactions can be of any complexity as long as

the sH has the above general form. In the fol-
lowing, we always use frequency units, i.e.

H ¼ H=h, F ¼ F=h, etc.
The eigenstates jui of the spin system satisfy the

Schr€oodinger equation

HðBÞjui ¼ Eujui; ð2Þ
where Eu is the energy of state jui. Both Eu and jui
depend on B. States are numbered from 1 to N
from lowest to highest energy. For certain values

of B, two or more states can be degenerate. Since

these degeneracies occur only at a finite number of

isolated points in B space [2], v > u implies Ev PEu

for all B, and the state ordering is unique and

unambiguous.

In a field-swept cw EPR experiment the mag-
netic field B is varied, and resonance between

states jui and jvi occurs if B is such that the dif-

ference DuvðBÞ ¼ EvðBÞ � EuðBÞ matches the spec-

trometer frequency m0, or, in other words, if the

resonance function RuvðBÞ becomes zero
RuvðBÞ ¼ EvðBÞ � EuðBÞ � m0 ¼ 0: ð3Þ
This corresponds to two eigensystem equations

coupled by Eu and B

ðF þ BGÞjui ¼ Eujui;
ðF þ BGÞjvi ¼ ðEu þ m0Þjvi;

ð4Þ

where we have abbreviated GðnÞ by G.
If the overall splitting at B ¼ 0 is not larger than

the spectrometer frequency, i.e. if D1N ð0Þ ¼
EN ð0Þ � E1ð0Þ6 m0, only one resonance field Buv

per state pair ðjui; jviÞ can occur. For D1Nð0Þ > m0,
an arbitrary number of resonance fields (some of
them occur in pairs and are the so-called looping

resonance fields) is possible.

Eqs. (4) can be combined and transformed to

the N 2-dimensional Liouville space [3]. The re-

sulting eigenfield equation

ðm0I� I� F � Iþ I� F �ÞZ ¼ BðG� I� I� G�ÞZ
ð5Þ

can be solved directly and gives the resonance fields

(eigenfields) Buv for the transitions (eigenvectors)

Zuv ¼ jui � jvi. At Buv, states jui and jvi are at res-
onance. � is the Kronecker tensor product, and I

denotes the state-space identity matrix.

The numerical solution of Eq. (5) is computa-
tionally very expensive, since matrices with N 4 ele-

ments are involved. The method is feasible only for

small spin systems and is too slow for general use.
3. State-space methods

Approximate methods in N -dimensional state
space are much faster than the eigenfield method

in N 2-dimensional Liouville space, but they are

either limited in scope or need user configuration.

Methods are known since more than twenty years

and fall into three categories: extrapolation, in-

terpolation and root searching.

Extrapolation methods [4–10] diagonalize the

sH at one field value B0 and use derivatives of Eu

and Ev with respect to B to extrapolate linearly or

quadratically to DuvðBÞ ¼ m0. All methods em-

ploying Taylor series or perturbational expansions

belong to this class. They are only valid in a small

region around B0.
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Interpolation methods [11–13] diagonalize the

sH at two field values Bq and Br and obtain the

point DuvðBÞ ¼ m0 by linear or cubic interpolation

in between. Chebyshev interpolation has been

used, too. These methods are valid only between

Bq and Br and work only if DBqr ¼ Br � Bq is small.
The third group uses standard root search

algorithms for each transition to obtain the reso-

nance fields. Most common is the linear Newton–

Raphson method [14–20], but a more efficient

quadratic method [21,22] and a least-squares ap-

proach [23] have been used as well. Root-searching

methods can only find one resonance field per

transition and are limited to narrow regions where
EuðBÞ is well-behaved.

All three classes of methods work only over a

small field range. If larger ranges are searched for

resonances, they are usually subdivided into a fixed

number of segments, with either constant [10] or

geometrically increasing [11] segment length. A re-

cursive iterative bisection has also been used [20].

The segments are then separately searched for res-
onances. This segmentation is especially important

in the case of looping transitions, since all algo-

rithms can locate only one resonance per segment.

The drawback of fixed segmentation procedures is

that the number of segments is never optimal, since

it has to be given by the user in advance.

For numerical diagonalization of a sH matrix,

the QL algorithm [24] is generally used. Inverse
iteration [24] has been used to diagonalize a sH

matrix starting from the known solution of a

similar matrix [19].
4. The new method

The method presented in this work proceeds in

two steps. First, an accurate polynomial model of

the state energies EuðBÞ over the magnetic field

range of interest is obtained by computing state

energies for selected magnetic fields (knots) and
constructing interpolating cubic polynomials

(splines) between them. The knots are obtained by

iterative bisection starting from the initial segment

½Bmin;Bmax�. Field segments are divided by placing

a new knot at the center until all segments are ei-

ther accurately modelled or do not contain reso-
nance fields. Second, the resulting cubic spline

model is used to compute the resonance fields by

standard root finding algorithms. The corre-

sponding resonant states are obtained by linear

interpolation.
4.1. Cubic spline model

At the outset, the two sH matrices F and G, the
field range limits Bmin and Bmax (with 06Bmin <
Bmax), and the spectrometer frequency m0 are given.

For any magnetic field value Bq, Eu and jui are
obtained by numerically diagonalizing the matrix

H ¼ F þ BqG using the QL method [24]. The de-
rivatives E0

u ¼ oEu=oB at this knot are obtained

from the Hellmann–Feynman theorem [16]

E0
u ¼ hujH 0jui ¼ hujGjui: ð6Þ
Once the resonance fields are found, these de-

rivatives will also be needed for the computation
of transition intensities cuvjhujGðn1Þjvij

2
(with the

direction n1 of the excitation field B1), since they

appear in the expression for the generalized 1=g
factor [16] cuv ¼ ðoDuv=oBÞ�1 ¼ ðE0

v � E0
uÞ

�1
.

Between two knots Bq and Br, EuðBÞ can now be

approximated by a cubic polynomial

~EEuðBÞ ¼ tTMeu ¼ ðt3 t2 t 1ÞM

EuðBqÞ
EuðBrÞ

DBqr E0
uðBqÞ

DBqr E0
uðBrÞ

0
BBB@

1
CCCA;

ð7Þ

with t ¼ ðB� BqÞ=DBqr, DBqr ¼ Br � Bq, and

M ¼

2 �2 1 1

�3 3 �2 �1

0 0 1 0

1 0 0 0

0
BB@

1
CCA: ð8Þ

This so-called Hermite cubic spline polynomial
~EEuðBÞ passes through the two segment border

points EuðBqÞ and EuðBrÞ with the two slopes

E0
uðBqÞ and E0

uðBrÞ, respectively.
Between the border points, this polynomial will

deviate to some degree from the true EuðBÞ curve,
as illustrated in Fig. 1. It is not possible to deter-

mine the maximum deviation du without evaluat-

ing the entire EuðBÞ dependence. Instead, an
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estimate of this deviation can be obtained by

comparing ~EEu at the segment center Bs ¼
ðBq þ BrÞ=2 (i.e. t ¼ 1=2)

~EEuðBsÞ ¼
1

2
½EuðBqÞ þ EuðBrÞ� þ

DBqr

8

� ½E0
uðBqÞ � E0

uðBrÞ� ð9Þ

to the correct energy EuðBsÞ. The center deviation

�u ¼ jEuðBsÞ � ~EEuðBsÞj ð10Þ
is then an estimate of the modelling error of the

spline for state energy Eu (see Fig. 1). An estimate

for the overall error for a transition frequency is

� ¼ 2max
u

�u: ð11Þ

The iterative bisection is terminated under two

conditions. First, a segment is not divided, if the

modelling error of Eq. (11) is below a given

threshold

� < �0: ð12Þ
Resonance fields are sufficiently accurate for

spectral simulations if �0 is set to 10�3m0. Alterna-

tively, an absolute threshold (e.g. �0 ¼ 0:1 MHz)

can be used.

Second, a segment ½Bq;Br� also does not have to

be further subdivided if it does not contain any

resonances DuvðBÞ ¼ m0 for any state pair ðjui; jviÞ.
Two simple tests can be used to establish the ab-
sence of resonances even before the exact depen-
Fig. 1. Approximation of a state energy Eu as a function of the

magnetic field B by a cubic spline ~EEuðBÞ. du and �u are the

maximum and the center deviation, respectively.
dence of DuvðBÞ is known. First, a segment with

D1N ðBrÞ < m0 does not contain resonances, since

D1N ðBÞ increases monotonically with B [3]. The

second test depends on D1N ð0Þ. If D1N ð0Þ6 m0,
there is only one resonance per state pair, and the

resonance function Ruv changes sign

RuvðBqÞRuvðBrÞ6 0 ð13Þ

if there is a resonance in the segment ½Bq;Br�. If all
state pairs fail this test, the segment is not bisected

further.

On the other hand, if D1N ð0Þ > m0, more than

one resonance can occur, and the test is more

complex. For the usual spin Hamiltonian of the
form given in Eq. (1), the maximum derivative of a

state energy is

k ¼ max
u;B

E0
uðBÞ ¼ E0

N ð1Þ

¼ lB

h

X
k

jnTgðkÞjSðkÞ þ ln

h

X
l

gðlÞn I ðlÞ: ð14Þ

(SðkÞ and I ðlÞ are the primary spin quantum num-

bers of the spins in the system.) As a consequence,

the maximum and the minimum possible deriva-

tives of a transition function Duv are 2k and �2k,
respectively. Any transition function will therefore

lie in the bounding parallelogram shown in Fig. 2.
If the horizontal line DuvðBÞ ¼ m0 does not pass

through the parallelogram, i.e. if

DuvðBqÞ þ DuvðBrÞ
2

���� � m0

���� > kDB; ð15Þ

there are no resonances between states jui and jvi
in the segment. Otherwise, resonances cannot be

excluded as long as the exact dependence DuvðBÞ is
not known.

In summary, the above adaptive segmentation

algorithm proceeds as follows.

diagonalize H at Bmin and Bmax

knots¼ (Bmin Bmax)
finished(1)¼ false

repeat

s ¼ an unfinished segment ½Bs Bsþ1�
if D1N ðBsþ1Þ > m0

if D1N ð0Þ < m0
ResonPossible¼ test Eq. (13)

else



Fig. 2. Bounding region (shaded) for the transition energy Duv

between states jui and jvi as a function of the magnetic field B
over a segment ½Bq;Br�. DBqr ¼ Br � Bq, and k is the maximum

energy derivative E0
N ð1Þ.
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ResonPossible¼ test Eq. (15)

else ResonPossible ¼ false

if ResonPossible

Bnew ¼ ðBs þ Bsþ1Þ=2
diagonalize H at Bnew

compute � at Bnew (Eq. (11))

insert Bnew as new knot between Bs and

Bsþ1

finished(s) ¼ finished(s+1) ¼ �6 �0
else finished¼ true

until all finished

Note that the error of a segment is only com-

puted if resonances cannot be excluded.

4.2. Locating resonance fields

After modelling the dependence of the state

energies over the range ½Bmin;Bmax�, the second step

of the new method locates the resonance fields at

the spectrometer frequency m0 for all transitions.

For a given state pair ðjui; jviÞ and a given seg-

ment, the roots tuv of the resonance polynomials

~RRuvðtÞ ¼ ~DDuv � m0 ¼ tTp� m0 ð16Þ
with p ¼ ðp3; p2; p1; p0ÞT ¼ Mðev � euÞ give the res-

onance fields Buv ¼ Bq þ tuvDBqr. If looping reso-

nances cannot occur, i.e. when R1N ð0Þ > 0, at most
one root is possible for each transition, and ~RRuv

changes sign in the segment where the resonance is

located (see Eq. (13)). In this case the Newton–

Raphson method with
t0 ¼ � DuvðBqÞ
DuvðBrÞ � DuvðBqÞ

;

tnþ1 ¼ tn �
p3t3n þ p2t2n þ p1tn þ p0 � m0

3p3t2n þ 2p2tn þ p1

ð17Þ

is fastest to locate the root. If looping resonances

are possible, the discriminant d ¼ p22 � 3p3p1 is

computed. For d 6 0, the polynomial is mono-

tonic, has only one distinct root, and the above

root-finding iteration can be used. In the case of

d > 0, up to three resonances are possible. They
can be obtained from analytical expressions [24].

The cubic polynomials have to be tested for roots

only in segments which do not satisfy the reso-

nance exclusion criterion Eq. (15).

When a resonanceBuv is found, the resonant state

vectors jui and jvi can be computed by linear in-

terpolation between the two adjacent knots using

juiðBuvÞ ¼
Br � Buv

DBqr
juiðBqÞ þ

Buv � Bq

DBqr
juiðBrÞ ð18Þ

with a similar expression for jvi. It is crucial to

align the phases of the state vectors juiðBqÞ and

juiðBrÞ before the interpolation, e.g. by rotating

them so that the largest elements of both vectors
are real and positive. Cubic interpolation is not

necessary, since Eq. (18) is sufficiently accurate in

all cases.
5. Discussion

In terms of the classification used in Section 2,
the new method is a cubic interpolation approach

with adaptive segmentation. Its main characteristic

is that the number of segments and hence the

number of time-consuming diagonalizations is

automatically adapted to the complexity of the

field dependence of the state energies. Apart from

the physical and experimental parameters F , G,
Bmin, Bmax and m0, no user parameters are required.

The performance of the new method can be

measured by the number of diagonalizations per

resonance field and by comparing the accuracy of

the resonance fields computed with this approach

with the exact ones from the eigenfield equation

Eq. (5). Both measures depend on the relation

between D1N ð0Þ and m0.
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For systems with S ¼ 1=2 in high-field situations

with D1N ð0Þ < m0=4, the new method needs two

segments and consequently only three diagonaliza-

tions, independent of the total number of statesN or

the number of resonances. With �0 ¼ 10�3m0, we
have found that the maximum relative error in the
resonance fields is always <10�5.

Low- and intermediate-field situations with

S > 1=2, whereD1N ð0Þ > m0=4, aremore complex. A

typical example is illustrated in Fig. 3. The adaptive

segmentation procedure increases the segment

density in the vicinity of anticrossings, since sharp

turns are the most difficult to model with smooth

cubic splines. If an anticrossing is off-resonant (e.g.
at 575 mT), it is not accurately modelled. In the

worst case, around 10 diagonalizations per reso-

nance field are needed, but the value is usuallymuch

lower. The error of the resonance fields is commonly

below 10�4ðBmax � BminÞ. Compared to a linear

segmentation with the same number of segments,

the newmethod gives resonance fields which are 10–

100 times more accurate on average.
For the simulation of powder spectra the new

method has the advantage that it adapts to the

complexity of the EuðBÞ dependence when the

orientation n of the magnetic field changes. If n is

close to a principal axis of an interaction tensor or
Fig. 3. Segmentation and resonance fields as obtained by the

adaptive iterative bisection for Tb4þ in a ThO2 single crystal

[25]. sH parameters: S ¼ 7=2, g ¼ 2:0146, 60B4 ¼ �2:528 GHz,

1260B6 ¼ �24:84 MHz, nT ¼ ð0:0493; 0:0493; 0:9976Þ. m0 ¼ 25

GHz, Bmin ¼ 0 T, Bmax ¼ 1:6 T, threshold �0 ¼ 25 MHz. Forty

three segments, 15 resonance fields, maximum resonance field

error 4.5lT.
matrix of the sH, the anticrossings are sharper,

and a number of segments larger than for non-

canonical orientations is needed. For the system in

Fig. 3, 43 segments are required along principal

axes, whereas as few as 16 segments are needed for

the other orientations. The savings in terms of
number of diagonalizations are significant: The

average number of segments per orientation is 22.7

(for a total of 496 orientations over one octant). A

non-adaptive segmentation would have to take 43

segments for all orientations.

Another advantage of the adaptive cubic spline

model is that it allows for an accurate computation

of asymmetric line shapes as they occur near coa-
lescence points of looping transitions [13]. In ad-

dition, resonance fields for several spectrometer

frequencies m0 can be computed from the same

cubic spline model. This accelerates multi-spectral

fittings.

Although the algorithm presented above is

straightforward, there seems to be little place for

improvement. Instead of cubic splines, higher-or-
der polynomials could be used. We have examined

the performance of quintic splines where, at each

knot, jui0 and E00
u have to be evaluated [1] in ad-

dition to E0
u. In general they need 10–30% fewer

knots than cubic splines to achieve the same

overall modelling error, but the inconvenience of

having to compute jui0 and E00
u at each knot out-

weighs the savings in the number of knots.
The method presented in this Letter is applica-

ble to isotropic and anisotropic spin systems for

both cw EPR and cw NMR. Although it was de-

signed for spin Hamiltonians of the form given in

Eq. (1), it can be adapted to include terms of

higher order in magnetic field B by using E0
N ðBmaxÞ

instead of E0
N ð1Þ in Eq. (14).

The adaptive segmentation algorithm has been
implemented in the program package EasySpin [1]

for use with the scientific software MATLAB (The

Mathworks, Inc, Natick, MA, USA). It is avail-

able from http://www.esr.ethz.ch.
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