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Abstract

In many Fourier-transform spectroscopies, such as pulse magnetic resonance (NMR, EPR), time-domain signals are acquired.

Parameters are extracted from these signals by fitting numerical simulations to the experimental data. At present, simulations are

often performed in frequency domain (FD). These computations generate a list of frequencies and amplitudes associated with the

complex exponential components evolving during one or several variable time intervals. In order to compare simulations with

experiments, this peak list is converted to a finite-length time-domain (TD) signal. This can be achieved either by directly evoluting

the exponentials in time (direct method) or by rounding their frequencies and binning their amplitudes into a frequency-domain

array (histogram method). The first approach is equivalent to a brute-force TD simulation and is slow for a large number of peaks.

The second approach is a fast, but very crude approximation and is usually applied without considering in detail the errors involved.

A third method introduced and illustrated here is based on the convolution and deconvolution of a short finite impulse response

filter kernel. This convolution approach is much faster than the direct method and by orders of magnitude more accurate than the

histogram method. For both TD and FD signals a detailed analysis of the errors and of the associated computational costs is

presented. The convolution approach is applicable to any simulation problem where TD signals consist of a large number of

complex exponentials. In particular, it is the method of choice for simulating 1D and 2D electron spin echo envelope modulation

(ESEEM) spectra of disordered systems.

� 2003 Elsevier Science (USA). All rights reserved.
1. Introduction

Solid-state pulse EPR (electron paramagnetic reso-

nance) and ESEEM (electron spin echo envelope mod-

ulation) in particular are established tools in magnetic

resonance spectroscopy [1–3]. ESEEM allows the de-
termination of the geometry and the electron spin den-

sity distribution in paramagnetic species such as

transition metal complexes, radicals, and defect centers.

In ESEEM, as in many other Fourier-transform (FT)

spectroscopic methods like NMR or ion cyclotron res-

onance, signals are acquired in the time domain (TD)

and contain oscillating components in the form of

complex exponentials. In the case of ESEEM, these
exponentials arise from the time evolution of electron
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and nuclear coherences. For analysis, the signals are

usually converted to the frequency domain (FD) by

applying a discrete Fourier transform (DFT).

The information content of the TD and the FD signal

is identical, but its representation in the two domains

emphasizes different aspects. Whereas in TD amplitudes
and phases can easily be identified, the FD representa-

tion exposes amplitudes and frequencies. A detailed

analysis of these signals is rewarding both in TD and in

FD. The TD signal thus gives easy access to the modu-

lation depth, which apart from other information can

yield the number of nuclei giving rise to the modulation.

Dividing the TD signals from two different two-pulse

ESEEM experiments allows the elimination of compo-
nents common to both time traces. In FD, peak positions

give access to magnetic parameters such as hyperfine

and nuclear quadrupole couplings. For the interpre-

tation of the spectra analytical formulas are available

only for special and simple cases [1]. In general, however,
erved.
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investigated systems are so complex that numerical
simulations are indispensable for reliably extracting

magnetic parameters and structural information.

Since the two forms of the signal are interconvertible,

computations are possible in both TD and FD. Much of

the existing work relies on TD simulations [4–6]. Re-

cently FD simulations have become more widespread,

not only in ESEEM [7,8], but also in NMR [9–11]. FD

methods have the potential of being significantly more
efficient than TD methods [8,12]. Especially in ESEEM

of disordered systems FD methods deserve special at-

tention, since such simulations are particularly de-

manding due to the large number of spectra

contributing to the overall powder spectrum.

In FD simulations the spectrum is computed in two

steps. First the underlying quantum-mechanical equa-

tions are evaluated to obtain a list of peaks, each char-
acterized by a frequency and an amplitude. Then the

peak list is used to construct the actual ESEEM spec-

trum. In the case of a very large number of peaks

(>103), this second step is crucial for the computational

performance of the FD simulation. Existing methods are

either too slow or too inaccurate. Using the TD evolu-

tion method [4–6], almost the whole time is spent on

constructing the spectrum (see Table 1). The histogram
method [7,8] introduces considerable errors (see example

at the end of this contribution), as will be shown in

Section 5.

In this work we first introduce the peak list (Section

2) associated with a TD signal and examine ways to

construct the spectrum from it accurately (Section 3).

Next approximate methods are introduced (Section 4)

and the problems of the already known approximate
histogram method are analyzed (Section 5). In Section 6,

a new approach operating in FD superior in accuracy

and speed is presented. Finally, the errors involved are

examined, and the performance of the new approach is

illustrated with an example from ESEEM spectroscopy.
2. TD signals and the peak list

The ESEEM TD signal of a disordered system is the

sum of ESEEM TD signals of orientationally distrib-

uted paramagnetic species
Table 1

Computation times of a typical 2D HYSCORE spectrum for different spect

Method Computation time (s)

Peak list generation

TD evolution 13.27

Histogram 13.27

Convolution 13.27

Spin system: S ¼ 1=2, g ¼ 2, one 14N nucleus (I ¼ 1, gn ¼ 0:40

p=2� s� p=2� t1 � p� t2 � p=2� s� echo. Experimental parameters: s ¼
256� 256 points, Dt ¼ 50ns in both dimensions. 4186 orientations. Comput
spowðtÞ ¼
XQ
q¼1

sðt;XqÞ; ð1Þ

where t is an interpulse time delay or a pulse length

being incremented or decremented during the experi-

ment. The quantity Xq is specified by three Euler angles

X ¼ ða; b; cÞ and describes the orientation of the mole-

cule in the laboratory frame. The DFT of spowðtÞ gives
the ESEEM powder spectrum.

In a powder sample, at least 1010 paramagnetic spe-

cies with different orientations are present. The resulting
spectrum can usually be modelled by a sum over less

than 105 species. In simulations of experiments where a

parameter in the spectral domain is varied, as in cw EPR

(magnetic field) or ENDOR (radio frequency), analyti-

cal projection techniques [13–15] can reduce this number

by a factor of 10–100. In ESEEM, however, spectra are

obtained indirectly via the DFT of a TD signal, and

projection methods are not applicable.
A 1D ESEEM time trace from a single orientation is

the sum of P exponentials with frequencies mp, complex

amplitudes Ap, and decay constants kp:

sðt;XqÞ ¼
XP
p¼1

ApðXqÞ exp i2pmpðXqÞt
� �

expð�kptÞ: ð2Þ

In FD, each exponential corresponds to a Lorentzian
peak at frequency mp, and the sum gives the entire

spectrum for the particular orientation Xq.

2D experiments can be described by the same formula

by substituting t, mp, and kp by the vectors t ¼ ðt1; t2Þ,
mp ¼ ðm1p; m2pÞ, and k ¼ ðk1p; k2pÞ.

In ESEEM, like in most other solid-state magnetic

resonance spectra of disordered solids, line shapes are

determined by the orientation distribution. The decay
of a TD signal is then not due to the decays of the

single components, but rather to the rapid dephasing

of the many exponentials contributing to the signal.

The decay of the TD signal due to this inhomoge-

neous broadening is usually much faster than the re-

laxational decay described by kp; we therefore neglect

kp:

sðt;XqÞ ¼
XP
p¼1

ApðXqÞ exp i2pmpðXqÞt
� �

: ð3Þ
rum construction methods

Spectrum construction Total

2570.0 2583.3

0.74 14.01

3.05 16.32

38), aiso ¼ 5MHz, e2qQ=h ¼ 2:4MHz, g ¼ 0:5. Pulse sequence:

136ns, pulse lengths 10=10=20=10ns, B0 ¼ 350mT, m ¼ 9:797369GHz.

ed on a standard Linux PC (866MHz Pentium III, 128MB RAM).
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If homogeneous broadening is not negligible, it can be
included by multiplying the final cumulative TD signal

with a single exponential decay expð�ktÞ.
For most ESEEM experiments, the peak positions mp

depend only on the first two Euler angles ða; bÞ. The
third angle c has only an impact for decoupling and

nutation experiments, where the measured coherences

evolve under microwave irradiation. Peak amplitudes Ap

always depend on all three Euler angles.
Both mp and Ap can be computed from the usual

quantum-mechanical equations describing the dynamics

of spin ensembles. The frequencies mp are differences of

eigenfrequencies of the propagation Hamiltonians,

whereas the amplitudes Ap are products of elements

from the representation matrices of pulse operators and

detection operators [1]. In these computations, there is

much room to improve efficiency [12], but this is beyond
the scope of this contribution.

The ‘‘peak list’’ of ðmp;ApÞ values obtained from such

computations already fully represents the spectrum and

the TD signal.
3. Exact signals in time and frequency domain

Since the overall TD signal is a linear combination of

exponentials, and the FT is a linear operation, it is

sufficient to consider only a single exponential with

frequency m and amplitude 1. Here we restrict ourselves

to the 1D situation, where m is a scalar. Extension to 2D

is straightforward, but would unnecessarily complicate

the notation.

The TD exponential with frequency m is given by

sðtÞ ¼ ei2pmt: ð4Þ

In an experiment, this signal is sampled at N points at

times nDt with 06 n6N � 1 and the dwell time Dt,
giving

s½n� ¼ sðnDtÞ ¼ ei2pmnDt: ð5Þ

The TD signal can be constructed by explicitly evalu-

ating this formula for all n. However, it is faster to

compute s½n� by N � 1 consecutive multiplications

s½n� ¼ s½n� 1�ei2pmDt 16 n6N � 1 ð6Þ

with s½0� ¼ 1.

The FT of the TD signal in Eq. (5) defined by

Sðf Þ ¼ 1

N

XN�1
n¼0

s½n�e�i2pfnDt ð7Þ

is a periodic sinc function with a complex phase factor

[16]

Sðf Þ ¼ 1

N
e�ipðf�mÞðN�1ÞDt sin pðf � mÞNDt½ �

sin pðf � mÞDt½ � : ð8Þ
It can be considered as a back-folded aperiodic sinc
function. When this function is sampled at the fre-

quencies mDf with the increment Df ¼ ðNDtÞ�1 and

06m6N � 1, the DFT of the original signal

S½m� ¼ SðmDf Þ ¼ 1

N
e�ipðm�jÞN�1N

sin pðm� jÞ½ �
sin pðm� jÞ=N½ � ð9Þ

is obtained, with the scaled frequency j ¼ m=Df .
Though feasible, evaluation of this expression for the

impulse response is impractical due to its complexity

compared to the TD signal.

The direct method (computation of the exponential in

TD) needs one exponential computation and N � 1
multiplications/peak. In the 2D case of an N � N signal,

ðN � 1Þ2 multiplications/peak are needed. The perfor-

mance of Eq. (9) is even worse. The drawback of both

methods lies in their slowness when many peaks have to

be accumulated to construct a spectrum, as in Eq. (1).
4. Frequency-domain approximations

TD and FD signals of a single peak with amplitude 1

differ considerably in their character. The TD signal is

distributed over the entire domain, and its magnitude is

always 1. It seems not to be possible to devise any

method that allows one to reconstruct the TD signal

with less computational cost than the direct evaluation

of the exponential according to Eq. (6). On the other
hand, most of the FD signal (Eq. (9)) is concentrated

around the frequency m of the exponential. This com-

pactness of the FD signal makes it possible to save

computation time by computing only the important

central part around m and neglecting the small wings.

Such approximate methods sacrifice accuracy for the

sake of computational efficiency. So far, there is only

one FD approximation method used in the literature [8].
We call it the ‘‘histogram method’’ and discuss it in the

next section.

To assess the quality of an approximation, we define

error measures for both TD and FD. An appropriate

error function in TD is

lTDðmÞ ¼ max
06 n6N�1

jsðmÞapprox½n� � sðmÞ½n�j; ð10Þ

which describes the maximum of the magnitude differ-

ence between the approximate and the exact TD signal

of a single exponential with amplitude 1 and frequency

m. We use the maximum instead of the sum of squares,

because it correlates better with the visual difference of

the two spectra. For FD the error measure corre-
sponding to Eq. (10) is given by

lFDðmÞ ¼ max
06m6N�1

jSðmÞapprox½m� � SðmÞ½m�j: ð11Þ

The average of l over all possible frequencies m is a

frequency-independent overall error measure. It turns



Fig. 1. The histogram method. (solid) Exact periodic sinc with

m ¼ 13:4Df , (dashed) shifted periodic sinc with m ¼ 13Df , (j) correct

discretization S½m�, and (�) Sapprox½m� in the histogram approximation.

Only the real part is shown.
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out that for all cases studied l in the above formulas is
periodic in m with period Dm, so that the average can be

limited to one period

�TD ¼ NDt
Z NDt�1

0

lTDðmÞdm: ð12Þ

In FD, the corresponding error function

�FD ¼ NDt
Z NDt�1

0

lFDðmÞdm ð13Þ

can be used. In practical computations, the integrals in

the error functions have to be approximated by sums. In

this work we integrate over 801 test frequencies uni-

formly distributed between two neighboring DFT fre-
quencies. The error function varies slightly with N . It is

minimal in the region 100 < N < 300; at N ¼ 1024 it is

about 10% larger. We use a 128-point signal as standard.

The errors are visually noticeable if they are above

0.005. We thus can tolerate errors below a significance

limit of �0 ¼ 0:005.
Fig. 2. (a) Real part of the exact TD signal (solid) for j ¼ 13:4 and of

the histogram approximation (dashed, k ¼ 13), N ¼ 101 points. (b)

Magnitude difference between the exact TD signal and the convolution

approximation.
5. The histogram approximation

The histogram method is to the best of our knowl-

edge the only FD approximation method reported

[7,8,11]. This straightforward approach, which has not

been studied in detail so far, takes a peak and rounds its

frequency m to the nearest DFT frequency, i.e., to the

nearest multiple of Df :

kDf ¼ ðj� bÞDf ¼ bjþ 1=2cDf
¼ bm=Df þ 1=2cDf ; ð14Þ

where bxc indicates the largest integer not bigger than x.
The peak is shifted by the frequency offset b ¼ j� k,
which introduces a maximum rounding error of Df =2.
Then the value of the peak amplitude is added to bin k in
the N -point FD vector. The periodic sinc of Eq. (9) is

thus approximated by a slightly shifted periodic sinc, so

that the discretization of the latter gives a non-zero va-

lue only in one bin of the FD vector (see Fig. 1). Finally,

an inverse DFT (IDFT) generates the approximate TD
signal.

The advantage of this method lies in the fact that for

each peak only one rounding and one addition are

needed. The speed-up compared to the direct evolution

in the TD is enormous. However, the small frequency

error introduced by the rounding can cause significant

errors in both TD and FD.

In FD, the distortion is obvious (Fig. 1). The am-
plitude at the center is far from being correct, and the

wings on both sides are completely missing. In the fig-

ure, the maximum magnitude error lFD is 1.04. In TD,

the phase error increases with increasing n (see Fig. 2). If
the rounding error is Df =2, the TD error lTD is 2.
In the case of multiple peaks, the errors can become

very disturbing due to interference effects. For example,

two exponentials with opposite amplitudes 1 and �1
and frequencies ðk � 1=2ÞDf and ðk þ 1=2ÞDf (with in-

teger k) are shifted by the histogram method to kDf and

ðk þ 1ÞDf , respectively, and generate a real spectrum,

whereas the correct spectrum should be imaginary with

a different shape.

In another unfavorable case, two peaks with ampli-

tudes 1 and �1 and frequencies ðk � aÞDf and ðk þ aÞDf
with 06 a < 1=2 are both rounded to kDf and accu-
mulated into the same bin. As a consequence, they

cancel completely, although they should give a single

broadened peak around kDf . This error is maximum at

a ¼ 0:372 with lFD ¼ 1:44.
To remedy these errors, an extended FD vector of

length eN (e > 1) can be used, where the DFT frequency



Fig. 3. �FD (solid) and �TD (dashed) for histogram (�) and the con-

volution method ((j) M ¼ 2, a and c are optimized separately for each

e) as a function of the expansion factor e.

252 S. Stoll, A. Schweiger / Journal of Magnetic Resonance 163 (2003) 248–256
spacing is Df =e. Increasing the resolution of the fre-

quency axis by a factor of e reduces the maximum
rounding error to Df =ð2eÞ. The IDFT gives a TD signal

of length eN , where the first N points are an approxi-

mation of the exact TD signal.

Fig. 3 shows the dependence of the average TD and

FD errors on the expansion factor e. With increasing e
the error decreases, but obviously eP 8 is needed to

reduce at least the mean FD error to an acceptable level.

This is at the expense of a larger data array and a cor-
respondingly slower IDFT, which might become pro-

hibitive in 2D. A 256� 256 TD signal requires an IDFT

of at least a 2048� 2048 FD array.
6. The convolution approach

The approximation method introduced in this work is
based on convolution and deconvolution of the stick
Fig. 4. Design and application of the convolution method. Design steps: (A)

window as averaged IDFT. Application steps: (1) continuous convolution of

discretized correction window in TD (equivalent to circular convolution in F
spectrum with a truncated and windowed sinc function
(see the schematic illustration in Fig. 4).

Truncating the full kernel function in Eq. (9) to a

width of 2MDf around its center frequency f speeds up

the computation, but introduces truncation errors. With

decreasing M , the computation gets faster, but the

truncation errors increase. M has thus to be chosen

small enough to improve speed and large enough for

the error to fall below a certain level of significance. The
kernel function itself can also be varied to minimize the

error.

The truncated kernel is best designed by apodizing a

sinc function with a window function (Fig. 4, step (A)).

This is a standard technique for filter design in digital

signal processing [16]. The sinc function

sincðcxÞ ¼ sinðpcxÞ
pcx

; �16 x6 1; ð15Þ

contains a width parameter c. For apodization we use
the Kaiser window

Kða; xÞ ¼
I0 a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p� �
I0ðaÞ

; �16 x6 1; ð16Þ

with the zeroth-order modified Bessel function I0 and
the width parameter a. K gives the best results among all

classical windows. The resulting truncated kernel

RðyÞ ¼ sinc c
y
M

� �
K a;

y
M

� �
; �M 6 y6M ; ð17Þ

is zero outside the interval ½�M ;M � and depends on a
and c and on the half-width M . In contrast to Eq. (8),

this function is real, and its evaluation is therefore twice

as efficient as that of a complex truncated periodic sinc.

For each peak, the truncated kernel RðyÞ is then

sampled into the eN -point spectral vector ~SS, centered at

the position of the peak (see Fig. 4, step (1))
kernel as a product of sinc function and Kaiser window, (B) correction

peak list and kernel, eN -point discretization, (2) IDFT, (3) division by

D), and (4) DFT of the first N points.
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~SS½k þ m�  ~SS½k þ m� þ Rðm� bÞ

b 6¼ 0; �M þ 16m6M ;

b ¼ 0; �M 6m6M :

(
ð18Þ

k and b are defined as in Eq. (14). In the case b 6¼ 0, i.e.,

when the peak frequency lies between two DFT fre-

quencies, 2M points have to be evaluated. If the peak

frequency exactly coincides with a DFT frequency

(b ¼ 0), 2M þ 1 points have to be evaluated (see Fig. 5a).

If the peak lies on the edges of ~SS, the sampled kernel has
to be wrapped around. Similar to the histogram method,

an expansion factor e (default value e ¼ 4) is used. Its

influence on the performance is analyzed later. Mathe-

matically, Eq. (18) corresponds to a continuous circular

convolution of the stick spectrum T consisting of delta

peaks at the given frequencies with the truncated kernel

RðyÞ:

~SS ¼ T~R: ð19Þ

The result ~SS is a pseudo-spectrum with peaks at the

correct positions, but with distorted line shapes.
Fig. 5. (a) Sampling a 2M wide truncated kernel (M ¼ 3). (j) 2M þ 1

values for frequency offset 0, (�) 2M values for frequency offset 6¼ 0.

(b) sinc/Kaiser kernels for different half-widths M .

Table 2

Optimal parameters a and c and the errors �TD and �FD for the convolution

M copt aopt

1 1.6695 4.7255

2 1.4889 10.9444

3 2.5878 11.3687

4 3.8593 12.7798

5 5.2596 13.4354
The distortion can almost completely be removed by
deconvoluting the pseudo-spectrum with the truncated

kernel

S ¼ ~SS~�1R: ð20Þ
This circular deconvolution is performed in TD by di-

viding the IDFT of the pseudo-spectrum by a correction

window W obtained by IDFT of the sampled kernel
Rðm� bÞ:

Wb½n� ¼
XeN=2

m¼�eN=2þ1
Rðm� bÞei2pnm=eN ð21Þ

(Fig. 4, steps (2) and (3)). This correction window,

however, is different for each peak and depends on its

frequency offset b, since each b corresponds to a differ-
ent set of 2M (or 2M þ 1) values from the continuous

kernel R, which in turn give different window functions

in TD. If there is more than one peak in the pseudo-

spectrum, the correction window cannot be optimal for

all of them. But the mean error �TD can be minimized by

using an average of the correction window Wb over all b:

�WW ½n� ¼
Z 1

0

Wb½n�db ð22Þ

(Fig. 4, step (B)). If the continuous kernel is symmetric

around its center, the average window �WW is a real

function. The first N points of the TD signal obtained

after application of �WW are an excellent approximation of

the correct TD signal (Fig. 4, step (4)).

The entire procedure described above depends onM , a,
and c. M is the parameter which determines the compu-
tational cost. For a givenM , a, and cdetermine the quality

of the approximation. a and c are simultaneously opti-

mized by a least-squares minimization of the average

maximum time-domain deviation �TD (Eq. (12)). The re-

sulting filter kernels forM ¼ 1 to 4 are shown in Fig. 5b.

Table 2 lists optimal a and c values for different values of
M . Both a and c strongly depend onM . Theminima in the

error function are very flat in the region aopt � 1=2.On the
other hand, the error function is more sensitive to c.

Numerically, quasi-continuous representations with

ca. 5000M points of the kernel R and the average win-

dow �WW can be pre-computed and re-used (see Fig. 4,

design steps). Instead of evaluating R in Eq. (18) anew

for each peak, the values can be taken from its pre-

computed representation. In this representation, peak
method depending on kernel half-width M

�TD �FD

0.05456 0.03368

0.00185 0.00111

0.00094 0.00036

0.00066 0.00018

0.00030 0.00012
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frequencies are rounded to the next discrete frequency
and are shifted by Df =104 at most. The error introduced

by this small shift does not contribute significantly to the

overall error of the convolution method. To use the

quasi-continuous correction window representation for

the deconvolution of an eN -point signal, it has to be

interpolated to eN points to obtain �WW ½n�.
Fig. 7. lFD (solid) and lTD (dashed) as a function of the frequency

offset b for the sinc/Kaiser kernel with M ¼ 2, e ¼ 4.
7. Error analysis

Fig. 6 shows the errors �TD and �FD of the convolu-

tion method based on the optimized sinc/Kaiser kernel.

As expected, both errors decrease with increasingM . �TD
is two to three times larger than �FD. By increasing M
from 1 to 3, the error compared to the histogram

method drops by almost two orders of magnitude in
both TD and FD domain. The kernel with M ¼ 2 gives

already satisfactory results and is the one of our choice.

Fig. 3 shows the error of the convolution method

with the sinc/Kaiser kernel as a function of the expan-

sion factor e. For e ¼ 1, the new method is not much

better than the histogram approach, but it gains rapidly

when increasing e to 4, where both TD and FD error

levels are no longer significant.
Fig. 7 shows the dependence of the errors lTD and

lFD of the sinc/Kaiser kernel on the offset b of the peak

from a DFT frequency. The TD error is periodic with

b=e and is most sensitive to the offset around nb=e. This
means that the averaged window used is not the best

choice for peaks close to DFT frequencies, but it is still

the best choice to minimize the overall mean error. The

FD error exhibits a more complex behavior.
The error of the convolution method is different in

character from the one of the histogram approach,

which is a pure phase error caused by the frequency shift

(Fig. 2a). In the convolution method only the amplitude
Fig. 6. �TD (dashed) and �FD (solid) for different kernels (e ¼ 4) as a

function of the kernel half-width M . (j) sinc/Kaiser, (}) Gaussian,

and (M) Lorentzian.
is incorrect and becomes more accurate with increasing

time (see the residuals in Fig. 2b). The phase is exact

within numerical accuracy.

The origin of the error is not obvious. The fact that

an average window is used explains only part of it. For a

single peak there would still be an error, if the matching

correction window was used. In the aperiodic case, a

finite FD signal like the sinc/Kaiser kernel always has an
infinite inverse FT. Hence the correct deconvolution

window would have infinitely wide wings that asymp-

totically approach zero in both directions on the time

axis. But since the window is only represented in a finite

TD, the tails fold back, and the window is aliased. The

shorter the kernel in FD, the wider is its associated

window in the TD, and the stronger is the effect of back-

folding. Thus, it is the deconvolution of the pseudo-
spectrum with an aliased version of the correct window

that accounts for most of the error. The impact of this

aliasing is already inherently minimized by the least-

squares fit of a and c to the TD error �TD.
The aliasing of the correction window also explains

why the convolution method works well only for eP 3

(Fig. 3). For e < 3, significant parts of the window lie

outside the finite TD region and are folded back.
Often physical lineshape functions, such as Lorentz-

ians or Gaussians, with line widths c are sampled into

the FD, truncating the lineshape function at some dis-

tance kc from its center. Although this choice is obvious,

it is not the best. We have examined these functions,

using the kernels

RðyÞ ¼ 1

	
þ 4

3

cy
M

� �2

�1

; ð23Þ

RðyÞ ¼ exp

	
� 2

cy
M

� �2


; ð24Þ

with �M 6 y6M and optimizing c for each given M as

in the sinc/Kaiser kernel design. It turned out that even

with this c optimization Gaussians and especially Lo-

rentzians perform significantly worse than the sinc/

Kaiser design, as can be seen from Fig. 6.
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If in an experimental signal different oscillating
components decay at different rates, each peak in the

spectrum will have a different linewidth. In this case, the

explicit evaluation of a lineshape function for each peak

is mandatory, and neither the histogram nor the con-

volution approximation are applicable.

However, lineshapes in ESEEM spectra of disordered

systems are not determined by these relaxational

broadenings, but rather by unresolved couplings re-
sulting in an additional inhomogeneous broadening. In

all practical cases it is therefore sufficient to convolute

the spectrum with a Lorentzian or Gaussian lineshape

after the powder spectrum has been constructed from

the peak list.
8. Performance analysis

The convolution method is much faster than the di-

rect TD evolution based on Eq. (6). The asymptotic

computational costs for all three methods are listed in

Table 3. All costs scale linearly with the number of

peaks P , but only the TD evolution depends directly on

the number of data points N . The dependence of the

convolution method�s performance on M and M2 has
little impact, since M is small. However, in the two FD

methods, the additional cost for the IDFT [17] may be

significant.

Fig. 8 illustrates the overall performance of the con-

volution method based on an analysis of the number of

floating-point operations involved. For 1D experiments
Table 3

Asymptotic computational costs of TD construction in terms of

arithmetic operations for various methods

Method 1D 2D

TD evolution OðPNÞ OðPN 2Þ
FD histogram OðPÞ OðP Þ
FD convolution OðPMÞ OðPM2Þ
P , number of peaks; N , number of points along one dimension in

TD (2D: total N � N points).

Fig. 9. Simulated 14N HYSCORE spectra. (a) Histogram method and (b)

spectrum accumulated with the exact TD evolution method. Spin system an

between 0.01 and 1 relative to the maximum intensity.
the convolution method is always faster than the TD
evolution, and it performs exceedingly well in 2D ex-

periments. The smallest gain is found in situations with

P < 102, where the cost of the additional IDFT is sig-

nificant, and in the case of N < 25, where the small value

of N does not penalize the TD evolution too much.

However, both situations are quite unusual. For

ESEEM simulations, values of N � 28 and P � 105 are

common. In this case, 1D peak accumulations are 20
times and 2D accumulations are 1000 times faster. The

error is below the significance level �0 and 200 times

smaller than the error in the histogram method.

As an illustrative example we apply the new method

to the simulation of a typical HYSCORE spectrum (see

Fig. 9). HYSCORE is a common 2D ESEEM experi-

ment [1] and the primary method for determining weak

interactions between electron spins and nuclei such as
hydrogens and remote nitrogens. The powder spectrum

is computed as the sum of single crystal spectra from

4186 orientations. The computation of the resulting list

of 489 544 peaks takes 13.27 s on a standard PC (see

Table 1). For the accumulation, the convolution method

is only four times slower than the histogram method,

but 840 times faster than direct TD evolution. In fact,

with the latter approach the spectrum accumulation
Fig. 8. Speed-up of the convolution method (M ¼ 2, e ¼ 4) compared

to the direct TD evolution. P , number of peaks; N , number of points

along one dimension in TD (2D: total N � N points). (a) 1D and (b)

2D.

convolution method. There is no visible difference between (b) and a

d experimental parameters as in Table 1. Logarithmic contour levels
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consumes 99.5% of the total computation time. As can
be seen in Fig. 9, the histogram method generates sig-

nificant artifacts with more than 1% relative intensity,

which can lead to misinterpretation of the spectrum.

These artifacts are absent in the spectrum computed

with the convolution method, making it much more

reliable than the histogram method.

All gains in computing time discussed so far refer

only to the accumulation of peaks into a spectrum. In
ESEEM simulations, the spin dynamical part of the

simulations, i.e., the compilation of the peak list, can be

optimized as well [12]. When the peak list is computed,

positions and amplitudes can be interpolated. Unwanted

and low-amplitude peaks can be thrown out. As a result,

the overall performance of the simulation can be im-

proved by at least another order of magnitude, de-

pending on the nature of the spin system and the
experiment. In contrast, TD methods cannot take ad-

vantage of these possibilities, because they usually do

not compute the list of peaks explicitly.
9. Conclusions

The approximative FD convolution method pre-
sented in this work reduces the computational costs for

spectrum construction dramatically compared to direct

TD evaluations, and it is by orders of magnitude more

accurate than the histogram approximation. For fitting

experimental data with a low S=N ratio, this gain in

accuracy is not always relevant, since the artifacts from

the histogram method can be below noise level. Both

FD approximation methods can then be accurate for
peaks above the noise level. However, when using the

histogram method in such cases, care has to exercised to

assure that all artifacts are below noise level and all

peaks above noise level are undistorted. The convolu-

tion method is thus generally preferred.

The approach has been developed for use in numer-

ical simulations in ESEEM spectroscopy, but has not

been tailored to specific experiments. It is generally ap-
plicable to all spectroscopic methods that acquire signals

consisting of a large number of complex exponentials.

Like the FD histogram method, it is not applicable if the

exponentials have different decay constants.

Slight improvements of the accuracy for a given M
might be possible, when a kernel more flexible than the

sinc/Kaiser approach is used in the fitting process. Using

a least-squares fitted weighted average for the decon-
volution window might decrease error figures further,

but the gain will be marginal.
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