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Abstract

EasySpin, a computational package for spectral simulation and analysis in EPR, is described. It is based on Matlab, a commercial
technical computation software. EasySpin provides extensive EPR-related functionality, ranging from elementary spin physics to data
analysis. In addition, it provides routines for the simulation of liquid- and solid-state EPR and ENDOR spectra. These simulation func-
tions are built on a series of novel algorithms that enhance scope, speed and accuracy of spectral simulations. Spin systems with an arbi-
trary number of electron and nuclear spins are supported. The structure of the toolbox as well as the theoretical background underlying
its simulation functionality are presented, and some illustrative examples are given.
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1. Introduction

In EPR spectroscopy (including ENDOR and pulse
EPR), the extraction of information on structure and
dynamics from experimental data heavily relies on comput-
erized data processing, numerical spectral simulations and
iterative parameter fittings. While data processing software
is widely available and fitting algorithms are well estab-
lished, a general and flexible simulation environment for
EPR spectroscopy is still lacking.

Numerical simulations of EPR spectra are usually per-
formed with three intentions: (1) systematic study of the
dependencies of spectral features on the magnetic parame-
ters, (2) predictions whether a new experiment will give new
information, and (3) accurate parameter extraction from
experimental spectra.

Most currently available EPR simulation programs have
substantial limitations. Many programs are tailored to spe-
cial experiments or/and spin systems. They cannot be
extended or modified easily. Visualization capabilities are
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rarely included, and if available, they are again restricted
to special types of display. Programs with graphical inter-
faces, though excellent [1], have the disadvantage that their
interface is too inflexible to permit application to new or
unusual simulation problems. Most programs (such as
[2,3]) use approximations in their simulation algorithms
and do not usually check the validity of the approximations
for the spin systems at hand, so that incorrect spectra can
be obtained. For a range of systems and experiments
(many-electron spin systems, ENDOR of high-spin sys-
tems, ESEEM), no general simulation programs are
available.

We have taken a general approach to the problem and
have written EasySpin, a computational EPR package that
eliminates most of the disadvantages mentioned above. It
provides all necessary tools from basic data processing
and visualization functionality to spectral simulation. It is
based on Matlab (The Mathworks, Natick, MA, USA), a
commercial programmable numerical and visualization
software environment, for the following reasons: The pro-
gramming language of Matlab is based on matrices and
very efficient matrix algorithms, thus relieving the spectros-
copist of the implementation of these basic numerical types
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Table 1

Selected EasySpin functions

Function Description

sop Spin matrices

stev Extended Stevens operator matrices
levels Energy levels

resfields Resonance fields

pseumod Pseudo-modulation

ctafft Cross-term averaged FFT

apowin Various apodization windows
eprload Import of experimental data

eulang Conversion from rotation matrices to Euler angles
pepper Solid-state cw EPR spectra simulation
garlic Isotropic cw EPR spectra simulation
salt ENDOR spectra simulation

and procedures. Matlab has a simple syntax, and any new
experimental idea can be coded and evaluated very quickly
with a few additional EPR-specific functions. Visualization
capabilities are extensive and very flexible. Matlab is avail-
able for many different platforms, so that portability is
guaranteed within multiple-platform networks as employed
in our laboratory.

EasySpin consists of over 80 Matlab functions perform-
ing a variety of EPR-related tasks. The functions are divid-
ed into two categories (see Table 1). Functions from the
larger and more basic category provide the core functional-
ity necessary for computational EPR. These functions can
be freely combined to write programs tailored to special
experiments and problems. Built on this foundation, a
small number of general and robust high-level functions
for spectral simulation are provided, which implement a
series of substantial algorithmic improvements. In all,
EasySpin represents a powerful, highly flexible and inte-
grated analysis and simulation environment for EPR
spectroscopists.

In the following we describe the working of the major
features of the EasySpin toolbox in terms of the EPR the-
ory involved. Section 2 reviews the algorithms underlying
the implementation of the EPR and ENDOR simulation
functionalities. Section 3 provides details about other func-
tions, and in Section 4, a few representative examples illus-
trate some of the features of the toolbox.

2. Spectrum simulations

EasySpin includes several high-level functions perform-
ing common simulation tasks: pepper for solid-state
EPR spectra of both single crystals and disordered systems,
garlic for solution and rapid-motion EPR spectra, and
salt for solid-state ENDOR spectra. In the following
we outline the inner working of these simulation functions
and present a number of algorithmic improvements [4,5].

2.1. Solid-state EPR

The simulation of field-swept cw EPR spectra of single
crystals and disordered systems (powders, frozen solutions,

and glasses) can be achieved by using the function
pepper.

2.1.1. Spin Hamiltonian

The cw EPR simulation function pepper, and Easy-
Spin in general, supports spin systems with N, > 1 electron
spins and N, > 0 nuclear spins governed by the spin
Hamiltonian
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The spin Hamiltonian # as well as all the state energies
and interaction parameters except g and g, are in frequency
units (MHz). The symbols have their usual meaning (see
e.g. [6]). The first two terms describe the Zeeman interac-
tions of the electron and nuclear spins with the external
magnetic field B. The g, values are assumed to be isotropic.
The third and fourth term represent the hyperfine and the
nuclear quadrupole interaction. The fifth term, which de-
scribes higher-order zero-field interactions of one electron
spin, is a linear combination of Stevens operators O} [7].
This term also contains the standard zero-field splitting
more commonly written as
S'DS =D[S? - S(S+1)/3] + E(S; - S}) (2)
with D =3B,y and E = By,. The last term in Eq. (1) de-
scribes a general interaction between two electron spins.
The interaction matrix X is the sum of an isotropic ex-
change and a traceless symmetric dipolar interaction term.
All interaction tensors may have arbitrary orientations
with respect to a molecule-fixed frame M, which is used
as the frame of reference by all EasySpin simulation func-
tions. The tensors are specified via their principal values
and the Euler angles [8] defining the orientation of the prin-
cipal frames in the molecule-fixed frame M. g, A, and X
may be asymmetric, in which case all nine elements of
the matrices have to be specified. The orientation of the
paramagnetic centre with respect to the laboratory frame
L is defined by the three Euler angles ¢, 6, and y. The static
magnetic field B is oriented along the laboratory z axis
(zL). The unit vector along this orientation in the molecu-
lar-frame representation is zf = (cos ¢ sin 0, sin ¢ sin 0,
cos 6).

The spin Hamiltonian is a linear function of the magnet-
ic field

H(B)=F+B'G=F+Bz]G=F+BG,, (3)

where F collects all field-independent terms and G" = (G,
G,Mm, G-m) 1s the vector operator of spin magnetic moments
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In a matrix representation, F and the three elements of G
are matrices. Since they are independent of B, they need
to be computed only once for a powder simulation.

The field-dependent energies of the spin states are given
by the eigenvalues of the Hamiltonian (B). It is known
[9] that the energies E,(B) of different states are different
for all fields B except at isolated points, where two or more
state energies are degenerate. These points are so-called
crossing points and lie along symmetry axes of the point
group of the spin Hamiltonian [10]. In the vicinity of cross-
ing points, the state energies come very close, and the
eigenstates change rapidly. Such anticrossing regions can
occur even without a crossing point. The energies E,(B)
are differentiable functions of B everywhere except at cross-
ing points. As a consequence, the sorting of the energies
and states in ascending order E; < E> < --- < Eyis unique,
in contrast to assumptions made by some authors [2,11,12].

2.1.2. Resonance fields

During a field-swept EPR experiment, the magnitude B
of the magnetic field and consequently the spin Hamiltoni-
an #(B) changes continuously. This is not the case in
experiments where the frequency vy, is swept. Whereas
resonance frequencies are easily obtained as differences of
eigenvalues of the Hamiltonian, resonance fields are given
only implicitly by the coupled equations
H (B)|u) = Eq|u)

H (B)v) = Eofv)  Auw=Es— Ey = Vnw

(5)

with E, > E,. This implies qualitative differences between the
two types of spectra. In contrast to the frequency-swept spec-
trum where there is exactly one resonance frequency per state
pair (transition), the field-swept spectrum can also have zero
(if 4,,,(B) > vy for all B), one or more than one resonance
field (if 4,,,(0) > v and 4,,,(B) < vy for some B) per state
pair. The latter are called looping transitions [13].

Eq. (5) cannot be solved directly in state space, neither
analytically nor numerically. However, they can be cast
into a generalized eigenvalue problem in Liouville space,
yielding the resonance fields as eigenvalues [14]. Though
being most general and involving highly sparse matrices,
this approach is computationally too costly, since the ma-
trix dimensions, as well as the complexity order of the diag-
onalization algorithm, are squared compared to the state
space problem.

In state space, the general numerical solution of Eq. (5)
requires iterative methods. Many different schemes have
been proposed. Extrapolative methods use either frequen-
cy-shift [1] or classical perturbation theory [2]. Homotopy
methods make use of a least-squares method [15] or
Newton—Raphson steps combined with Rayleigh quotient
iteration [16]. Many approaches apply standard root
finding algorithms [10,11].

For a given pair of states u and v, all these methods pro-
duce at most one resonance field. To find multiple reso-
nance fields for a state pair, the only method described in
the literature is to use a set of usually equally spaced start-
ing fields for the iteration method of choice. A group of
methods extends this multiple-field approach and con-
structs a cubic spline [13,17] or a Chebyshev polynomial
[18] model of the energy level diagram to obtain the reso-
nance fields. The number and positions of the starting fields
are set manually. If looping resonances crowd in a small
field range, the accuracy of the resonance fields depends
critically on the placement of the starting fields.

The EasySpin functions resfields and pepper
implement a new energy level modeling procedure based
on iterative adaptive bisections, as described in detail else-
where [5]. This procedure, which finds all resonance fields
within a given field range Bumin < B < Bnax, Works as
follows.

The method starts with the interval [Bpin, Bmax]- First,
state energies E, and their derivatives 0E,/OB at the inter-
val borders are computed by diagonalizing the associated
Hamiltonians. The derivatives are obtained using Feyn-
man’s theorem

% _ <u oH u> — (]G ). (6)

0B

The results are used to compute a Hermite spline represen-
tation of the energy level diagram across the field range.
Next, the Hamiltonian is diagonalized at the centre of the
interval Bee, = (Bmin T Bmax)/2, and the resulting energies
are compared to the ones obtained by spline interpolation
from the two boundary field values. If the error is below a
certain threshold or resonances can be excluded, the mod-
elling is stopped. If not, the two sub-intervals [Byin, Been]
and [Been, Bmax] are refined by diagonalizing the Hamilto-
nians at their centre fields and checking against the interpo-
lated approximations. This subdivision is repeated until all
interval centre errors are below the threshold.

The result of this procedure is a faithful cubic spline rep-
resentation of the energy level diagram over the field range
of interest, as illustrated in Fig. 1. In regions of anticros-
sings, the interval density is higher than in regions with lin-
ear energy level dependencies. For high-field situations,
three diagonalizations are sufficient. Only in cases with
very complicated E,(B) dependencies, such as the one
shown in Fig. 1, the number of intervals exceeds 10.

From this spline representation, resonance fields are ob-
tained by analytically solving the cubic equations
A,(B) = vy for all intervals with potential resonances.
Multiple resonance fields for a state pair are thus easily
and automatically detected. Eigenvectors are obtained by
linear interpolation using the computed eigenvectors at
the interval boundaries [5].

For large spin systems, the spin Hamiltonian matrices
are very large. For example, the spin system of
Cu(Il)phthalocyanine consisting of one electron spin
S =1/2, a copper nucleus with spin /= 3/2 and four "N
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Fig. 1. Segmentation and resonance fields for Tb*" in a ThO, single
crystal [19] obtained by adaptive iterative bisection. The 43 segments
contain 15 resonance fields with a maximum resonance field error of
4.5 uT.

nuclei with /=1 has 648 states, and a full simulation re-
quires diagonalizations of large 648 x 648 matrices. To re-
duce the computational effort, nuclei weakly coupled to the
electron spin can be treated using first-order perturbation
theory, provided that their hyperfine interaction is much
smaller than the microwave frequency and larger than the
nuclear Zeeman and the nuclear quadrupole interactions.
In this case, the resonance fields are computed for the core
system S = 1/2, I =3/2 (matrix size 8 x 8), and resonance
field shifts are added for the four nitrogen nuclei. An
important aspect of the implementation of the first-order
treatment is that the EasySpin function automatically
determines whether the approximation is applicable or not.

2.1.3. Intensities

After having obtained the resonance field and the eigen-
vectors of a transition, the associated line intensity is com-
puted. In the commonly used first-order perturbation limit,
the intensity is given by
A(EPR> = Muv(Bl)ﬁquuv (7)

uv

with the transition rate M,,,, the polarization factor f,, and
the frequency-field conversion factor v,,.

The transition rate M,,, depends on the strength and ori-
entation of the microwave field B;. In standard cw EPR
experiments, B; is perpendicular to the static field B, that
is, parallel to the x axis of the laboratory frame (xL).
The transition rate is then given by

M = (0| BTG|u)|" = B} (|G ). (8)

B, and hence G, depend on all three Euler angles ¢, 0, and
x. For a powder spectrum, the contribution to the signal
intensity from all systems with a single orientation of B
can be obtained by integrating M iﬁ analytically [20] over
x yielding

2n
/ MPdy = nB? [I<v|GxL|u>|2 + !<U|GyL|“>’2] ®)
0

Note that, due to this integration, the resulting spectrum is
neither a single-crystal spectrum nor a ‘single-orientation’
spectrum.

In parallel-mode cw EPR, B is parallel to B, along the
laboratory z axis. In this case the transition rate is indepen-
dent of y

M) = B|(v|Go|u)[* (10)
with an additional pre-factor of 2z for the integral over y in
the case of a powder.

The second factor determining the EPR line intensity is
the polarization factor f,,, which is proportional to the
population difference between the states v and v. At ther-
mal equilibrium, it is determined by the temperature-de-

pendent Boltzmann distribution

_exp(—E,/a) — exp(—E,/a)
ﬁuv(T) - Z exp(—Eq/oc) ’

o=kgT/h.  (11)

If the high-temperature criterion kg7 > h|E,| is met,
exp(—E,/a) ~ 1 — E, /o, and p,,, is proportional to the ener-
gy difference 4,,. Since 4,, = viw, Pus 18 identical for all
transitions and can thus be dropped in this case. The
high-temperature approximation holds in all experimental
situations except at low temperatures (<10 K) and high
spectrometer frequencies (=95 GHz). EasySpin uses Eq.
(11) without any approximation in all cases.

In some experimental situations, e.g., excited triplet
states, the populations are not in thermal equilibrium. In
such a case, pepper and resfields compute the level
populations for the polarization factor f8,, as linear combi-
nations of the user-supplied populations of the zero-field
states [21].

The third factor in Eq. (9), the frequency-field conver-
sion factor v,,, is discussed in Section 2.1.6.

2.1.4. Transition selection

For most systems, only a small fraction of all possible
transitions are observable in an EPR spectrum, since the
great majority of transitions are forbidden (e.g., Amy#0
or Amg# 1 in the high-field limit). It is therefore a waste
of time to compute all possible resonances within a speci-
fied field range [17]. Only line positions and intensities of
transitions which significantly contribute to the final spec-
trum should be computed. This is not necessary for sin-
gle-crystal spectra, but becomes essential for powder
spectra, where spectra for a large number of differently ori-
ented paramagnetic centres are computed.

The obvious way of selecting transitions based on the
EPR selection rules and their nominal Amg and Am; values
can only be applied in the high-field limit where all the
eigenstates are almost pure (electronic and nuclear)
Zeeman states. A more viable approach [22] is to estimate
average transition rates for a small number of orientations
z1.(¢, 0) for all transitions at B,. Only state pairs with an
average transition rate above a given threshold are then
used in the simulation itself. This pre-selection runs into
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problems in the presence of sharp level anticrossings along
0 or ¢, which occur in systems with coupled electron spins
or, more commonly, in systems with several nuclei with
comparable hyperfine couplings. In such cases, some tran-
sitions are allowed only for a very small orientational
range, and forbidden outside. Such transitions will then
be erroneously excluded.

EasySpin takes a more failsafe approach, if sharp anti-
crossings are encountered. As in the general case, transi-
tions are selected based on their transition rates at By,
but for every orientation separately, i.e., for every orienta-
tion anew in a powder simulation. The eigenvectors at Bee,
necessary to compute the transition matrix elements are al-
ready available from the adaptive modelling procedure de-
scribed in the previous section. Again, only transitions with
relative amplitudes above a given threshold of ~10™* are
selected.

The problem of anticrossings in systems with several nu-
clei can be circumvented by treating them perturbationally,
as discussed previously. However, the couplings have to be
small enough in order not to compromise the accuracy of
line positions and intensities.

2.1.5. Line broadening

In the solid state, spin systems cannot usually be de-
scribed by a single set of spin Hamiltonian parameters.
First, the paramagnetic centres interact through space.
Since they are randomly oriented and distributed and the
couplings are small for magnetically diluted samples, the
resulting splittings are not observable and contribute to
the linewidths. Second, many hyperfine couplings due to
nuclei in and around a single paramagnetic centre are too
small and too numerous to be resolved. Again, their cumu-
lative effect consists of an additional broadening of the
spectral lines. Third, different centres experience slightly
different molecular environments due to structural strains
acting on the molecule from the host (glass or frozen sol-
vent). This gives rise to anisotropic distributions in the
magnetic parameters. Strain distributions are usually
Gaussian and result in an additional broadening of the res-
onance lines.

The inhomogeneous broadenings due to unresolved split-
tings from nuclear and electron spins are accounted for by a
residual linewidth I, Parameter distributions can be
included in a simple way, if they are narrow. In this case, their
influence on the transition frequencies 4,, can be approxi-
mately treated as a linear first-order perturbation effect.
The linewidth I', of a transition due to a Gaussian distribu-
tion of the magnetic parameter p is then proportional to the
width o, of the corresponding parameter distribution

0A oA oH
I',(4.) = o, » oy [<v‘ A v> - <u P u>} (12)

The linewidth parameters I'.s and ¢, are orientation-de-
pendent. For a given orientation, the total Gaussian line-
width results from the convolution of the residual
broadening and the various strain broadenings

Flzol:Ffes+ZF[277 (13)
P

which are assumed to be statistically independent.

The EasySpin cw EPR simulation function pepper
supports anisotropic broadening in frequency domain to
describe unresolved couplings, g/4 strain [23-25], and
D/E strain [26,27]. The lineshape is assumed to be Gauss-
ian in all cases. Since, for certain applications, the detailed
modelling of the linewidth is not necessary, a simple isotro-
pic convolutional broadening in the field domain is also
available.

2.1.6. Frequency-to-field conversion

The inhomogeneous linewidths discussed above are de-
fined in the frequency domain. Thus, they describe broad-
enings for frequency-swept spectra, i.e., for a cross section
along v,, of the two-dimensional spectral function
S(B, vmw). However, a field-swept spectrum corresponds
to a cross section of S(B, v,w) along B. Hence, the field-do-
main line shape is a projection of the frequency-domain
line shape determined by the dependence of 4,, on B
[28]. If 4,,(B) is linear across the entire frequency-domain
line shape, the projection results in a simple broadening of
the line governed by the generalized 1/g factor [29]
—1 1

T (0|Gar|v) — |G |u)|” (14)

0Au
0B

Vl“/‘ = ‘

The maxima of the frequency- and the field-domain line
shapes are identical. If an area-normalized line shape func-
tion is used, the field-domain intensity has to be multiplied
by 7., as well (see Eq. (7) in Section 2.1.3).

If broadenings in frequency domain are large, or if res-
onances are close to anticrossings, 4,,(B) is significantly
curved over the region of the frequency-domain line shape.
As a consequence, in such cases, line shapes symmetric in
frequency domain transform to asymmetric line shapes in
field domain [30]. Though line shapes of looping transitions
in single-crystal spectra may be affected significantly by this
non-linearity, its impact on powder spectra is usually neg-
ligible [13].

Therefore, the function pepper uses the linear approx-
imation based on Eq. (14). In principle, higher derivatives
such as 8%A,,,/0B? are available from the cubic spline model
obtained in the adaptive modelling and could be used in a
more general non-linear frequency-to-field conversion [13].
However, if non-linear effects are significant, an explicit
averaging loop over the spin Hamiltonian parameter distri-
bution responsible for the broadening can easily be written.

2.1.7. Powder averages

For powder spectra, the computations described in the
previous sections have to be performed for a large set of
different orientations zp (¢,0) uniformly distributed over
the unit sphere. Since the spectrum of any spin system is
invariant under inversion of the external magnetic field,
the computation can be restricted to one hemisphere
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(usually 0 < 6 < ©/2). The spectrum may possess addition-
al symmetry. All symmetry operations on the magnetic
field vector in the molecular frame, which leave the eigen-
values of the Hamiltonian invariant constitute one of the
centrosymmetric point groups D., On, Ty, Ci, Se, Dzg,
D.n, Cyp, with x =2,4,6. In pepper, the point group of
a given spin system is automatically determined by examin-
ing the symmetries and relative orientations of the various
interaction matrices of the spin Hamiltonian.

Depending on the point group, the orientational inte-
gration can be limited to a subregion of the hemisphere.
For example, a spin system with two non-collinear axial
tensors has C,, symmetry, and two octants are sufficient
to get the full powder average. An S = 1/2 spin system with
an orthorhombic g tensor has D»;, symmetry, and the inte-
gration can be limited to one octant. For an axial system,
the weighted integration over a quarter of a meridian
(=0 and 0<0<n/2) results in the full powder
spectrum.

To integrate over the symmetry subregion, resonance
data are computed for a set of orientations zy (¢, ) which
homogeneously cover the region. Such sets of knots are
termed spherical codes or spherical grids. For an extensive
comparison of the various grids see [31,32]. The grid used
in EasySpin is a simple triangular one also used in the pro-
gram Sophe [1]. In the case of one octant, the angles are

given by
_mq Tk

Peg =7 O=3xq
with k=0,...,K—1 and ¢=0, ...k, where K specifies
the number of knots along a quarter of a meridian. For
one octant, the grid contains K(K + 1)/2 knots. Advanta-
ges of the triangular grid defined in Eq. (15) are the simple
construction, the possibility to easily interpolate along ¢,
and the relatively high uniformity [32].

Fig. 2 depicts a one-octant grid for K = 12. The immedi-
ate neighborhood of each knot, i.e., the region of all points
that are closer to that knot than to any other, has the shape

(15)

Ym

Fig. 2. Orientational grid over one octant for a spin system with Dy
symmetry. K= 12, 78 knots. Voronoi cells and Delaunay triangles are
shown.

of a spherical polygon and is called its Voronoi cell. The
areas of these Voronoi cells are the appropriate weights,
which have to be used if the powder spectrum is construct-
ed by summing over the knot spectra. Fig. 2 also shows the
Delaunay triangulation of the grid resulting in a set of
spherical triangles with three knots at the vertices of each
triangle. These Delaunay triangles are used in the projec-
tive construction of the spectrum (see Section 2.1.8).

After a grid Q, appropriate to the symmetry of the
Hamiltonian has been set up, resonance fields, line intensi-
ties and linewidths are computed for all knots. This first
step is computationally quite expensive, since for each ori-
entation it involves several matrix diagonalizations and
multiplications. To reduce the computational burden, some
methods (e.g. [16]) use the fact that resonances of two close
orientations do not differ substantially and take the reso-
nance fields and eigenvectors obtained for one orientation
as starting values for an iterative determination of those
at nearby orientations.

In a second step, a surface representation of the reso-
nance fields B(¢,0), transition rates and linewidths is con-
structed using bivariate tensor product cubic splines with
boundary conditions depending on the symmetry.

The spline surface representations are evaluated over an
orientational grid €, much finer than the original Q, to ob-
tain new values for positions, intensities and widths. This
interpolation is much faster than the explicit quantum
mechanical calculation. It it used to increase the number
of computed knots by a factor of 10-100 in a fraction of
time needed for the quantum mechanical computation.
The computationally expensive orientational grid ©; has
thus to be only as fine as to allow the splines to closely
approximate the exact surfaces. If the grid is too coarse,
the final spectrum will be distorted.

The interpolation procedure is similar to the one used in
the program Sophe [1], where a one-dimensional trigonal
instead of a two-dimensional cubic rectangular interpola-
tion is used. Although Sophe’s interpolation is one-dimen-
sional and hence faster for a given grid resolution, the
bivariate tensor product spline approach used in EasySpin
is more accurate, since correct boundary conditions along 0
and ¢ can be imposed. As a consequence, 2 can be coars-
er. In pepper, the resolution of the first coarse grid as well
as the interpolation factor is customisable by the user. A
starting grid with K; =20 and a refining grid with
K, =~ 5K, are sufficient for most spectral simulations.

In the case of looping transitions, the bivariate spline
interpolation method is not applicable, since looping tran-
sitions lack resonance fields for some orientations. In this
case, a higher resolution of 2, has to be chosen.

Besides randomly oriented disordered systems, Easy-
Spin also supports the simulation of paramagnetic centres
partially oriented in frozen nematic liquid crystals [33]. In
this case, the spherical grid and interpolation scheme is
used exactly as described above, and an additional orienta-
tion-dependent factor is included in the intensity expression

Eq. (7).
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2.1.8. Spectrum construction

In the final stage of the spectral simulation, the absorp-
tion spectrum is constructed from the resonance data (posi-
tions, intensities, and widths). For single crystals and
isotropic systems this amounts to a simple summation of
Gaussian line shapes with different positions, areas and
widths.

For an anisotropic powder spectrum, two different
methods can be employed. The first one, used by almost
all EPR simulation programs, comprises the summation
of the single-crystal spectra from all the computed orienta-
tions, weighted by the Voronoi cell areas (see Fig. 2 and [4])
of the knots or their estimates [1]. This can lead to ripples
in the spectrum (“‘simulation noise”) if the number of knots
is not sufficiently large, since contributions from the orien-
tational regions between the knots are missing in the spec-
trum. The method can be improved by convoluting the
linewidth with an additional broadening, which accounts
for the orientational distribution of the resonance field
around each knot. For a given orientation and a given res-
onance field, the additional broadening is proportional to
the magnitude of the orientational gradient of the reso-
nance field and to the Voronoi cell area av,,

I = \/Ffot + davyor

With a suitable choice of the proportionality constant o,
simulation noise in the spectrum can be significantly re-
duced. However, the broadening of the resulting spectrum
will be visibly larger than the one specified by the physical
broadenings, and spikes might appear at spectral turning
points (where the gradient is zero) if the linewidths Iy
are small. This gradient-smoothing technique is based on
a mosaic model for computing broadenings in single crys-
tals [26] and is used in some programs [1,17,22].

The second method, used in EasySpin, is interpolative.
Originally, it has been devised for solid-state NMR spectra
[34,35], but has only received little attention in EPR [32].
Each Delaunay triangle of the spherical grid on the orien-
tational sphere (see Fig. 2) delimits a set of close orienta-
tions with smoothly varying resonance fields, intensities,
and widths. Spin systems with orientations within such a
triangle give rise to a partial powder spectrum. The sum
of these subspectra over all Delaunay triangles gives the to-
tal powder spectrum.

The partial powder spectrum due to one Delaunay trian-
gle can be computed analytically [34,35], if it is assumed that,
within the triangle, the resonance position varies linearly and
that the transition intensity and the linewidth are constant.
For sufficiently small triangles, these assumptions hold. In
the case of vanishing linewidths, the resulting partial powder
spectrum is a sharp triangle (see Fig. 3A), with an area pro-
portional to the average line intensity at the three vertex ori-
entations and to the spherical triangle area ar;.

This simple geometric projection technique is applicable
for isotropic linewidths only. In this case, sharp triangles

2

B
OBres . (16)
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Bl area aTri
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Fig. 3. Interpolative projection method. B; are resonance fields of a
transition. (A) Non-axial symmetry, (B) axial symmetry. All the orienta-
tions within the small spherical triangle (zone) on the left give rise to a
triangular (rectangular) subspectrum shown on the right.

are summed up, resulting in a stick powder spectrum,
which is convoluted with the isotropic line shape. For
anisotropic linewidths, each triangle is broadened different-
ly and would have to be convoluted separately with a
Gaussian profile. Since these multiple convolutions are
impractical, EasySpin implements a fast approximation
to perform the combined projection-convolution in a com-
putationally efficient way. Compared to the gradient
smoothing scheme, it gives similar results, but does not re-
quire the computation of gradients.

In this method, each broadened triangular subspectrum
is approximated by a single Gaussian centred at the centre
of mass of the triangle B, = (B, + B, + B3)/3 (see Fig. 4).
The width I" of the approximating Gaussian is a function
of the relative broadening of the subspectrum defined by

_ T
AB’

/B (17)

Fig. 4. Approximation of a broadened triangular subspectrum with
/g =1 by a Gaussian line centred at B.,, = (B, + B, + B3)/3 with least-
squares fitted width given by Eq. (18) and o = 1: I'yppron/Tior = 1.154. (A)
Triangular spectrum and approximating Gaussian, (B) difference between
exact convolution (not shown) and approximating Gaussian, same scale as
(A).
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where I is the Gaussian full linewidth at half height from
Eq. (13) and AB = B; — B is the spread of the triangular
stick spectrum. We have determined the optimal I'(1p)
dependence by least-squares fitting a Gaussian to broad-
ened orthogonal triangles (i.e., By < B, = B;). The results
follow the simple relationship:

f:rm<1+a%> (18)
B

with ¢ =0.154 and o = 1. By setting « = 2, the smoothing
effect can be enhanced without visibly distorting the line-
widths in the total powder spectrum, in contrast to the
application of Eq. (16).

The relative spectral broadening defined in Eq. (17) is an
excellent measure for simulation accuracy and efficiency.
Ag <0.01 indicates a stick spectrum with essentially no
broadening, whereas A > 1 means that the spectral anisot-
ropy is invisible. Consequently, in a powder spectrum sim-
ulation the smallest broadening encountered in all triangles
Amin 18 @ measure of the overall smoothness of the spec-
trum. If A,;, <0.5, significant simulation noise is still visi-
ble, Amin =~ 1 implies that the spectrum is smooth, and
Amin > 2 18 an indication that the resolution of the orienta-
tional grid was higher than necessary.

All methods of spectral construction for anisotropic
spin systems require many computationally expensive
evaluations of the Gaussian line shape for various widths
and positions, which are then added to give the total spec-
trum. This can be circumvented by using a fast scaled
copy procedure [4,36]. In this approach, a single Gaussian
is pre-computed to a very high resolution, after which dif-
ferent linewidths are obtained by scaling the abscissa and
copying the values from the tabulated line shape to the
spectral vector. To further save time, the Gaussian is
truncated.

In the case of axial symmetry (D.y), the projection is
simpler than in the general non-axial case discussed above.
The orientational sphere is subdivided into spherical zones
with 0; < 0 < 0,4 (see Fig. 3B), with computed resonance
data at (0,6,) and (0,6;y,). Each spherical zone gives rise
to a rectangular stick subspectrum, if the same approxima-
tions as in the non-axial case are made. For anisotropic line-
widths, each broadened rectangular subspectrum can be
approximated by a Gaussian centred at B, = (B; + B»)/2,
where the least-squares fitted width is given by Eq. (18) with
¢ =0.231. Again, o =2 is used for enhanced smoothing.

Fig. Sillustrates the efficiency of the projection scheme de-
scribed above compared to a simple summation over the
knots of the spherical grid. Relatively few orientations are
needed to obtain a smooth powder spectrum: a grid with
136 knots (Fig. 5A) is sufficient to give a spectrum free of arti-
facts. With 528 knots (Fig. 5B), the spectrum obtained by
projection is virtually ripple-free, whereas the sum-over-
knots spectrum still features significant simulation noise.

All methods discussed above construct the absorption
spectrum. In a cw EPR experiment, first- or second-har-

A
L
B
300 310 320 330 340 350

B/mT

Fig. 5. Simulation of first-harmonic powder spectra using simple sum-
mation over knots (thin lines) and the projection technique (thick lines).
Parameters: S=1/2, g=1[2.2,2.1,2.0], vpw = 9.5 GHz, anisotropic fre-
quency-domain linewidths [30,20,40] MHz. (A) K = 16, total 136 knots,
Amin = 0.3, (B) K= 32, total 528 knots, A, = 0.7.

monic spectra are measured. Computationally, they are ob-
tained from the absorption spectrum either by
differentiation or by pseudo-modulation (see below).

2.2. Solution EPR

Although pepper supports systems with an arbitrary
number of nuclei, the computational effort increases con-
siderably if the state space dimension exceeds about 100.
This can happen for organic radicals as well as transition
metal complexes. For solid-state spectra, nuclei with small
hyperfine couplings can optionally be treated by first-order
perturbation theory, as mentioned above.

For liquid-state spectra, EasySpin provides garlic, a
fast simulation function for isotropic EPR spectra of
S = 1/2 systems coupled to an arbitrary number of nuclear
spins I > 1/2 with hyperfine couplings smaller than the
electron Zeeman interaction, governed by the Hamiltonian
J/(B)—& BS. —Prg Bt an ST 19

= hgiso z hgn >+ diso . ( )
Only resonance lines of allowed transitions (Amy = 0) are
computed, and all transition intensities are assumed to be
equal.

To compute the resonance fields, garlic uses the ana-
lytical Breit—Rabi expression [37] for the energy levels as a
function of the external magnetic field and solves it for B
using a fixed-point iteration

haiso -2 1 :
Bk 1=~ —mli m2+(1 —éz) (25 ) — (1-‘1——)
| v(l—q;f){ \j I I 2
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with

_ aiso/2
B Vw + Bu&nBi/h

The sign choice in Eq. (20) depends on the sign of aj5,. An
excellent starting field value B, is obtained directly from
Eq. (20) by setting g, = 0. This new method is by far supe-
rior to the commonly used evaluation of expressions ob-
tained from perturbation theory, since it quickly
converges to the exact resonance field within numerical
accuracy, usually after two or three iterations.

To properly simulate spectra with n equivalent nuclei
with spin J, they are recoupled to form resultant J spins
with K=nl,nl — 1, ..., which are then treated separately
[38]. Sets of equivalent nuclei are treated sequentially, i.e.,
cross terms are neglected.

If the hyperfine couplings are large (i, (I + 1/2) = 0.2v4),
cross terms between different nuclei (or groups of equiva-
lent nuclei) will significantly influence the resonance field
positions. In addition, the intensities of the allowed transi-
tions are not identical any more, and transitions with
Amy #0 can have significant intensity. garlic automati-
cally detects this situation, and pepper should be used in-
stead, which is accurate for any magnitude of hyperfine
couplings, though much slower.

garlic can compute spectra in the fast-motion regime
using the Kivelson formula for mj-dependent Lorentzian
line broadening

ék Y= .[))egiso + ﬁngn' (21)

I'(my) = a+ bmy + cmj. (22)

The rotational correlation time 7., can be extracted from
the parameters a, b, and ¢ [38].

2.3. Solid-state ENDOR

Solid-state ENDOR spectra are computed by the func-
tion salt. The structure of the calculation is very similar
to that used for solid-state EPR spectra. The powder aver-
aging procedure is identical to the one for EPR spectra
with isotropic linewidths.

ENDOR resonance frequencies can be obtained in a
much simpler way than EPR resonance fields. Since the
external field is constant in an ENDOR experiment, the
spin Hamiltonian has to be diagonalized only once for each
orientation. The differences of the eigenvalues give the res-
onance frequencies. Only isotropic ENDOR line broaden-
ing is supported. Anisotropic EPR line broadening is taken
into account in the ENDOR intensity computation. There,
a few peculiarities have to be considered, which are dis-
cussed in the following.

The ENDOR line intensity can be written as the product
of three factors

AENPOR) — Muv(BZ)ﬂuv(xuv(VmW)- (23)

uv
M, is the ENDOR transition rate between the states u and

v, P 1s the polarization factor discussed in Section 2.1.3,
and a,, is an additional ENDOR selectivity factor.

The ENDOR transition rate between two nuclear spin
states differs from the NMR transitions rate, since the elec-
tron magnetic moment almost adiabatically follows the
radio frequency (RF) field B, and thus contributes to the
total excitation field at the nucleus, an effect known as
hyperfine enhancement [39]. Since this effect is due to the
interaction between RF field and electron spin, it is taken
into account by including both electron and nuclear Zee-
man operators in the expression for the transition rate

M, = B\ (0]Goa i) (24)

An ENDOR line between state # and v has non-zero inten-
sity only when the microwave frequency v, excites an
EPR transition which has a level in common with one of
the two states u and v. Hence, the ENDOR intensity is pro-
portional to the sum over all EPR transition moments
involving one of the states weighted by the excitation pro-
file of the microwave

G =Y kz G(Agk — Vanws Tonw) [ (@] G |K) . (25)
q

=u,v

G indicates a Gaussian line, and Iy, is the bandwidth of
the microwave excitation. If the microwave excitation does
not hit an EPR transition involving either u or v, this factor
vanishes and, as a consequence, the ENDOR transition
intensity is zero.

Eq. (25), first used in the program MAGRES [2], de-
scribes the fact that ENDOR spectra of anisotropic sys-
tems are usually orientation and transition selective, since
at a given magnetic field EPR transitions of only a limited
subset of orientations can be excited. All other transitions
and orientations do not contribute to the ENDOR
spectrum.

For simulations of powder spectra, this selectivity of
ENDOR is a significant computational burden, since often
only a small fraction of computed orientations exhibit an
ENDOR response. The majority of orientations are evalu-
ated without giving contributions to the final spectrum.
There seems to be no general remedy against this superflu-
ous computations. If the orientation and transition selec-
tivity is determined by the g tensor and by nuclei with
large hyperfine couplings, a viable work-around is an ori-
entation pre-selection: «,, is computed for all orientations,
but for a reduced spin system containing only spins with
anisotropic interactions larger than the excitation band-
width of the microwave field. In a second step, the
ENDOR spectrum of the full system is computed for those
orientations only where «,, is above a given threshold.
Alternatively, a reduced spin system containing only the
nuclei of interest can be used for the ENDOR simulation
in this second step [40].

Although the expressions implemented in salt are val-
id for cw ENDOR, the function can be used for the simu-
lation of Davies ENDOR spectra of weakly coupled nuclei
without too much error.



S. Stoll, A. Schweiger | Journal of Magnetic Resonance 178 (2006) 42-55 51

3. Other functionality

In this section, additional EasySpin functions are dis-
cussed. They represent the building blocks for implement-
ing more complex simulation functions. Many of them
are used in the simulation functions pepper, salt, and
garlic described above.

Information about a spin system is needed by many
functions. Hence, a general specification format for spin
systems is provided. A spin system is defined by declaring
a Matlab structure with the parameters contained in appro-
priately named fields. For example

CuSystem = struct(’S’, 1/2, Nucsg’, '63Cu’,...
e, [2.3 2.3 2], A, [40 40 4707)

represents an S = 1/2 system coupled to a **Cu nucleus. ’g’
and ’A’ define the principal values of the g and A interaction
matrices, the latter one in units of MHz. The orientation of
the various tensors in the molecular frame can be specified
in separate fields in terms of Euler angles. The total spin
Hamiltonian from Eq. (1) as well as its individual terms
are constructed from this structure by functions like sham,
zeeman, hfine, nquad, etc. These functions are used by
pepper as well.

To construct the various spin Hamiltonians necessary
for spectral simulations, cartesian spin operators are used.
The important function sop provides matrix representa-
tions of these operators in the standard Zeeman product
basis

|m51amsz7-~-»m117m127-~~>~ (26)

This is also the basis in which all EasySpin functions oper-
ate. sop can compute product spin matrices for an arbi-
trary spin system. For each spin, a cartesian or a shift
operator component can be specified. As an example,
sop([1l/2 17, x+") gives the 6 X 6 matrix representation
of the operator S,/ of the two-spin system S =1/2, I = 1.
In addition, the function stev provides extended Ste-
vens operator matrices Of for arbitrary spins and arbitrary
k = 0 and —k < ¢ < k, using a recently published compu-
tation method based on spherical tensor operators and a
recursion relation for the normalization factors [7,41].
levels and levelsplot are functions for computing
and plotting energy level diagrams. EPR and ENDOR res-
onance positions and intensities for a given spin system can

be computed using resfields and endorfrg. Routines
for pulse EPR [8]include evolve for the evolution of den-
sity matrices in time-domain, and propint, a function
that computes propagators for the evolution under time-in-
dependent and time-dependent Hamiltonians [4].

EasySpin functions also cover tasks which are not
directly related to spin systems being nevertheless of
paramount importance to numerical applications in
EPR.

The function sphgrid provides spherical grids for a
given symmetry as defined by Eq. (15). sphrand provides
large sets of orientations randomly and uniformly distrib-
uted over the entire orientational sphere.

Beyond the common Gaussian and Lorentzian line
shape functions (gaussian and lorentzian), EasySpin
provides functions for Voigtian (convolution of Gaussian
and Lorentzian; voigtian) and pseudo-Voigtian (linear
combination of Gaussian and Lorentzian; 1shape) line
shapes [42,43].

EasySpin also features a function that performs pseudo-
modulation [44], which consists of a convolution

S (B) = S(B) * M,(B, By) (27)

m

of the absorption spectrum S(B) with an appropriate ker-
nel function M, to give the pseudo-modulated spectrum
Sfr’l’), as illustrated in Fig. 6. n is the detection harmonic,
and B, is the base-to-peak modulation amplitude. The
pseudo-modulation kernel is the inverse Fourier transform

of a Bessel function

M,(8.80) =1 [ (BB df <1>"%,
o9

where T, is the Chebyshev polynomial of the first kind and
of order n [4]. Pseudo-modulation neglects modulation
sidebands. By using a more complicated modulation kernel
(based on Eq. (64) from [45]), sidebands could be correctly
simulated. This, however, is not included in EasySpin, since
sidebands are rarely observed and the associated computa-
tions are very expensive.

Most common data processing like integration, FFT,
etc., can be achieved with built-in Matlab functions. Easy-
Spin extends these capabilities by providing functions for
polynomial and exponential fitting used for baseline cor-
rections and relaxation studies (basecorr, exponfit),

1
S(B) Mi(B, Bu) | 5 Sia'(B)
* =
spectrum modulation modulated
kernel spectrum

Fig. 6. First-harmonic pseudo-modulation by convolution of the absorption spectrum with a Chebyshev polynomial modulation kernel [4]. 2B, is the

peak-to-peak modulation amplitude.
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Savitzky—Golay filters [48] for smoothing and differentia-
tion of noisy data (smooth), and cross-term averaged
FFT (ctafft) for removing dead-time artifacts in
ESEEM spectra [49]. A digital equivalent to the common
RC filter employed in cw EPR spectrometers is also avail-
able (rcfilt). Experimental spectral data stored in com-
mon file formats (Bruker ESP, BES®T) can be imported
into Matlab using eprload.

A set of functions (erot, eulang, vec2ang, and
ang2vec) supports inter-conversion between rotation
matrices and Euler angles, following the z—)'—z" conven-
tion as defined in [8,38,46]. Angular momentum algebra
is supported via functions for recoupling of equivalent
spins (equivsplit, equivecouple) and for the compu-
tation of Clebsch-Gordan coefficients, 3-j and 6-j symbols
(clebschgordan, wigner3j, wigneré6j; [47)).

EasySpin also includes a set of natural constants perti-
nent to EPR as well as an extensive isotope database con-
taining nuclear spins, g, values, quadrupole moments and
natural abundances for all stable and the most important
radioactive nuclides.

4. Examples

In this section, we illustrate how the toolbox can be
used to generate EPR data for a variety of complex situ-
ations. The results can be visualized with built-in graphi-
cal facilities of Matlab. The Matlab/EasySpin code that
generates the spectral data for the figures is listed in the
Appendix A.

Fig. 7 shows the simulated solution cw EPR spectrum of
the bridged biaryl cation radical of 6-hydrodipyrido[l,2-
¢:2',1’-e]-imidazole [50], a typical application of the func-
tion garlic. The radical contains ten protons and two
nitrogens coupled to the unpaired electron, giving a total
of 9216 resonance lines in the spectrum. Note that due to
the large nitrogen coupling, second-order shifts of approx.

336 338 340 342 344
B/mT

Fig. 7. X-band solution cw EPR spectrum of the cation radical of
6-hydrodipyrido[1,2-¢:2’,1’-e]-imidazole. Parameters: g5, = 2.00316, line-
width 0.01 mT, couplings in MHz: N(2) 12.16, H(2) —6.70, H(2) —1.82,
H(2) —7.88, H(2) —0.64, H(2) 67.93. vy, = 9.532 GHz.
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Fig. 8. X-band powder EPR spectrum of a hypothetical Co*" system
including A stain broadenings. Parameters: g=[2.28,2.19,2.01],
A =1[70,30,309] MHz, A strain [45,25,40)MHz, residual broadening
60 MHz. v, = 9.475 GHz. (A) Full cw EPR spectrum, (B) contribution
from |Amy| # 1 transitions.

0.01 mT are similar to the linewidth and the smaller hyper-
fine splittings in the spectrum. Third-order shifts are
<0.001 mT. garlic computes the spectrum to infinite or-
der using the fixed-point formula Eq. (20). The computa-
tion time on a 2 GHz Linux PC was <0.1 s.

Some capabilities of the cw EPR simulation function
pepper are illustrated in Fig. 8. It shows a powder cw
EPR spectrum of a typical Co>" complex (S=1/2, =7/
2). The simulation includes frequently observed A strain
broadenings, as can be seen from the mj-dependent line-
widths in Fig. 8A. The spectrum contains not only contri-
butions from the eight allowed transitions |Amy = 1, but
from 27 transitions with |Amy#1 as well. pepper can
compute separate spectra for each transition, which allows
for a separate display of these “forbidden’ contributions as
shown in Fig. 8B. The simulation took 5s.

The function resfields can be used to generate tran-
sition “roadmaps,” i.e., plots of the dependence of reso-
nance field positions on the orientation of a paramagnetic
centre. Fig. 9 shows the roadmap for an S =5/2 system
with axial zero-field splitting in two different representa-
tions. The polar (6, B) representation is the more common
one, whereas in the cartesian (B,,B.) representation the
symmetry of the roadmap is more evident. The high-reso-
lution computation took 25 s.

A series of solid-state ENDOR spectra of a powder
sample measured at different values of the static magnetic
field is often used to determine hyperfine and quadrupole
interactions in disordered systems. As an example, Fig. 10
shows the ENDOR spectra of a proton with an ortho-
rhombic A coupled to an S =1/2 with an orthorhombic
g tensor not collinear with the A tensor, simulated with
the EasySpin function salt. For each magnetic field val-
ue, a different set of orientations is selected. salt takes
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Fig. 9. Transition “roadmap” of an S = 5/2 system with g =2 and axial zero-field splitting D =5 GHz for ¢y =0 and 0 < 0 < /2, vy = 9.5 GHz. (A)
Standard polar representation B vs. 0, (B) cartesian representation B, vs. B,. The resonance fields are labelled with the associated energy level indices

u—v.
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Fig. 10. Powder ENDOR spectra for various field values of an S =1/2
spin with orthorhombic g coupled to a proton with orthorhombic A
tensor. Parameters: g =[2.3,2.1,2], 4 =[3,6,2] MHz, angle between z axes
of g and A 45° v,w=9.5MHz, EPR linewidth 200 MHz, ENDOR
linewidth 0.1 MHz, excitation bandwidth 10 MHz.

this into account automatically. Since the tensors in the
spin system are not collinear, the field dependence of
the ENDOR spectra is quite complex. The total computa-
tion time was 5 s.

5. Conclusions

EasySpin combines most of what is known from litera-
ture. Its spectral simulation functions pepper, salt,
and garlic include a series of improvements and new
methods such as automatic determination of spin Hamilto-
nian symmetry, the adaptive method for resonance field
determination, the spectral projection method extended
to anisotropic line shapes, and the fixed-point iteration
for the Breit-Rabi formula. These methods are designed

to increase the robustness and the accuracy of spectral
simulations.

A remark is in order about the computational accura-
cy. Simulations use various natural constants, which have
no-zero uncertainty. Of all fundamental constants in-
volved, the Planck constant has the largest relative uncer-
tainty, 1077, Due to this limiting uncertainty of the
Planck constant, spectral line positions cannot be known
to more than 7 accurate digits. Most nuclear g values
have significantly larger uncertainties than the Planck
constant. Thus, to compute resonances and simulate
spectra accurately, it is sufficient if all computational
algorithms involved have numerical and modelling errors
below 1077,

EasySpin has several advantages over other EPR simu-
lation programs [1,22,17,51]. Since it is based on Matlab, it
is interactive, programmable, extensible and features rich
support for graphical visualizations. In addition, its func-
tionality is not restricted to a single task like simulating
cw EPR spectra. For routine applications, it might be
advantageous to use graphical interfaces to EasySpin.
These can easily be written in Matlab.

There exist excellent C and C++ libraries for spin phys-
ics, the most extensive being Gamma [52] and BlochLib
[53], both originally developed for solid-state NMR. They
implement most of the basic entities necessary for EPR
computations (matrices, tensors, etc.), but lack EPR simu-
lation functionality and visualization capabilities and are
not interactive. EasySpin is similar to another program
package for solid-state NMR [54].

With all its simulation functionality, EasySpin can be
used together with Matlab’s optimization functions like
fminsearch for least-squares fitting of simulated spec-
tra to experimental ones. However, fitting of spectral
data, even for cw EPR, is not failsafe and still an active
area of research (see, e.g. [55]). The presence of many lo-
cal minima in the least-squares objective function, the
over-parameterization of the model, as well as the diffi-
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culty to obtained good starting parameters are currently
the main obstacles to routine application of fitting
routines.

Currently, EasySpin does not include functions for the
simulation of slow-motion spectra [56].

Pulse EPR simulation functionality for one- and two-di-
mensional experiments is currently under development
[4,57]. The main problem of a general pulse EPR simula-
tion function is the high computational cost involved when
a brute-force approach is used. Time-saving approxima-
tions break down for many systems. E.g., the rotating
frame approximation is not generally applicable to high-
spin systems, and simulations have to be performed in
the laboratory frame. This results in impractically long
computation times. A frequency-domain approach along
the lines of [58] helps to reduce the computational cost sub-
stantially, but significantly increases the complexity of the
implementation.

In conclusion, EasySpin represents an extensive and
flexible collection of routines for EPR data analysis
and spectral simulations. The toolbox should help to
transform EPR spectral simulations from a research top-
ic to a easy-to-use research tool. EasySpin can be
obtained from http://www.easyspin.ethz.ch, where exten-
sive documentation and a collection of application exam-
ples are available, too.
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Appendix A

This Appendix lists the Matlab/EasySpin code for the
examples presented in Section 4. Commands for graphical
rendering are omitted.

A.1. Example 1

A=112.16 -6.70 -1.82 -7.88 -0.64 67.93]; % MHz

Sys=struct(’g’, 2. 00316, Nucs’, 14N, 1H, 1H, 1H, 1H, 1H, ...
m,[222222],’A,A,"1w’,0.01);

Exp = struct (CmwFreq’, 9. 532, nPoints’, 2 13,...
‘Range’, [335.5 344.57);

[B, spec] = garlic(Sys, Exp);

A.2. Example 2

g=[2.282.192.01]; A= [70 30 3097;

AStrain = [45 25 40]; residual = [1 1 1]*60;

Sys = struct(’S’,1/2, Nucs’,’59C0’,’g’, g, A", A,...
’AStrain’, AStrain, HStrain’, residual);

Exp = struct('Range’, [261 411], mwFreq’, 9.475);

Opt = struct(’Output’,’separate’);

[x,¥] = pepper(Sys, Exp, Opt);

A.3. Example 3

Sys = struct(’S’, 5/2,°¢’, [222], D, [11 -2]* 5e3);
Par = struct('mwFreq’, 9.5, Range’, [0 50001]);
[phi, theta] = sphgrid('Dinfh’, 361);

Pos = resfields(Sys, Par, [phi; theta]);

A.4. Example 4

Sys = struct(’s’,1/2,’¢’, [2.3 2.1 2], Nucs’, "1H, ...
N, [3 627, Apa’, [0 45 0]*pi/180);
Sys. lwEndor = 0.1; % MHz
Sys.HStrain = [111]*200; % MHz
Exp = struct(mwFreq’, 9. 5, ExciteWidth’, 10);
Opt = struct('nKnots’, 51);
B = 290: 5: 340;
nulN = larmorfrq(’1H, B);
for k = 1: numel (B)
Exp.Field = B(k);
Exp.Range = nuN (k) + [-4 4];
[x,y{k}] = salt(Sys, Exp, Opt);
end
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