
Available online at www.sciencedirect.com
www.elsevier.com/locate/jmr

Journal of Magnetic Resonance 190 (2008) 233–247
5- and 6-pulse electron spin echo envelope modulation (ESEEM)
of multi-nuclear spin systems

B. Kasumaj *, S. Stoll 1

ETH Zurich, Laboratory of Physical Chemistry, 8093 Zurich, Switzerland

Received 24 August 2007; revised 23 October 2007
Available online 6 November 2007
Abstract

In 3-pulse ESEEM and the original 4-pulse HYSCORE, nuclei with large modulation depth (k � 1) suppress spectral peaks from
nuclei with weak modulations (k � 0). This cross suppression can impede the detection of the latter nuclei, which are often the ones
of interest. We show that two extended pulse sequences, 5-pulse ESEEM and 6-pulse HYSCORE, can be used as experimental alterna-
tives that suffer less strongly from the cross suppression and allow to recover signals of k � 0 nuclei in the presence of k � 1 nuclei. In the
extended sequences, modulations from k � 0 nuclei are strongly enhanced. In addition, multi-quantum transitions are absent which sim-
plifies the spectra. General analytical expressions for the modulation signals in these sequences are derived and discussed. Numerical
simulations and experimental spectra that demonstrate the higher sensitivity of the extended pulse sequences are presented.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Pulse electron paramagnetic resonance (EPR) tech-
niques in general and electron spin echo envelope modula-
tion (ESEEM) techniques in particular are widely used to
determine the electronic and geometric structure of para-
magnetic species [1]. The results lead to unique insights into
the electronic and geometric structure of paramagnetic cen-
ters in biological systems [2,3], as they allow for the deter-
mination of small hyperfine and quadrupole couplings of
nuclear spins in the molecular environment of unpaired
electrons.

Recent studies found that a cross-suppression effect [4,5]
distorts signal intensities in standard ESEEM experiments
(3-pulse ESEEM and 4-pulse HYSCORE) if more than
one nucleus contribute to the signal and can thus lead to
misinterpretation of ESEEM spectra. If all nuclei have a
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small modulation depth parameter k, i.e. a hyperfine inter-
action with a small anisotropic component and a small
quadrupole coupling, this effect is negligible, the nuclei
do not affect each other, and the spectrum equals the super-
position of the single-nucleus spectra. On the other hand,
the cross-suppression effect can have a strong impact in
the presence of strongly modulating nuclei, as they can
cause partial or complete suppression of signals from
weakly modulating nuclei coupled to the same electron
spin. In some circumstances, this results in spectra where
weakly coupled nuclei cannot be observed at all, although
they have a sufficiently large hyperfine coupling to be
resolved. As these nuclei are often of structural or func-
tional interest, experimental ways to circumvent or allevi-
ate the impact of the cross suppression are desirable.

In this work, we examine two extended ESEEM pulse
sequences, 5-pulse ESEEM [6] and 6-pulse HYSCORE
[7], that can recover signals from weakly modulating nuclei
and yield spectra that are less affected by cross suppression.
These sequences give ESEEM spectra with peaks at the
same positions as in 3-pulse ESEEM [8] and standard 4-
pulse HYSCORE [9], respectively.
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There are two reasons why spectra obtained with these
extended sequences are less affected by cross suppression
than the standard sequences. First, as we will show, they give
substantially enhanced peak intensities for weakly modulat-
ing nuclei (those affected by cross suppression) and show
decreased sensitivity towards strongly modulating nuclei
(which are responsible for the cross suppression). The second
reason is based on the occurence of blind spots [10,11]: In 3-
pulse ESEEM and standard HYSCORE, a fixed inter-pulse
delay of s causes selective suppression of peaks at some fre-
quencies, called blind spots. The cross-suppression effect
can be counteracted by choosing s so that peaks from
strongly modulating nuclei that cause cross suppression fall
on blind spots. The two extended pulse sequences have two
experimentally adjustable fixed delays, s1 and s2, and they
thus offer more flexibility in choosing blind spots.

This article is structured as follows: The theoretical back-
ground needed to derive and discuss the analytical expres-
sions for the two extended sequences is summarized in
Section 2. Section 3 gives details of the system and experi-
ments used to illustrate our findings. The main part of the
article is contained in Sections 5 and 6, where echo modula-
tion signals for 2-, 3- and 5-pulse ESEEM and 4- and 6-pulse
HYSCORE are compared theoretically and illustrated
experimentally. Finally, Section 6 summarizes the insight
obtained.

2. Theoretical background

The rotating-frame spin Hamiltonian, in angular fre-
quency units, of an electron spin ðS ¼ 1

2
Þ coupled to NI

nuclei ðI1 ¼ � � � ¼ INI ¼ 1
2
Þ using the high-field approxima-

tion is given by [1,12]

H 0 ¼ XSSz þ
XNI

q¼1

ðxI;qI z;q þ AqSzIz;q þ BqSzIx;qÞ; ð1Þ

where XS = xS � xmw is the offset between the electron res-
onance frequency xS and the frequency of the applied
microwave (mw) pulse, xmw. xI,q = �gn,qlnB0/⁄ denotes
the Larmor frequency of nucleus q.

In general, the hyperfine part of the Hamiltonian is related
to the principal values A11,q, A22,q and A33,q of the ortho-
rhombic hyperfine interaction matrix Aq, and two polar
angles hq and /q describing the orientation of the external
magnetic field B0 = (0,0,B0) with respect to the frame where
the hyperfine interaction matrix is diagonal [13]:

Aq ¼ A33;q cos2 hq þ sin2 hqðA11;q cos2 /q þ A22;q sin2 /qÞ;

Bq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x;q þ B2
y;q

q
;

Bx;q ¼
1

2
sin hq cos hq½ð2A33;q � A11;q � A22;qÞ

þ cosð2/qÞðA22;q � A11;qÞ�;

By;q ¼
1

2
sin hq sinð2/qÞðA22;q � A11;qÞ:

ð2Þ
For an axially symmetric hyperfine interaction, Aq and Bq

are related to the principal values A^,q and Ai,q of the
hyperfine tensor and can be expressed as function of the
isotropic and dipolar hyperfine coupling constants, aiso,q

and Tq, by

Aq ¼ Ak;q cos2 hq þ A?;q sin2 hq ¼ T qð3 cos2 hq � 1Þ þ aiso;q;

Bq ¼ 3T q sin hq cos hq;

ð3Þ

where hq is the angle between the external magnetic field
and the electron–nucleus axis [1].

The resonance frequencies of nucleus q associated with
the aðmS ¼ þ 1

2
Þ and bðmS ¼ � 1

2
Þ electron spin manifolds

are

xa;b;q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxI ;q � Aq=2Þ2 þ ð�Bq=2Þ2

q
: ð4Þ

The pseudo-secular part Bq of the hyperfine tensor tilts the
quantization axes of the nuclear spins for each mS manifold
by an angle

ga;b;q ¼ arctan
�Bq=2

xI ;q � Aq=2
ð5Þ

with respect to B0. The half-angle between the two nuclear
quantization axes is given by gq = (ga,q � gb,q)/2. The mod-
ulation depth parameter kq, a fundamental quantity of
ESEEM, is

kq ¼ sin2ð2gqÞ ¼
BqxI ;q

xa;qxb;q

� �2

ð6Þ

with 0 6 kq 6 1. It is a measure of the degree of dissimilar-
ity of the nuclear sublevels in the a and the b electron
manifolds.

The behavior of the spin system during a pulse sequence
is described by the evolution of the density operator r
[1,14–16]. The density operator at a time t is given by

rðtÞ ¼ . . . P 2Qt1
P 1r0P�1

1 Q�1
t1

P�1
2 . . . ð7Þ

where Pj represent pulse propagators and Qtj free evolu-
tions. In the ideal pulse approximation, the static Hamilto-
nian H0 is neglected during the microwave pulse, so that

P j ¼ e�ibjSxðyÞ ð8Þ

is the propagator for a pulse with flip angle bj and phase
x(y). The propagator during free evolution is

Qtj
¼ U ye�iHdiag

0
tj U ð9Þ

with [1]

Hdiag
0 ¼ UH 0U y U ¼

YNI

q¼1

e�iðga;qSaþgb;qSbÞIy;q : ð10Þ

At the beginning of the pulse sequence, the system is at
thermal equilibrium. Conventionally, this is represented
by r0 = �Sz/M, where M ¼

Q
qð2Iq þ 1Þ is the total num-
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ber of nuclear sub-states per electron manifold. In order to
simplify our calculations we use

r0 ¼
1

M
Sb ¼

1

M
1

2
I� Sz

� �
ð11Þ

instead. Adding to r0 a term proportional to the unity
operator I does not affect the expectation value of S+ as
the unity operator is invariant during the pulse sequence
and tr½SþðcIþ rÞ� ¼ tr½Sþr� is satisfied.

The measured signal is given by the expectation value of
the detection operator S+ = Sx + iSy at the time of the
echo maximum, which is

E ¼ hSþi ¼ tr½Sþrecho�: ð12Þ
If we write the density operator in the electron eigenbasis in
terms of four M · M submatrices,

r ¼
ra rþ
r� rb

� �
ð13Þ

the signal can be written as ÆS+æ = tr(r�). The submatrices
describe magnetization with different electron coherence
orders [17,18]. The off-diagonal blocks r+ and r� represent
electron coherence orders p = +1 (hereafter +) and p = �1
(hereafter �), corresponding to magnetization rotating in a
plane perpendicular to the external field. When having one
of these coherence orders, spins acquire a phase of
exp(�ipXSt) during free evolution. Components corre-
sponding to polarization or nuclear coherence (p = 0) are
distinguished for the two electronic manifolds: ra and rb

represent electron coherence order of zero in the a and b
electron manifold, symbolized by 0a and 0b, respectively.
These correspond to magnetization parallel and antiparal-
lel to the external field. Each of the four submatrices with
particular electron coherence order consists of a set of com-
ponents with different nuclear coherence orders, which give
rise to separate ESEEM peaks [18].

Microwave pulses transfer and redistribute magnetiza-
tion among the four density submatrices and thus change
the electron coherence order. At the time of the echo, the
total density matrix is a sum over components that have
experienced different electron coherence orders during the
various free evolution periods in the pulse sequence. In this
way a pulse sequence with P periods of free evolution is
characterized by Nr particular electron coherence transfer
pathways (eCTPs), i.e. Nr sets of electron coherence levels
(p0,p1, . . . ,pP) during the free evolution times (t1, . . . , tP),
where p0 is the electron coherence order at thermal equilib-
rium and pj the electron coherence order during the free
evolution time tj after the jth pulse. Each eCTP starts at
p0 = 0b because of Eq. (11), and ends in observable
pP = �1 coherence if using quadrature detection. For sim-
plicity, we will omit p0 in the following. A detailed descrip-
tion how to select one or several eCTPs by phase cycling
can be found elsewhere [16,17,19].

The density matrix at the time of the echo (Eq. (7)) and
the expectation value ÆS+æ (Eq. (12)) are sums of contribu-
tions from all possible eCTPs. In the ideal pulse approxi-
mation, each density matrix corresponding to a particular
pathway can be written as a tensor product of density sub-
matrices of single-nucleus subsystems, so that the eCTP
signal from a multi-nuclear spin system is a product of sig-
nals from spin systems with one nucleus each. Summing
over all contributing eCTPs, we get

E ¼
XNr

i¼1

fi

YNI

q¼1

EðiÞq ; ð14Þ

where E is the total signal from the multinuclear spin sys-
tem, fi is a pathway-specific phase factor depending on
pulse phases, and EðiÞq represents the signal from pathway
i for a spin system containing one nucleus q only. The first
(p/2)-pulse of a pulse sequence generates eCTPs starting
with p1 = +1 and with p1 = �1. The prefactor fi is neces-
sary, because the nuclear-coherence generator of 5-pulse
ESEEM and 6-pulse HYSCORE, (p/2)y � s1 � (p)y

� s1 � (p/2)x, transfers eCTPs starting with (+,�) and

eCTPs starting with (�,+) into detecteable pathways. Eq.
(14) represents a generalized product rule [8,20,21], which
allows to compute ESEEM signals of multi-nuclear spins
systems from those of single-nucleus spin systems for an
arbitrary pulse sequence. Details will be discussed else-
where (S. Stoll, in preparation).

An echo is formed when the spins have spent equal
amounts of time as pj = +1 and pj = �1 coherence, so that
the total accumulated phase is zero for all spins, indepen-
dent of their particular XS. Only a few of all possible path-
ways refocus, and in the computation of the ESEEM
signal, only these pathways have to be taken into account.
If the density matrix is not treated on a per-pathway basis,
an integration over an inhomogeneous distribution of XS is
necessary [8].

The echo signal E(t1, t2, . . .) is a function of the inter-
pulse delays. In order to estimate k [8], the signal is usually
normalized by dividing it by the signal at zero evolution
times, E(0,0, . . .). This gives a normalization constant
which contains 1/Nr, where Nr is the number of pathways
contributing to the echo. As we are interested in comparing
absolute ESEEM signal intensities from sequences with dif-
ferent numbers of echo-forming pathways, we will omit
this Nr normalization in this paper.
3. Experimental

Experiments to illustrate the theoretically predicted
behavior have been carried out using a degassed solution
of 5 mM 63Cu(Gly-13C2)2 with 110 mM glycine in 4:6
water/glycerol, where the pH was adjusted to 7.3 with
KOH [22,23].

All pulse EPR spectra were recorded on an X-band Bru-
ker ELEXSYS E680 spectrometer at a magnetic field of
B0 = 337.6 mT and a temperature of T = 20 K. The pulse
sequences employed are shown in Fig. 1. Pulse lengths of
12 ns for p/2 pulses and 24 ns for p pulses were used for
all experiments, with T0 = 48 ns and an increment of
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Fig. 1. ESEEM pulse sequences (variable T,T1,T2 and fixed s,s1,s2): (A)
2-pulse ESEEM, (B) 3-pulse ESEEM, (C) standard (4-pulse) HYSCORE,
(D) 5-pulse ESEEM, (E) 6-pulse HYSCORE.
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DT = 12 ns. In order to make signals from the various
pulse sequences quantitatively comparable, the number of
scans was set so as to keep the acquisition time identical
in combination with the number of phase-cycle steps. A
4-step phase cycle was used for 3- and 4-pulse ESEEM.
In order to handle the pulse phases correctly (+p/2)x-pulses
were tuned such that the imaginary part signal reaches a
maximized and positive primary echo, (+p/2)y-pulses such
that the real part signal reaches a maximized and negative
primary echo. A 2-step phase cycle was used for the 5-pulse
ESEEM measurements and a 4-step phase cycle for 6-pulse
HYSCORE. Details of these phase cycles are relegated to
Appendix A. The data processing was kept the same in
order to be able to quantitatively compare the intensities
obtained by the various pulse sequences.
4. 1D experiments: 2-, 3- and 5-pulse ESEEM

4.1. One nucleus

Before comparing 3-pulse and 5-pulse ESEEM for mul-
tinuclear spin systems, we start by discussing basic proper-
ties of these one-dimensional ESEEM experiments for the
case of one nucleus, based on the theory outlined in Section
2. We omit the nuclear index q.

For completeness and future reference we first look at
the 2-pulse ESEEM experiment as shown in Fig. 1A. The
only eCTP contributing to the 2-pulse echo is (+,�). The
signal due to this pathway is [24]

E2pðT Þ ¼ 1� k
2

� �
þ k

2

�
cosðT xaÞ þ cosðTxbÞ

� 1

2
cosðT x�Þ �

1

2
cosðTxþÞ

�
ð15Þ

with x± = xa ± xb. Unlike the other ESEEM sequences
discussed in this paper, 2-pulse ESEEM yields sum and dif-
ference peaks, at x+ and x�, respectively, inverted and
with half the intensity of the basic peaks at xa and xb.
The peak amplitudes of 2-pulse ESEEM are determined
by the modulation depth parameter k only, whereas addi-
tional factors contribute to the amplitudes of the other
ESEEM sequences shown in Fig. 1.

As there is only one echo pathway in 2-pulse ESEEM
(Nr = 1), the product rule Eq. (14) for a multi-nuclear sys-
tem consists of a single product of signals from the NI one-
nucleus subsystems [24],

E2pðT Þ ¼
YNI

q¼1

E2p;q: ð16Þ

The 3-pulse ESEEM experiment [8] is shown in Fig. 1B.
The eCTPs contributing to the echo of the 3-pulse ESEEM
experiment are (+, 0a,�) and (+, 0b,�). The signal is the
sum of the evolutions of nuclear coherences in the a and
in the b manifold, with the a pathway signal

Ea
3pðT ; sÞ ¼ ð1� kba

3pÞ þ kba
3p cosððT þ sÞxaÞ ð17Þ

and the blind-spot term

ba
3p ¼ sin2 sxb

2

� �
ð18Þ

and Eb
3p analogous by exchanging a and b. Peaks appear at

xa and xb, and their amplitudes are proportional to the
modulation depth parameter k and to the s-dependent
blind-spot term ba

3p.
The fact that two pathways contribute to the echo

(Nr = 2), is also reflected by the product rule [20]

E3pðT ; sÞ ¼
YNI

q¼1

Ea
3p;q þ

YNI

q¼1

Eb
3p;q; ð19Þ

where we have, as announced, omitted the Nr normaliza-
tion factor 1/2.

The 5-pulse ESEEM sequence [6] is shown in Fig. 1D. It
differs from the remote-echo detected 2-pulse ESEEM [25]
only in the choice of pulse phases and in the interpulse
delay incrementation. Four eCTPs contribute to the 5-
pulse echo: (+,�, 0a,+,�), (�,+,0a,+,�), (+,�, 0b,+,�)
and (�,+,0b,+,�), which we abbreviate with a+, a�,b+

and b�, respectively. The modulation expressions for the
two a pathways are

Ea�
5p ðT ; s1; s2Þ ¼ E2pðs1ÞE2pðs2Þ � b5p

�
�4k2Ca

0

þ 4k cos4 g cosðTxa þ /aþ þ /bþ
Þ

þ 2k2 cos /b�
cosðTxa þ /aþÞ

þ 4k sin4 g cosðTxa þ /aþ � /bþ
Þ
�

ð20Þ

with

Ca
0 ¼ cos

s1xa

2

� �
cos

s2xa

2

� �
sin

s1xb

2

� �
sin

s2xb

2

� �
;

b5p ¼ sin
s1xa

2

� �
sin

s2xa

2

� �
sin

s1xb

2

� �
sin

s2xb

2

� � ð21Þ

and the phase shifts /a± = (s1 ± s2) xa/2 and
/b± = (s1 ± s2)xb/2. The expressions for the b pathways,

Eb�
5p , result by exchanging a and b in Eqs. (20) and (21).
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The 5-pulse echo signal is a linear combination of the four
pathway signals

E5pðT ; s1; s2Þ ¼ Eaþ
5p � Ea�

5p þ Ebþ
5p � Eb�

5p : ð22Þ

The two minus signs are a consequence of the pulse phases
chosen (fi in Eq. (14)).

It is remarkable that, in contrast to 2- and 3-pulse
ESEEM, two pathways contribute to each peak in the 5-
pulse ESEEM spectrum. The first, unmodulated term on
the right-hand side of Eq. (20) (which is, interestingly, a
product of two 2-pulse ESEEM modulations) cancels if
the signals from the two pathways containing 0a (or 0b)
are combined. The remaining unmodulated terms �4k2Ca

0

and �4k2Cb
0 are usually small, so that the overall signal

oscillates around �0.
The 5-pulse echo has x-phase. Orthogonal to it, with y-

phase, appears the primary echo due to the last two pulses.
This unmodulating echo increases with the free evolution
time T, as magnetization from the 5-pulse ESEEM eCTPs
relaxes into the eCTP (0, 0,0,+,�), i.e. the primary echo.
Therefore the signal with y-phase allows to determine the
relaxation time T1.

Eq. (20) is compact and general. Gemperle [26] gives a
much longer, slightly incorrect expression.2 The formulas
in other publications are restricted to the special case
s1 = s2 = s [1,6] and to small values of g [27].

For systems with more than one nucleus, the product rule
for 5-pulse ESEEM includes four terms, one for each
pathway:

E5pðT ; s1; s2Þ ¼
YNI

q¼1

Eaþ
5p;q �

YN I

q¼1

Ea�
5p;q þ

YNI

q¼1

Ebþ
5p;q �

YNI

q¼1

Eb�
5p;q:

ð23Þ

As the modulation in the 5-pulse ESEEM signal consists of
several terms with different amplitudes and phases, it is dif-
ficult to generally compare it to 3-pulse ESEEM. However,
some basic properties can be inferred by examining the
dependence of Eq. (20) on g (k) and s1,s2 separately.

After summing over the two contributing pathways, the
s1- and s2-independent amplitude pre-factors3 in the 5-
pulse ESEEM expression in Eq. (20) are
2 An additional factor of 2 for the constant part of the 5-pulse ESEEM
formula is obtained in our recalculation, while the modulating part of the 5-
pulse ESEEM formula [6,26,27] corresponds to our result (apart from the Nr

normalization). We therefore were able to reproduce earlier conclusions
(including the discussion for the special case s = sc and for small values of k

and g). The relation of our formula to the 5-pulse ESEEM formula as in Ref.
[1] is yet unclear. Our recalculation of the 3-pulse ESEEM intensity of the a
SQ peak, after including the Nr = 2 factor, results in AaðscÞ ¼
kba

3pðscÞ=2 ¼ k=2 and is different from AaðscÞ 	 E3p
a ðscÞ ¼ k=4 [6,26,27].

Hence, an improvement of the a SQ peak amplitude by a factor of 8 for small
values of k if using 5-pulse ESEEM instead of 3-pulse ESEEM can only be
obtained if the Nr normalizations are omitted.

3 The dependence of amplitude pre-factors on s can be omitted from
discussion, when the blind spots fulfill sc = (1 + 2l)p/xa,b where l is a
positive integer. Then blind spot factors become ba;b

3p ðscÞ ¼ b5pðs1c; s2cÞ ¼ 1.
a5p;1 ¼ 8k cos4 g a5p;2 ¼ 4k2 a5p;3 ¼ 8k sin4 g: ð24Þ

As they are nonlinear in k, they are clearly different from 3-
pulse ESEEM, where the s-independent part of the ampli-
tude, a3p = k (Eq. (17)), is linear in k. The dependence of
the various amplitude factors on g and k is shown in Fig. 2.

The modulation amplitude for a weakly coupled nucleus
(g � 0, k� 1) is mainly determined by the first term, a5p,1.
This term is about 8 times larger than a3p, so that the mod-
ulation depth is considerably enhanced compared to the 3-
pulse experiment [6]. In the strong coupling case (g � p/2,
k� 1), the third term dominates and yields similarly an
eightfold modulation enhancement.

For nuclei in the intermediate coupling regime (g � p/4,
k � 1), all three terms contribute significantly to the ampli-
tude, and the effective modulation enhancement depends
on the relative phases between them, which are dependent
both on s1 and s2 and on xa and xb and can lead to con-
structive or destructive interference. In the case g = p/4
(k = 1), the modulating parts of Eq. (20) reduce to

�b5p � 4 cosðTxa þ /aþÞ cosðxbs1=2Þ cosðxbs2=2Þ; ð25Þ

thus yielding an effective amplitude pre-factor of

8 cosðxbs1=2Þ cosðxbs2=2Þ: ð26Þ

Although this pre-factor indicates an eightfold increase in
intensity compared to 3-pulse ESEEM, the interference of
the three signal contributions leads to two additional s1-
and s2-dependent suppression factors, which will signifi-
cantly reduce the peak amplitude. The magnitude of this
additional suppression can be anywhere between 0 and 1,
its average over all possible s1 and s2 is 4/p2 � 0.4. The to-
tal amplitude in this intermediate coupling regime can
therefore vary strongly, and the modulation can be deeper
or shallower compared to the 3-pulse case, in contrast to
the k � 0 regions, where the enhancement is generally
substantial.

This improvement of the modulation depth in 5-pulse
ESEEM as compared to 3-pulse ESEEM is reduced due
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to transversal relaxation and off-resonance effects [6]. The
effective sensitivity enhancement under experimental condi-
tions is therefore difficult to predict: improvement factors
between 2 [6] and 8 [27] were reported. However, an
improvement of a factor two still leads to considerably bet-
ter spectra of low-concentration protein samples where the
S/N ratio is critical.

The other factors determining the amplitudes of 3-
pulse and 5-pulse ESEEM peaks are the blind-spot terms
in Eqs. (18) and (21). A fundamental difference is appar-
ent: while the xa and xb peak intensities in 3-pulse
ESEEM depend on different blind-spot terms, ba

3p and
bb

3p, respectively, the 5-pulse ESEEM blind-spot term b5p

is the same for both spectral peaks. Unlike 3-pulse
ESEEM spectra, 5-pulse ESEEM spectra of I = 1/2 nuclei
with small k are therefore symmetric. This constitutes an
advantage of 5-pulse over 3-pulse ESEEM, as it facilitates
spectral interpretation. For large k, the additional sup-
pression factor of the second term in Eq. (20) destroys
this symmetry. The 5-pulse ESEEM modulation expres-
sion is also symmetric with respect to an interchange of
s1 and s2.

The 5-pulse ESEEM blind-spot term in Eq. (21) can be
written as a combination of 3-pulse ESEEM blind-spot
terms

jb5pðs1; s2Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ba

3pðs1Þbb
3pðs1Þba

3pðs2Þbb
3pðs2Þ

q
: ð27Þ

If the two s values are equal, s1 = s2 = s, the expression re-
duces to b5pðs; sÞ ¼ ba

3pðsÞb
b
3pðsÞ ¼ b2

4pðsÞ, the square of the
HYSCORE blind-spot term (see Section 5). If we addition-
ally assume xa � xb � xI, which is valid for small hyper-
fine couplings (and hence small g), then ba

3p � bb
3p, and the

blind-spot term of 5-pulse ESEEM reduces to a squared 3-
pulse ESEEM blind-spot term b5pðs; sÞ � b2

3pðsÞ ¼
sin4ðsxI=2Þ. In this limit, the blind spots in 5-pulse ESEEM
have the same location as in 3-pulse ESEEM, and no addi-
tional blind spots are created. The b5p � 1 regions in 5-
pulse ESEEM are narrower, and the blind spots are more
pronounced, so that b5p is more selective than b3p. With fi-
nite pulse lengths, the blind spot behavior is more diffuse,
and the difference between 3-pulse and 5-pulse ESEEM
blind spots becomes less pronounced.

In practice, the choice of s1 = s2 is of importance to
average out blind spots, as it is done at several s in 3-pulse
ESEEM. It is sufficient to acquire 5-pulse ESEEM spectra
at several s1 = s2, a modulation which is described by
E5p(T;s,s) (see Eqs. (20) and (21)). Averaging out blind
spots at several s1 „ s2 while keeping s2 constant is more
demanding but also possible.

Experimental peak intensities of 63Cu(Gly-13C2)2 as a
function of the two s values are shown in Fig. 3. This sys-
tem contains several weakly coupled protons and moder-
ately modulating 13C. It is relatively simple, as only
I = 1/2 nuclei are visible in the ESEEM spectra.

The close relation of the 5-pulse ESEEM blind-spot
term as compared to 3-pulse ESEEM for xa � xb is dem-
onstrated in Fig. 3A and C. Fig. 3C shows the 3-pulse
ESEEM blind-spot term b3p(s) acting on the 1H matrix
peak centered at 14.4 MHz. Fig. 3A illustrates the period-
icity of the proton matrix peak due to
b5p(s1,s2) = b3p(s1)b3p(s2) with b5pðs; sÞ ¼ b2

3pðsÞ on the
diagonal line. Each point in Fig. 3A corresponds to the
matrix peak amplitude of a 5-pulse ESEEM spectrum.
The 5-pulse ESEEM intensities of the 1H matrix peak are
on average about twice the 3-pulse ESEEM intensities
shown in Fig. 3C.

In general, the a- and b-single-quantum (SQ) peaks are
found at different frequencies xa and xb. The blind-spot
behavior for the two 13C frequencies xa;13C 6¼ xb;13C is illus-
trated in Fig. 3B and D. The SQ-peak amplitudes are
clearly different for the two SQ-peak amplitudes in 3-pulse
ESEEM (Fig. 3D), in addition, these amplitudes are oscil-
lating with two different blind-spot terms ba

3pðsÞ and bb
3pðsÞ

(Eqs. (17)-(18)). The blind-spot term of 5-pulse ESEEM
(Eqs. (21) and (27)) is the same for both SQ peaks. Each
point in Fig. 3B represents the integral of the signal over
the frequency range 0–8.3 MHz in a 5-pulse ESEEM spec-
trum, and contains the amplitude of both 13C SQ-peaks.
On the diagonal, where s1 = s2, these amplitudes are easily
comparable to 3-pulse ESEEM described by
b5pðs; sÞ ¼ ba

3pðsÞb
b
3pðsÞ (see also Fig. 3D). This recorded

5-pulse ESEEM blind spot behavior for any s1 and s2 is
well described by Eq. (27). Also, the expected symmetry
of the peak intensities with respect to an interchange of
s1 and s2 is visible.

‘‘Blind zones’’, i.e. areas in the (s1, s2)-plane where the
modulation of all nuclei is simultaneously almost com-
pletely suppressed, can appear in 5-pulse ESEEM (marked
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with arrows in Fig. 3A and B). Blind zones can be found by
selecting one s value in a blind-spot and another one in an
anti-blind spot position of an arbitrary peak, for example
the 1H matrix peak. These zones can be avoided if measur-
ing at s1 = s2 only. Nevertheless, the s values can be chosen
such that s1 „ s2 in order to selectively enhance and sup-
press peaks more efficiently as in the special case s1 = s2;
this capacity is of importance for further reducing the
impact of the cross-suppression effect.

4.2. Multiple nuclei

The ESEEM signals of multi-nuclear spin systems are
obtained from single-nucleus signals using the product rule
in Eq. (14). As the signals from the individual nuclei are
combined in a product rather than a sum, the nuclear peaks
at the SQ frequencies xa and xb are reduced in intensity.
This cross-suppression effect is a consequence of the prod-
uct rule and is a disturbing effect in 3-pulse ESEEM [4] and
HYSCORE [5,28,29] spectra of more than one nucleus
coupled to same electron spin, resulting in reduced SQ-
peak intensities and inter-nuclear combination peaks.
Cross suppression only is negligible if all nuclei have
k � 0. The SQ-peak amplitudes are then not affected by
other nuclei. As a consequence, one can neglect higher
order terms of k and any single-nucleus modulation for-
mula of the form 1 � kqÆfq(xa,q,xb,q) results in a superposi-
tion of the signals of each nucleus [1], i.e.Q

q1� kq � fqðxa;q;xb;qÞ � 1�
P

qkq � fqðxa;q;xb;qÞ. We will
show that the above simplification is not only applicable
to 2-pulse ESEEM (Eq. (15)) and 3-pulse ESEEM (Eq.
(17)), but to all pulse sequences discussed here, assuming
the special case of shallow modulations only.

The 3-pulse ESEEM intensity of the a SQ peak of a
nucleus q at xa,q is given by [4]

Aðeff :Þ
a;q ¼ Aa;q

Y
r 6¼q

ð1� Aa;rÞ; ð28Þ

i.e. the amplitude in the single nucleus case Aa;q ¼ kqba
3p;q is

reduced by the amplitude of other nuclei r, leading to the
effective amplitude Aðeff :Þ

a;q in a multi-nuclear spin system.
This formula holds also when exchanging a and b. The
reduction in the effective amplitude is large if any of the
zero-frequency components 1 � Aa,r is small, that is, when
any Aa,r � 1. This means that nuclei with large peak ampli-
tudes (because of k � 1 and/or large blind-spot terms, see
Eq. (17)) are strong suppressors that reduce the SQ peak
intensity of other nuclei significantly. This is a consequence
of the fact that a given total electron spin polarization feeds
all nuclear coherences, so that strong branching towards
one particular coherence necessarily diminishes the ampli-
tude of other coherences.

Such nuclei include 14N, which often is in the k � 1
regime at X-band frequencies [30], 13C and 2H. The cross
suppression can seriously affect intensities of 1H peaks in
partially deuterated samples and impede a correct interpre-
tation when comparing them with spectra from non-deu-
terated samples, which is a common way of assigning 1H
ESEEM peaks. The more suppressors are present in a spin
system, the larger the cross suppression on nuclei with
inherently weak ESEEM intensities. The cross suppression
of weak SQ peaks in 3-pulse ESEEM can only be alleviated
by enhancing Aa,q and/or reducing the amplitudes Aa,r of
all suppressor nuclei as can be seen from Eq. (28). An
appropriate choice of s in the blind-spot term ba

3p;q is one
possibility.

The contributions to the SQ-peak amplitude at xa,q in 5-
pulse ESEEM, due to the eCTPs a+ and a�, respectively,
are reduced by the zero-frequency componentsY
r 6¼q

ðE2p;rðs1ÞE2p;rðs2Þ � 4k2
r b5p;rC

a
0;rÞ: ð29Þ
A detailed discussion is demanding due to the complexity
of this expression. Still, some features are easily deduced.
If kr � 0 for all nuclei r the first term in Eq. (29) simplifies
to E2p,r(s1)E2p,r(s2) � 1 while the second term vanishes.
Then, the spectrum of a multi-nuclear spin system equals
a superposition of the single-nucleus spectra, unaffected
by cross suppression (Appendix B). Cross suppression
due to the presence of kr = 1 nuclei has the ability to reduce
and conceal 5-pulse ESEEM peaks. But one has to keep in
mind, that cross suppression now affects improved peak
amplitudes (Section 4.1). The reduction of an SQ-peak
amplitude in 5-pulse ESEEM spectra depends on s1 and
s2. In 5-pulse ESEEM, as in 3-pulse ESEEM, cross sup-
pression can be negligible even in the presence of strong
suppressors due to the influence of the blind-spot terms.
Eq. (29) therefore underlines the importance of recording
5-pulse ESEEM spectra at more than one blind spot posi-
tion; not only to average out blind-spots, but also to avoid
a potential cross-suppression effect. This result is valid par-
ticularly for s1 = s2, and—although experimentally more
demanding—for s1 „ s2. In 5-pulse ESEEM s2 is limited
by the dead time, but by using remote echo detection [25]
this can be overcome and the full (s1,s2) dependence of
the signals can be exploited. The phase cycling for remote
echo detected 5-pulse ESEEM is given in Appendix A.

The creation of inter-nuclear peaks at multi-quantum
(MQ) frequencies, which are sums and differences of the
SQ frequencies of various nuclei, also is a consequence of
the product rule (14). This result is due the trigonometric
property cos/1cos/2 = [cos(/1 + /2) + cos(/1 � /2)]/2.
As the total amplitude is conserved, the peak intensity that
is distributed over these new MQ peaks is lost from the
basic single-quantum (SQ) peaks and the unmodulated
part.

In 3-pulse ESEEM, the amplitudes of the MQ peaks
involve a SQ frequencies from NMQ nuclei qi, but not from
the other nuclei pj, are all equal and given by
Aa;q1�a;q2�... ¼
1

2NMQ�1
�
Y

i

Aa;qi
�
Y

j

ð1� Aa;pj
Þ: ð30Þ
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A similar expression holds for b MQ peaks, or for each
pathway in general. These MQ peaks are created atPNMQ

i¼1 � xa;qi
and

PNMQ

i¼1 � xb;qi
. If NMQ = 2 this formula

reduces to the one given in Ref. [4]. From all these MQ
peaks only those containing linear combinations of fre-
quencies from two nuclei, i.e. the zero-quantum
ðxa;q1

� xa;q2
Þ and double-quantum ðxa;q1

þ xa;q2
Þ peaks,

are pronounced. Higher-order MQ peaks involving more
than two nuclei are weaker, as the intensity of the inter-nu-
clear cross peaks scale with the inverse power of the order
of the MQ-transition.

The product rules of 3- and 5-pulse ESEEM (Eqs. (19)
and (23)) combine frequencies stemming from the same
mS manifold, whereas the product rule of 2-pulse ESEEM
(Eq. (16)) contains a single eCTP for both mS manifolds.
The contribution of sum- and difference peaks to cross sup-
pression in 2-pulse ESEEM further hinders a quantitative
comparison with 5-pulse ESEEM. Due to these differences,
cross-suppression in 2-pulse ESEEM is only briefly dis-
cussed and not compared to 5-pulse ESEEM. The effective
SQ-peak intensities at xa,q in 2-pulse ESEEM

Aðeff :Þ
a;q ¼ kq=2

Y
r 6¼q

ð1� kr=2Þ; ð31Þ

reveal an improvement as compared to 3-pulse ESEEM.
The reduction due to cross suppression, 1 � kr/2, has an
upper limit of 1/2 for strong suppressors kr � 1, in contrast
to 3-pulse ESEEM where complete suppression is possible.
Also the sum and difference peaks are reduced byQ

r 6¼qð1� kr=2Þ. In practice, a large number of suppressors
can be present, and peak intensities of nucleus q might fall
under the noise level. The lack of the blind-spot term gives
no possibility to reduce the cross suppression on a nucleus
with kq � 0 in 2-pulse ESEEM. In fact, another experimen-
tally adjustable parameter, the pulse length, overcomes this
limit (see Ref. [31]). Also MQ peaks are created at large
modulation depths k. These inter-nuclear cross peaks are
MQ combinations between the a SQ, b SQ and sum- and
difference peaks.

An exemplary simulation of 3-pulse and 5-pulse
ESEEM of a k � 0 nucleus, 1H, in the absence and the
presence of a strong suppressor nucleus, 13C, is shown in
Fig. 4. In the absence of 13C, the 1H peaks in the 5-pulse
spectrum are about 5 times as intense as in the 3-pulse spec-
trum. When the 13C nucleus is included, the 1H peaks in
both 3-pulse and 5-pulse are reduced in intensity due to
cross suppression. In the 3-pulse ESEEM, one of the two
1H is almost missing, and two weak inter-nuclear combina-
tion peaks appear. The suppression in the 5-pulse ESEEM
spectrum is the same for both 1H peaks, and the relative
intensity loss is small. In addition, no visible multi-quan-
tum peaks are present. Closer examination of the signals
resulting from Eqs. (20) and (23) reveals that the inter-
nuclear coherences are present in all eCTPs, but have
opposite phases in the two a (b) pathways, so that they can-
cel. This absence of MQ peaks is another advantage of 5-
pulse ESEEM over 3-pulse ESEEM, as it simplifies poten-
tially crowded spectra. MQ peaks can, however, be of diag-
nostic importance in some cases as their positions reveal
relative signs of hyperfine interactions [28,29].

The effect of cross suppression is studied on the recorded
3- and 5-pulse ESEEM spectra of fully 13C-labeled
63Cu(gly)2 (Fig. 5, see also Fig. 3). As inter-nuclear cross
peaks do not occur in 5-pulse ESEEM, experimental evi-
dence for the large modulation depths that are associated
with cross-suppression has to be demonstrated by the
reduction of the SQ-peak amplitudes. The recorded inten-
sities of the proton matrix peak, which were shown in
Fig. 3A, are superimposed by the function describing the
reduction due to cross suppression by 13C (see Eq. (29)).
As the modulation depth parameter k13C is smaller than
1/2, i.e. a relatively weak suppressor, the necessary term
to describe cross suppression is E2p;13Cðs1ÞE2p;13Cðs2Þ and
the second term is negligible. The starting points of the
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arrows in Fig. 5 indicate positions, where maximized SQ-
amplitudes of the proton matrix would be expected due
to the blind-spot term b5p;1H in the absence of cross sup-
pression. But the recorded maximal intensities are shifted
towards higher s2 values, and lower and higher s1 values,
respectively, as a larger reduction due to cross suppression
is appearing towards s1 = s2 � 125 ns. A negligible cross
suppression due to 13C is found in the recorded 5-pulse
ESEEM spectra if s2 is above 160 ns and s1 is either below
90 ns or above 160 ns. The relative intensity of the 1H
matrix peak as compared to the 13C peaks was calculated
for 3- and 5-pulse ESEEM at all blind spot positions,
and revealed that this ratio is up to 7 times larger when
using 5-pulse ESEEM instead of 3-pulse ESEEM. This
shows that cross suppression can be avoided more effi-
ciently when using 5-pulse ESEEM.

5. 2D experiments: 4- and 6-pulse HYSCORE

5.1. One nucleus

4-Pulse HYSCORE [9] is derived from 3-pulse ESEEM
by adding a p mixing pulse during the evolution time T and
incrementing the two resulting intervals T1 and T2 sepa-
rately, so that a 2D signal is obtained (see Fig. 1C). The
eCTPs contributing to the 4-pulse HYSCORE echo are
(+, 0a, 0b,�) and (+, 0b, 0a,�), abbreviated as ab and ba,
yielding inter-manifold cross peaks correlating nuclear fre-
quencies in the a and b electron manifolds, (xa,xb) and
(xb,xa). In case of a non-ideal mixing pulse, contributions
from the eCTPs (+,0a, 0a,�) and (+, 0b, 0b,�) may also be
present [17,32,33], resulting in intra-manifold cross peaks
along the diagonal at (xa,xa) and (xb,xb). The modulation
expression for 4-pulse HYSCORE as originally derived in
[17,21] is given in Appendix C.

By a similar insertion of a p mixing pulse during T in the
5-pulse ESEEM sequence, a 6-pulse HYSCORE sequence
as shown in Fig. 1E is obtained [7,34]. The 4 eCTPs
contributing to the echo in this sequence are
(+,�, 0a, 0b,+,�), (�,+,0a, 0b,+,�), (+,�, 0b, 0a,+,�)
and (�,+,0b,0a,+,�), abbreviated ab+,ab�,ba+ and ba�.
They yield inter-manifold cross peaks as in 4-pulse
HYSCORE. We were able to derive a relatively compact
modulation formula for 6-pulse HYSCORE, for the case
of ideal pulses. It is given in Appendix C. As in 4-pulse
HYSCORE, if the mixing pulse is non-ideal, additional
intra-manifold diagonal peaks might be present.

Apart from their dependence on the s-dependent blind-
spot term b4p, the intensities of the 4-pulse HYSCORE
cross peaks in the first quadrant, at (xa,xb) and (xb,xa),
are determined by a4p,1 = kcos2g, whereas the second-
quadrant cross peaks at (xa, � xb) and (xb, � xa) have
an amplitude pre-factor a4p,2 = k sin2g (see Eq. (44) and
Fig. 6). The first term a4p,1 dominates for nuclei in the weak
coupling regime (g� p/4), whereas the second one domi-
nates in the strong coupling regime (g
 p/4). For interme-
diate coupling, both terms are of similar magnitude, and
cross peaks both in the first and the second quadrant are
visible. In disordered systems, peaks broaden into ridges
[35], and destructive phase interference between signals
from systems with similar orientations can lead to signal
cancelation either in the first or second quadrant [36].

The blind-spot term in 4-pulse HYSCORE given in Eq.
(48) (Appendix C) is related to the blind-spot terms of 3-
pulse ESEEM by b2

4p ¼ ba
3pbb

3p. A detailed discussion of its
impact on HYSCORE peak intensities can be found in [37].

6-Pulse HYSCORE cross-peak intensities, summed over
the two ab (or ba) pathways and at s1,2-independent blind
spots, have contributions from four terms with pre-factors

a6p;1 ¼ 8k cos6 g a6p;2 ¼ 2k2 cos2 g;

a6p;3 ¼ 2k2 sin2 g a6p;4 ¼ 8k sin6 g
ð32Þ

as illustrated in Fig. 6. The terms a6p,1 and a6p,4 are domi-
nant for weakly and strongly coupled nuclei, respectively,
and give rise to peaks in the first and second quadrant,
respectively. In these regimes, they are about eight times
larger than the corresponding 4-pulse HYSCORE terms
a4p,1 = kcos2g and a6p,2 = k sin2g. In the intermediate cou-
pling regime (k > 0.5), two additional terms become signif-
icant, each of them contributing to the peaks both in the
first and the second quadrant. As all four terms are of sim-
ilar magnitude, the total amplitude depends on the relative
phases between these terms and is difficult to predict, but a
behavior similar to the one discussed for 5-pulse ESEEM is
expected, where the enhancement is on average substan-
tially smaller than 8.

The blind-spot pre-factor in the 6-pulse HYSCORE
modulation in Eq. (50) (Appendix C) is the same as for
5-pulse ESEEM, b5p in Eq. (21), consequently the observa-
tions of Section 4 apply to 6-pulse HYSCORE, too.

5.2. Multiple nuclei

In 4-pulse HYSCORE, the presence of more than
one modulating nucleus results in the appearance of a
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multitude of cross peaks between MQ and MQ as well as
MQ and SQ frequencies, while the cross suppression causes
the original SQ/SQ cross peaks at (xa,q, xb,q) etc. to loose
intensity [4,5]. The effective amplitude of an SQ/SQ peak of
nucleus q in a multi-nuclear spin system is

Aðeff :Þ
a;q ¼ Aa;q �

Y
r 6¼q

1� kr
CðrÞ0

4

 !
; ð33Þ

where usually Aa,q � kqb4p cos2gq and CðrÞ0 is given by Eq.
(45) (Appendix C). In contrast to 3-pulse ESEEM, the
cross-suppression effect on a SQ/SQ HYSCORE peak is
not dependent on the blind-spot term, but on CðrÞ0 =4, a
quantity with values between 0 and 1.5. If kr � 0 or
CðrÞ0 =4 � 0 for all nuclei, the effective single-quantum peak
amplitudes remain as in the single-nucleus case. Nuclei
r „ q having a value 0 6 krC

ðrÞ
0 =4 6 1 reduce the SQ/SQ

peak amplitude of nucleus q, whereas nuclei with
1 < krC

ðrÞ
0 =4 6 1:5 reduce and invert it. This sign change

is without consequence in the usually displayed 4-pulse
HYSCORE magnitude spectrum.

In 6-pulse HYSCORE, the part of the eCTP signal in
Eq. (50) that is independent of T1 and T2 is responsible
for the cross suppression. The reduction of the xa,q SQ-
peak amplitude due to the nuclei r, for the ab+ and ab�
contributions, respectively, isY
r 6¼q

ðE2p;rðs1ÞE2p;rðs2Þ � 4k2
r cosð2grÞb5p;rC0;rÞ: ð34Þ

The first term is the same as found in 5-pulse ESEEM (Eq.
(29)), and simplifies to E2p,r(s1) E2p,r(s2) � 1 if all nuclei
possess kr � 0. The second term is negligible for small
modulation depth parameters kr� 1 of suppressing nuclei.
The 6-pulse HYSCORE spectrum of a multi-nuclear spin
system thus equals the superposition of the single-nucleus
spectra, if all nuclei have kq � 0. Due to the complexity
of this term it is difficult to obtain further physical insight
from the analytical equations. But with numerical simula-
tions, the difference between 4-pulse and 6-pulse HY-
SCORE of a multi-nuclear spin system can be illustrated
easily, as shown in Fig. 7. The 4-pulse experiment generates
many MQ/MQ, SQ/MQ and MQ/SQ cross peaks in addi-
tion to the 1H and 13C SQ/SQ peaks. The 1H SQ peaks are
relatively weak and appear broadened, as the combination
frequencies with the near-zero 13C SQ frequency are very
close to the 1H SQ peak positions. In contrast, the 6-pulse
HYSCORE 1H peaks are sharper and significantly more
intense.

It comes as no surprise that the peaks containing a com-
bination frequency of the two nuclei are completely absent,
just as was found earlier for 5-pulse ESEEM. Again, this is
due to phase cancelation of the signals from the two eCTPs
that contribute to the peak. 6-pulse HYSCORE spectra are
therefore much simpler than the ones obtained in 4-pulse
HYSCORE. Especially in systems with many strongly
modulating nuclei, this can be of considerable help in the
identification and assignment of peaks. Of course, MQ fre-
quencies contain information which might be valuable after
peaks have been assigned: The positions of MQ/MQ and
MQ/SQ peaks reveal the relative sign of hyperfine coupling
constants of different nuclei (see e.g. [38]). After under-
standing the 6-pulse HYSCORE spectrum it may thus be
appropriate to measure 4-pulse HYSCORE to obtain this
additional information.

The alleviated impact of the cross-suppression effect in
6-pulse HYSCORE can make it possible to observe signals
from nuclei which are otherwise invisible. As an example,
in Fig. 8 we show experimental 4-pulse and 6-pulse
HYSCORE spectra of fully 13C-labeled 63Cu(Gly)2,
recorded under similar conditions (same total acquisition
time). The 13C and 1H peaks are dominant in both
HYSCORE spectra and of comparable intensity. Inter-
nuclear combination cross peaks are visible in the 4-pulse
HYSCORE spectrum at ðxa;1H � xa;13C;xb;1H � xb;13CÞ.
These peaks, marked with arrows in Fig. 8A, are MQ/
MQ cross peaks between the 1H matrix and the 13C fre-
quencies. Their positions are calculated by making use of
the rather small modulation depth parameters for both
nuclei ðk1H � k13C < 1=2Þ at these experimental conditions,
i.e. a

1H
4p;1 and a

13C
4p;1 are the dominant terms, and of the trigo-

nometric property
cosðT 1xa;1H þ T 2xb;1H þ /1HÞ
� cosðT 1xa;13C þ T 2xb;13C þ /13CÞ

¼ 1

2
½cosðT 1ðxa;1H þ xa;13CÞ þ T 2ðxb;1H þ xb;13CÞ

þ /1H þ /13CÞ þ cosðT 1ðxa;1H � xa;13CÞ
þ T 2ðxb;1H � xb;13CÞ þ /1H � /13CÞ�: ð35Þ
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There are no visible MQ/MQ peaks at ðxa;1H � xa;13C;
xb;1H � xb;13CÞ, marked with stars in Fig. 8A. If a suppres-
sor has a large modulation depth parameter kr, one also
has to consider a4p,2; then additional cross-suppression
peaks occur at these frequencies. Another effect further re-
duces peaks at ðxa;1H � xa;13C;xb;1H � xb;13CÞ; a ridge shape
parallel to the diagonal results in destructive phase interfer-
ence between signals from adjacent orientations in disor-
dered system [36].

In the 6-pulse HYSCORE spectrum in Fig. 8B, as pre-
dicted by the numerical simulations and expected from the-
ory, the inter-nuclear MQ/MQ peaks are completely
absent, rendering a much less crowded spectrum. Most
remarkable about the 6-pulse HYSCORE spectrum is that
peaks from proton 3 (Ref. [23]) are visible, whereas they do
not appear in the 4-pulse HYSCORE spectrum even
though bp3

5p < bp3
4p. Upon closer inspection, it is found that

the peak amplitude of proton 3 is increased by a factor
of 6 compared to 4-pulse HYSCORE, where the peaks
have half the intensity of the 1H-13C MQ/MQ peak and
are barely recognizable above the noise level. The splitting
of approximately 5 MHz is assigned to originate from pro-
ton 1 and is just above the noise level in 6-pulse
HYSCORE due to blind-spots bp1

5p � bp1
4p.

This power of 6-pulse HYSCORE to reveal nuclei which
remain undetected in 4-pulse HYSCORE has already been
used in our laboratory in several systems, which will be
described elsewhere.

6. Conclusions

Analytical expressions, including product rules, for 5-
pulse ESEEM and 6-pulse HYSCORE signals were derived
for spin systems containing one unpaired electron coupled
to one or more nuclear spins and compared to 3-pulse
ESEEM and standard 4-pulse HYSCORE, respectively.

For a single-nucleus spin system, spectral peak intensi-
ties consist of two parts: a s-dependent suppression term
and a term depending on the mixing of the nuclear states
in the a and b manifolds. For s1 = s2, the blind-spot behav-
ior of 5-pulse ESEEM and 6-pulse HYSCORE is similar to
an amplified 3-pulse ESEEM and 4-pulse HYSCORE blind
spot behavior. It is usually sufficient to acquire 5-pulse
ESEEM and 6-pulse HYSCORE data with s1 = s2.

The amplitude dependence on the modulation depth
parameter k and on the angle g in the various sequences
was studied. An SQ peak of a weakly modulating nucleus
(k � 0) is determined by a single amplitude term, which is
about eight times larger in 5-pulse ESEEM and 6-pulse
HYSCORE compared to 3-pulse ESEEM and 4-pulse
HYSCORE. For a nucleus in the intermediate coupling
regime (k � 1), additional terms with different phase con-
tribute to the amplitude, so that the modulation enhance-
ment is less than eightfold.

Compared to a single-nucleus spin system, SQ peak
amplitudes in a multi-nuclear spin system are reduced
due to the cross-suppression effect. This reduction of the
single-quantum peak intensities of weakly modulating
nuclei in the presence of strongly modulating nuclei is less
severe in 5-pulse ESEEM and 6-pulse HYSCORE com-
pared to 3-pulse ESEEM and 4-pulse HYSCORE, which
is mainly due to the enhanced sensitivity towards k � 0
nuclei. In addition, peaks at inter-nuclear combination fre-
quencies are created in 3-pulse ESEEM and 4-pulse
HYSCORE, but are found to be absent in 5-pulse ESEEM
and 6-pulse HYSCORE.
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Appendix A. Phase cycles in 5-pulse ESEEM and 6-pulse
HYSCORE

As all multi-pulse sequences, 5-pulse ESEEM and 6-
pulse HYSCORE give rise to a number of unwanted echoes
that occur at the position of the echo of interest for certain
or all values of the incremented time intervals. The phase
cycles [17] given in Table 1 can be used to suppress them.
In designing these phase cycles, we have neglected free
induction decays, since they usually decay within the dead
time and do not interfere with the detection of the echo of
interest.

The 2-step phase cycle for 5-pulse ESEEM in Table 1(a)
was first given in [6]. It removes all unwanted crossing ech-
oes, but retains several 3-pulse echoes that coincide with
the 5-pulse echo in the cases s1 = s2, 2s1 = s2, or s1 = 2s2.
However, due to the pulse flip angles employed, the ampli-
tudes of these echoes (e.g. from (+, +,0,�,�) for s1 = s2)
are usually small, so that they can be neglected. The 2-step
phase cycle also does not remove the 2-pulse echo from the
pathway (0, 0,0,+,�), which, however, does usually not
disturb, as its phase is orthogonal to the 5-pulse echo. A
more robust 4-step phase cycle for arbitrary s1 and s2 is
given in Table 1(b).

The original 6-pulse HYSCORE phase cycle proposed
in Ref. [7] keeps several unwanted 2- and 3-pulse echoes
and is therefore somehow limited to s1 < s2; s1 6¼ s2

2
.

Table 1(c) and (d) contain new 6-pulse HYSCORE
phase cycle schemes. They are obtained from Table
1(a) and (b), respectively, by cycling the p mixing pulse.
The 4-step phase cycle removes all crossing echoes, but
retains the out-of-phase two-pulse echo from the last
two pulses and several 3-pulse echoes with small trans-
Table 1
Phase cycles for 5-pulse ESEEM and 6-pulse HYSCORE

p/2 p p/2 p/2 p Det.

(a) +y +y +x +x +x +x

�y �y �x +x +x +x

(b) +y +y +x +x +x +x

�y �y �x +x +x +x

+y �y �x �x +x +x

�y +y +x �x +x +x

(a,b) 5-pulse ESEEM. (c,d) 6-pulse HYSCORE.
fer amplitudes. The more robust 8-step phase cycle
removes the out-of-phase two-pulse echo and most 3-
pulse echoes.

For remote echo detected [25] 5-pulse ESEEM and 6-
pulse HYSCORE, where the sequence (p/2)+y� Tr � (p/2)+y

� sr � (p)+y � sr � echox is added at the point of the echo,
no additional phase cycles are needed. The ones in Table 1
can be used, provided that Tr is much longer than the
transverse relaxation time T2.
Appendix B. Simplification of the 5-pulse ESEEM

modulation formula (kq� 1 for all nuclei q)

In this section we assume that the modulations of the NI

nuclei are either in the weak or strong coupling limit, i.e.
kq� 1 for all nuclei q. It will be shown that the 5-pulse
ESEEM spectrum of a multi-nuclear spin system corre-
sponds to the superposition of the single-nucleus 5-pulse
ESEEM spectra.

The first term of the modulation expression of 5-pulse
ESEEM (Eq. (20)) is given by

E2p;qðs1ÞE2p;qðs2Þ ¼ 1þ O2pðkqÞ þ O2pðk2
qÞ �

k�1
1þ O2pðkqÞ;

ð36Þ
where O2pðk2

qÞ comprises negligible terms proportional to
the 2nd power of kq, and

O2pðkqÞ ¼
kq

2

"
�1þ cosðs1xa;qÞ þ cosðs1xb;qÞ

� 1

2
cosðs1x�;qÞ �

1

2
cosðs1xþ;qÞ

#

þ kq

2

"
�1þ cosðs2xa;qÞ þ cosðs2xb;qÞ

� 1

2
cosðs2x�;qÞ �

1

2
cosðs2xþ;qÞ

#
: ð37Þ
p/2 p p/2 p p/2 p Det.

(c) +y +y +x +x +x +x +x

+y +y +x �x +x +x +x

�y �y �x +x +x +x +x

�y �y �x �x +x +x +x

(d) +y +y +x +x +x +x +x

+y +y +x �x +x +x +x

�y �y �x +x +x +x +x

�y �y �x �x +x +x +x

+y �y �x +x �x +x +x

+y �y �x �x �x +x +x

�y +y +x +x �x +x +x

�y +y +x �x �x +x +x
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The remaining terms

Oa
5pðkqÞ ¼ b5p;qkq½�4kqCa;q

0

þ 4 cos4 gq cosðT xa;q þ /aþ;q þ /bþ;q
Þ

þ 2kq cos /b�;q
cosðT xa;q þ /aþ;qÞ

þ 4 sin4 gq cosðTxa;q þ /aþ;q � /bþ;q
Þ� ð38Þ

reduce to a single term; in the weak and the strong coupling
limit to

Oa
5pðkqÞ � 4b5p;qkq cos4 gq cosðTxa;q þ /aþ;q þ /bþ;q

Þ ð39Þ

and

Oa
5pðkqÞ � 4b5p;qkq sin4 gq cosðTxa;q þ /aþ;q � /bþ;q

Þ; ð40Þ

respectively. For simplicity, we assume here that all
nuclei are weakly coupled (keeping in mind that strongly
coupled nuclei are described by a single term). By com-
bining Eqs. (36) and (39), we obtain an approximate
expression for the modulation formulas of the a+ and
a� eCTPs:

Ea�
5p;q �

k�1
1þ O2pðkqÞ � Oa

5pðkqÞ: ð41Þ

The signal of the multi-nuclear spin system consist of a
product of the single-nucleus modulations (Eq. (23)), which
further simplifies according to

YNI

q¼1

Ea�
5p;q ¼

YNI

q¼1

1þ O2pðkqÞ � Oa
5pðkqÞ

�k�1
1þ

XNI

q

O2pðkqÞ �
XNI

q

Oa
5pðkqÞ: ð42Þ

Products of two or more first order terms of kq are omitted
as they result in negligible magnitude, i.e. O2pðkq1Þ
O2pðkq2Þ � O2pðkq1ÞOa

5pðkq2Þ � Oa
5pðkq1ÞOa

5pðkq2Þ � 0.
After summation of the a+ and a� pathways,

Ea
5p ¼

YNI

q¼1

Eaþ
5p;q �

YNI

q¼1

Ea�
5p;q �

k�1�2
XNI

q

Oa
5pðkqÞ

¼
XNI

q

�8b5p;qkq cos4 gq cosðTxa;q þ /aþ;q þ /bþ;q
Þ; ð43Þ

we find that the a SQ peaks of nuclei q = 1, . . . ,NI are de-
scribed by single terms.

This result is also valid for the b+ and b� pathways
(exchange a and b in Eqs. (38)–(43)).

Appendix C. 4- and 6-pulse HYSCORE expressions

We use absolute valued nuclear frequencies (Eq. (4)) in
the HYSCORE formulas, in order to simplify the illustra-
tion of the discussed features. In an alternative convention,
signed nuclear frequencies together with a different defini-
tion of the angle ga,b [1,13], yield equivalent results. The
conclusions developed in this work are independent of
the convention employed.

The modulation formula for 4-pulse HYSCORE
[1,17,21] following the eCTP (+, 0a, 0b,�) is given by
Eab
4pðT 1; T 2; sÞ ¼ 1� k

2

�
C0

2
þ Ca cos xa T 1 þ

s
2

� �� �
þ Cb cos xb T 2 þ

s
2

� �� �
� 2b4p cos2 g cos xaT 1 þ xbT 2 þ xþ

s
2

� ��
� sin2 g cos xaT 1 � xbT 2 þ x�

s
2

� ���
ð44Þ
with
C0 ¼ 3� cosðxasÞ � cosðxbsÞ
� sin2 g cosðxþsÞ � cos2 g cosðx�sÞ; ð45Þ

Ca ¼ cos2 g cos xb �
xa

2

� �
s

� �
þ sin2 g cos xb þ

xa

2

� �
s

� �
� cos

xa

2
s

� �
; ð46Þ

Cb ¼ cos2 g cos xa �
xb

2

� �
s

� �
þ sin2 g cos xa þ

xb

2

� �
s

� �
� cos

xb

2
s

� �
: ð47Þ
and the blind-spot term

b4p ¼ sinðxas=2Þ sinðxbs=2Þ: ð48Þ

The modulation along the other pathway, Eba
4p, is obtained

by exchanging a and b in the above expressions. The prod-
uct rule for the unnormalized signal is

E4pðT 1; T 2; sÞ ¼
YNI

q¼1

Eab
4p;q þ

YNI

q¼1

Eba
4p;q: ð49Þ

In 6-pulse HYSCORE, the modulations for the eCTPs
(±,«, 0a, 0b,+,�) are
Eab�
6p ¼ E2pðs1ÞE2pðs2Þ � kb5p½4k cos 2gC0

þ 4 cos6 g cosðT 1xa þ T 2xb þ /aþ þ /bþÞ
þ 4 sin6 g cosðT 1xa � T 2xb þ /aþ � /bþÞ
þ k cos2 gðCC þ cosðT 1xa þ T 2xb þ /aþ � /b�Þ
þ cosðT 1xa þ T 2xb þ /a� þ /bþÞ
þ cosðT 1xa � T 2xb þ /a� þ /b�ÞÞ
þ k sin2 gðCS þ cosðT 1xa � T 2xb þ /aþ þ /b�Þ
þ cosðT 1xa � T 2xb þ /a� � /bþÞ
þ cosðT 1xa þ T 2xb þ /a� � /b�ÞÞ� ð50Þ
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with the phases /a± = (s1 ± s2)xa/2 and /b± = (s1 ±
s2)xb/2, the abbreviations

C0¼ cos
s1xa

2

� �
cos

s2xb

2

� �
sin

s2xa

2

� �
sin

s1xb

2

� �
; ð51Þ

CC¼ cosðT 1xaþ/aþþ/b�Þ� cosðT 1xaþ/a�þ/b�Þ
þ cosðT 1xaþ/aþþ/bþÞ� cosðT 1xaþ/a�þ/bþÞ
þ cosðT 2xb�/a�þ/bþÞ� cosðT 2xb�/a��/b�Þ
þ cosðT 2xbþ/aþþ/bþÞ� cosðT 2xbþ/aþ�/b�Þ;

ð52Þ
CS¼ cosðT 1xaþ/aþ�/b�Þ� cosðT 1xaþ/a��/b�Þ

þ cosðT 1xaþ/aþ�/bþÞ� cosðT 1xaþ/a��/bþÞ
þ cosðT 2xb�/aþþ/bþÞ� cosðT 2xb�/aþ�/b�Þ
þ cosðT 2xbþ/a�þ/bþÞ� cosðT 2xbþ/a��/b�Þ

ð53Þ

and the blind-spot term b5p from Eq. (21). The modula-
tions for the eCTPs (±,«, 0b, 0a,+,�), Ebaþ

6p and Eba�
6p , are

obtained by exchanging a and b in Eqs. (50)–(53). The total
unnormalized signal, for any number of nuclei, is

E6pðT 1; T 2; s1; s2Þ ¼
YNI

q¼1

Eabþ
6p;q �

YNI

q¼1

Eab�
6p;q

þ
YNI

q¼1

Ebaþ
6p;q �

YNI

q¼1

Eba�
6p;q: ð54Þ
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