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ABSTRACT: Zero-field splitting (ZFS) of three high-spin Co(I)
(S = 1) clathrochelate complexes was determined by frequency-
domain Fourier-transform THz-EPR (FD-FT THz-EPR). The
following axial and rhombic ZFS values (D and E, respectively)
were determined: [N(n-Bu)4]Co

I(GmCl2)3(BPh)2 (1, D/hc =
+16.43(1) cm−1, E/hc = 0.0(1) cm−1), [P(Me2N)4]-
CoI(GmCl2)3(BPh)2 (2, D/hc = +16.67(4) cm−1, E/hc = 0.0(1)
cm−1), and [P(C6H5)4]Co

I(GmCl2)3(BPh)2 (3, D/hc = +16.72(2)
cm−1, E/hc = 0.24(3) cm−1). Complementary susceptibility χT
measurements and quantum chemistry calculations on 1 revealed
hard-axis-type magnetic anisotropy and allowed for a correlation of
ZFS and the electronic structure. Increased rhombicity of 3 as
compared to 1 and 2 was assigned to symmetry changes of the ligand structure induced by the change of the counterion. 1 and
3 exhibited temperature-dependent ZFS values. Possible reasons for this phenomenon, such as structural changes and weak
chain-like intermolecular antiferromagnetic interactions, are discussed.

■ INTRODUCTION

Molecular nanomagnets (MNMs)1 are emerging as prospective
components for information storage,2 spintronics,3 quantum
computing,4 and magnetic refrigeration.5 A key property of
MNMs is their, oftentimes large, magnetic anisotropy, which
arises from spin−spin and spin−orbit interactions.6,7 The
fascination for MNMs stems mainly from their magnetic
properties that are of purely molecular origin, in contrast to
conventional magnets where they arise from interactions over an
extended network. However, intermolecular interactions (IMIs)
might contribute8 and would be essential for using MNMs as
qubits for quantum computing or storage.9 Effects of IMI on the
magnetization dynamics were observed for several MNMs,10−15

and various experimental methods were proposed to estimate
the strength of IMIs.16−27

In this context, Co complexes attract significant attention.
They oftentimes exhibit very large magnetic anisotropies and
have been successfully used as building blocks in single-molecule
magnets.28,29 However, clear-cut correlations between the
magnetic properties and the atomic and electronic structure
are in their infancy.15,30,31 Furthermore, studies have been in
most cases dedicated to Co(II), but very little is known about
their Co(I) counterparts.32−39

Herein, we studied spin ground-state energy splittings [zero-
field splitting (ZFS)] of a series of Co(I) clathrochelate
complexes. The 3d8 ion is found in a spin triplet (S = 1) ground
state, which is less common than a spin singlet. In these
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complexes (see Scheme 1), Co(I) is coordinated by the six
nitrogen atoms of three dichloroglyoxime fragments (GmCl2),

which form a three-dimensional caging ligand upon binding by
two capping phenylboronic acid fragments (BPh), to give overall
the clathrochelate ligand [(GmCl2)3(BPh)2]. This ligand
arrangement gives rise to a trigonal prismatic geometry and an
orbitally nondegenerate ground state. The ligands fully
encapsulate Co(I) in a protective cage and isolate it from the
environment. This results in high chemical stability of these cage
complexes (often called clathrochelates).40−42 Along the studied
series, the anion remains unaltered and the counterion was
varied.
The ground-state energy levels of an isolated high-spin Co(I)

with S = 1 exhibiting magnetic anisotropy can be described by
the following spin Hamiltonian1

S B SH D S E S S g
1
3

( )z x y
2 2 2 2

B 0μ̂ = ̂ − ̂ + ̂ − ̂ + · ̂i
k
jjj

y
{
zzz

(1)

The first and second terms represent axial and rhombic
magnetic anisotropy, respectively, that split the energy levels
already at zero magnetic field, resulting in ZFS. For
mononuclear transition-metal ion MNMs, D and E are the
major source of spin ground-state energy level splitting.
However, as we will outline below, other contributions like
IMI may influence these splittings. Therefore, in the present
manuscript, we denote any spin ground-state splitting
irrespective of its origin as ZFS. The third term describes the

electron Zeeman interaction between the MNM and the
external magnetic field B0, under the assumption of an isotropic
g matrix.
The method of choice for measuring ZFS is electron

paramagnetic resonance (EPR) using microwave frequencies
νMW larger or comparable to the ZFS.43 This, however, can be
challenging, as the frequency needed is not known a priori and
most EPR spectrometers are fixed-frequency devices. This issue
is severe for integer S: often, no EPR absorption is observed in
the accessible field range. Complexes that do not show EPR
absorption in conventional X- and Q-band spectrometers have
been previously referred to as “EPR silent”. To lift this
restriction, FD-FT THz-EPR was employed. This method is a
powerful tool for determining ZFS of high-spin transition-metal
ion complexes.14,30,44−56 Frequency-domain EPR for an S = 1
spin system has the convenient property that both D and E can
be directly read off from the zero-field spectrum, which contains
two EPR lines centered at an energy ofD and separated by 2E (a
single line at D in the case of vanishing E).
Here, we used a combination of FD-FT THz-EPR,

susceptibility measurements, and quantum chemistry calcu-
lations to accurately determine and rationalize the ZFS of a
series of Co(I) clathrochelate complexes. The nature of the
counter-ion had a subtle effect onD and E. Further, the observed
ZFS showed a slight temperature dependence. We discuss the
possible reasons for this phenomenon, including structural
changes and weak chain-like intermolecular antiferromagnetic
interactions.

■ EXPERIMENTAL SECTION
Synthesis. [N(n-Bu)4]Co

I(GmCl2)3(BPh)2 (1) was synthesized as
described previously.57 The Co(I) clathrochelate anion was isolated as
a salt with the tetrabutylammonium cation [N(n-Bu)4]

+. Briefly, the
corresponding Co(II) clathrochelate and tetrabutylammonium bro-
mide were dissolved in an acetonitrile/dichloromethane (3:1) mixture.
An excess amount of silver powder was added to reduce the Co(II) ion,
and the reaction mixture was stirred overnight under argon followed by
recrystallization from dichloromethane. As the spectral properties
(UV−vis, MS, and IR) of the complex were identical to those reported
previously, we employed the superconducting quantum interference
device (SQUID) magnetometry data (temperature dependence of
magnetic susceptibility) from the original paper.57 The clathrochelates
[P(Me2N)4 ]Co I(GmCl 2 ) 3 (BPh) 2 (2) and[P(C6H5) 4 ] -
CoI(GmCl2)3(BPh)2 (3) were synthesized as 1, except that [P-

Scheme 1. Anion of the Studied Co(I) Clathrochelates
(Determined for 1)

Table 1. Summary of the Experimental Conditionsa

1 2 3

sample amount (mg) 159 97 101
PE powder (mg) 103 100 100
pellet (mg) 253 170 188
reference (field dependencies) 33 K, 0 T 42 K, 0 T 2.4 K, 7 T

(5 K, 0 T) (2.4 K, 0 T) (2.4 K, all B0)
33 K, 0.5 T 33 K, 0.5 T
(5 K, all other B0) (2.4 K, 0.5 T)

34 K, 3 T
(2.4 K, 1.5 and 3 T)

reference (temperature dependencies) 44 K, 0 T 43 K, 0 T 7 T
spectral regions (in cm−1) used for uncertainty estimation 11−15.5 11−13.5 11−14

18.2−21 18.5−23 18−22

aThe amount of the sample mixed with PE and the weight of the resulting pellet. Further, the temperature and magnetic field at which the reference
spectrum was recorded. The conditions of the spectra for which the references were used are indicated in brackets. Finally, the spectral region used
for the uncertainty estimation is given.
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(Me2N)4]I and [P(C6H5)4]Cl, respectively, were used instead of [N(n-
C4H9)4]Br.
Quantum Chemical Calculations. Quantum chemical calcula-

tions were performed with ORCA 4.0.1.2.58 X-ray diffraction data of 1
were used as the initial structure for the geometry optimization with a
nonhybrid PBE functional,59 the scalar relativistic zero-order regular
approximation,60 and the scalar relativistically recontracted61 version of
the def2-TZVP basis set.62 Ab initio CASSCF calculations were
performed with the def2-TZVP basis set for all atoms, along with an
auxiliary basis set formed using the autoaux command available in
ORCA.63 The active space for CASSCF calculations was chosen to
consist of the 5 cobalt 3d-based molecular orbitals and 8 electrons
(CAS(8,5)) with 10 triplet and 15 singlet electronic states taken into
account. In all CASSCF-based calculations, scalar relativistic effects
were accounted for by the second-order Douglas−Kroll−Hess
procedure.64−67 The converged wavefunctions were then subjected to
N-electron valence perturbation theory to second order (NEVPT2) to
account for dynamic correlation.68−71 Temperature dependence of χT
was calculated from the CASSCF/NEVTP2-derived energy levels of
cobalt(I) clathrochelate using the approach described in ref 72.
FD-FT THz-EPR Experiments. The FD-FT THz-EPR data were

acquired at the THz-EPR user-station of the electron-storage ring
BESSY II. The setup is described in detail elsewhere.53,73,74 For the FD-
FT THz-EPR experiments reported herein, THz coherent synchrotron
radiation (CSR)75 was used as the broad band (4−50 cm−1) excitation
source. The radiation was transmitted by a quasi-optical evacuated
transmission line through a Fourier transform infrared (FTIR)
spectrometer (Bruker IFS 125, maximum experimental resolution:
0.0063 cm−1). Experiments were performed with experimental
resolutions of 0.025 cm−1 (temperature dependence of ΔBA spectra
of 3) and 0.1 cm−1 (all other experiments). After passing through the
spectrometer, the radiation was focused on the sample immersed in a
superconducting magnet (Oxford Spectromag). The transmitted signal
was detected by a bolometer detector and Fourier-transformed to yield
frequency-domain EPR spectra. The samples (polycrystalline powder
of the Co(I) clathrochelate mixed with polyethylene (PE) powder
pressed to a pellet; amounts are summarized in Table 1) were mounted
in the variable-temperature insert of the magnet. FD-FT THz-EPR, as
an FTIR-based technology, requires the measurement of a reference
spectrum. In the present work, two alternative strategies were employed
to obtain reference spectra. ΔTA spectra employ a spectrum measured
at a higher temperature as the reference, whereas forΔBA, the reference
is measured at the same temperature but at a magnetic field of 7 T.
ΔT,BA spectra were obtained as ΔT,BA = log10(Iref/I0), where Iref is a
reference spectrum and I0 is the spectrum measured at the indicated
conditions. The measurement conditions for the used reference spectra
are summarized in Table 1. The uncertainty in the energy at which the
maximum in ΔT,BA is obtained based on the uncertainty in ΔT,BA.
Therefore, the uncertainty of ΔT,BA is estimated as the standard
deviation of ΔT,BA in spectral regions without magnetic transitions
(summarized in Table 1). Subsequently, the uncertainty in energy was
obtained as the energy at which ΔT,BA is reduced by this standard
deviation compared to the maximum.

■ RESULTS AND DISCUSSION

For 1, the variable-temperature dc magnetic susceptibility χT
(Figure 1) is 1.06 cm3 kmol−1 at 300 K, as expected for S = 1

( T g S S( 1)
8

2

χ ≈ +
cm3 kmol−1 = 1.06 cm3 kmol−1 for g = 2.06).

The dependence of χT on temperature (no changes upon
cooling down to 50 K followed by a sharp drop as temperature is
decreased further) is indicative of either significant antiferro-
magnetic interactions (on the order of a few cm−1) or ZFS.
To discriminate between dominating antiferromagnetic

couplings and ZFS as the source of the observed χT, we
performed FD-FT THz-EPR. This allows for a direct
determination of the ZFS with superior precision as compared
to susceptibility measurements. FD-FT THz-EPR ΔTA spectra

of 1measured at 5 K and at differentmagnetic fields are shown in
Figure 2. At zero field, the spectrum exhibits a resonance at 16.43
cm−1, which broadens and drastically changes its shape upon
applying the magnetic field. Strong changes with the magnetic
field indicate that this resonance is of a magnetic rather than of a
dielectric origin.

Figure 1. Variable-temperature dc magnetic susceptibility χT (black
circles) of microcrystalline 1.57 The red solid and green dotted lines are
simulations using eq 1 with D/hc = 14.4 cm−1, E/hc = 0 cm−1, and g =
2.036 (best-fit to χT) and D/hc = 16.43 cm−1, E/hc = 0.0 cm−1, and g =
2.0 (best-fit to FD-FT THz-EPR spectra). χT calculated from
CASSCF/NEVPT2 results are shown as the blue dash-dotted line.
The inset shows a ball-and-stick representation of the anion of the
studied Co(I) clathrochelates. Co(I) ion: magenta, O: red, N: blue, Cl:
green, C: gray, B: pink. H atoms are omitted for clarity. The pseudo-C3
axis passes through B, Co(I), and B atoms.

Figure 2. Field dependence of FD-FT THz-EPR spectra of 1: ΔTA
spectra (black lines) and simulations (green lines, D/hc = 16.43 cm−1,
E/hc = 0.0 cm−1, and g = 2.0) at different magnetic fields B0 and a fixed
temperature of 5 K. The spectra are offset according to the magnetic
field value and rescaled with a single factor for measurements (and
simulations) with the applied field. A different scaling factor was used
for the data measured without magnetic field. The calculated transition
energies for B0 perpendicular (dotted) and parallel (solid) to the main
molecular anisotropy axis are shown as blue lines.
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Its temperature dependence in the absence of the magnetic
field is shown in Figure 3. At the lowest temperatures (below 7

K), the ΔTA value could not be reliably determined because of
an almost complete absorption of radiation by the sample (see
Figure S1 in the Supporting Information). At higher temper-
atures, ΔTA decreases with increasing temperature, which is a
clear indication that the resonance originates from a ground-
state transition. The position of the resonance directly provides
D and E. The magnetic anisotropy is purely axial within
experimental accuracy (E/hc ≲ 0.1 cm−1), as only one narrow
resonance is observed. Furthermore, the energy position at
which the maximum ΔTA occurred decreases with increasing
temperature from 16.43(2) cm−1 at 2.7 K to 16.27(4) cm−1 at 38
K (Figure 3). The reason for this shift is not immediately clear
and is discussed below. No obvious trends with temperature
could be observed in the line width of the feature (see Figure S2
in the Supporting Information).
Fitting the temperature dependence of χT from variable-

temperature dc magnetic susceptibility measurements with the
program PHI76 and eq 1 is successful only if a positive D is
assumed (Figure 1). Doing so gives the following best-fit
parameters for 1: D/hc = 14.4 cm−1, E/hc = 0 cm−1, and g =
2.036. Multireference ab-initio calculations within the
CASSCF/NEVPT2 approach, as implemented in the ORCA
software58 (see Experimental Section for details), produce72 a
very similar temperature dependence of χT (Figure 1); however,
the calculated magnetic parameters are different (D/hc = 18.7
cm−1, E/hc = 0.0 cm−1, and g = 2.08). Obviously, although
computational methods are very helpful,77,78 in our case, they
give D and g that deviate substantially from the experimental
values.
In contrast to magnetic susceptibility measurements and

quantum chemical calculations, FD-FT THz-EPR is a
spectroscopic technique that gives direct experimental access
to the ZFS. The following magnetic parameters of 1 are obtained
by simulating the field dependence of the FD-FT THz-EPR
spectra, measured at a temperature of 5 K, with EasySpin52,79,80

and eq 1: D/hc = 16.43(1) cm−1, E/hc = 0.0(1) cm−1, and g =

2.0(1). Only at the highest magnetic field of 3 T, the simulations
deviate at around 16.4 cm−1 from the experimental results (see
Figure 2). Although the simulated absorption at 3 T in this
region is apparently too low, the agreement elsewhere is
excellent. Hence, the field-induced line broadening can be
assigned to Zeeman interaction between the external magnetic
field and the spins of the randomly oriented molecules. The
asymmetry of the spectrum at higher magnetic fields (ΔTA being
slightly larger at the high-energy end) results from powder
averaging and the division method used in the data analysis (see
Figure S5 in the Supporting Information). The magnetic
susceptibility χT is also well reproduced with these parameters
(see Figure 1). Introducing a negative D into the simulations
makes the agreement with the experimental data from FD-FT
THz-EPR slightly worse and much worse with those from the
magnetic susceptibility measurements (see Figures S3 and S4 in
the Supporting Information).
The use of two different methods of estimating the magnetic

anisotropy allows us to compare their accuracy. The
spectroscopic observation of the ZFS with FD-FT THz-EPR
provides the highest precision given its direct nature. For a
relatively wide range of D and E values, a satisfying agreement
with the measured χT curve is obtained. Hence, magnetometry
provides only an estimate for the magnetic anisotropy.
Quantum-chemical calculations provided a reasonable

estimate for D of 1 but do not yet reach the accuracy of
advanced EPR spectroscopy. Therefore, experimental methods
like FD-FT THz-EPR are indispensable to benchmark
calculated ZFS of transition-metal ions. A combination of
experimental and calculated results allows for correlating
magnetic properties and the electronic structure. In the
following, a brief discussion is provided for complex 1, details
can be found in the Supporting Information. The all-electron
nonrelativistic eigenstates can be expressed on the basis of
molecular orbitals (which in turn are eigenstates of a one-
electron solution). The dz2 orbital is lowest in energy, followed
by nearly degenerated dxy and dx2−y2. Highest in energy are the
nearly degenerated dyz and dxz (see Supporting Information).
This perfectly resembles a slightly distorted trigonal prismatic
ligand environment to the Co(I) ion. Subsequently, spin−orbit
interaction is introduced. To obtain parameters for eq 1, the all-
electron spin−orbit ground-state triplet is projected on a spin S
= 1 basis and the Hamiltonian ŜDŜ, with the anisotropy tensor
D.82 A coordination transformation to the ZFS frame lead to the
form of eq 1. The individual contribution of the nonrelativistic
states can be estimated by decomposing D. As the individual
ZFS frames are not necessarily colinear with the total ZFS frame,
the individual contributions toD and E do not have to add up to
the total D and E. However, the overall deviation is less than 0.6
cm−1 for D and 10−3 cm−1 for E, indicating that is worthwhile to
analyze the individual contributions, providing a rationale for
the calculated ZFS. The calculatedD and E are obtained with the
effective Hamiltonian approach which provides a better estimate
than the perturbation theory approach. However, we will use the
latter in the following for the sake of simplicity. The contribution
of the nonrelativistic states to D depends on the energy
difference to the ground-state and the matrix elements Ŝ·L̂ of
these state with the ground state.6 The latter are best understood
using group theory arguments. A perfect trigonal prismatic
molecule would have D3h symmetry. Although 1 has a reduced
symmetry due to the second ligand sphere, it is instructive to
consider the idealized symmetry for the analysis. Nonrelativistic
states of 1, assigned to the 3F, 1D, and 3P of the free Co(I) ion,

Figure 3. Temperature dependence of FD-FT THz-EPR spectra of 1:
Left: ΔTA spectra measured without the magnetic field at different
temperatures. Right: Absorbance energy (peakmaximum) as a function
of temperature.
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are shown in Figure 4 alongside with the assigned irreducible
representation inD3h. Table 2 also contains their contribution to

the D value. The orbital angular momentum operators L̂x, L̂y,
and L̂z have the irreducible representation E″, E″, and A2′ in D3h
symmetry, respectively.83 The nonrelativistic ground state has

3A2′ symmetry; hence, only states with 3E″ and 1A1′ can
contribute positive to D and those with 3A1′ and 1E″
negative.84,85 Naturally, the lowest excited doublet contribute
strongest (see Table 2). It has 3E″ symmetry, resulting in a
positive contribution toD. The small negative contribution toD
of a state with 3A1″ reveals that the actual symmetry of 1 is lower
than D3h. Further significant contributions come from spin-flip

states, that is, states with spin S = 0. The lowest spin-flip states do
not contribute due to symmetry; however, a higher-lying 1E″
doublet and a 1A1′ have remarkable influence on theD value. The
positive contribution from the 1A1′ state outweighs the negative
contribution of the 1E″ doublet. Hence, the overall contribution
of spin-flip states toD is positive. Higher-lying S = 1 does belong
to 3P (the ground state belongs to 3F) and adds minor
contributions to D.
The oxidation state +1 is uncommon for cobalt. The limited

number of Co(I) complexes whose ZFS has been studied differ
substantially in structure so that a comparison with our present
complex is not meaningful. In general,D/hc values ranging from
−180 to +38 cm−1 have been found.32−39 Both experimentally
and computationally, the rhombic anisotropy parameter E was
determined here to be zero. This arises from the symmetry of the
first ligation shell, where the Co(I) ion lies on a pseudo-C3 axis
(there is some slight deviation from the idealC3 symmetry).57 In
the case of perfect C3 symmetry, the Hamiltonian (eq 1) would
have to commute with the C3 operator, which is only fulfilled for
vanishing E.86 Apparently, the distortions of themolecule 1 from
an ideal structure with the perfect C3 symmetry do not lead to a
measurable rhombicity of the ZFS.
To further investigate the influence of structural changes on

the ZFS parameters, the present study was extended to
complexes 2 and 3, which differ from 1 in the counter-ion.
The small crystal sizes obtained for 2 and 3 hinder structure
determination by X-ray diffraction. Hence, effects of the
exchange of the counter-ion on the ligation of the Co(I) ion
are probed here with FD-FT THz-EPR.
FD-FT THz EPR spectra of 2 are shown in the Supporting

Information. A zero-field resonance is observed at 16.67(6)
cm−1, which does not shift with temperature between 2.5 and 35
K (see Figure S7). The resonance broadens under the
application of a magnetic field (see Figure S6), indicating a
magnetic origin. Simulations with EasySpin and eq 1 were used
to determine the magnetic parameters of 2 to be D/hc =
16.67(4) cm−1, E/hc = 0.0(1) cm−1, and g = 2.0(1). A
preferential orientation of themolecules along themagnetic field
was assumed to reproduce the data recorded in the presence of a
magnetic field.
In theΔTA spectra of 3, several strong features were observed

(see Figure S8 in the Supporting Information). Therefore, ΔBA
spectra (see Figure 5) were used to identify magnetic
resonances. Two magnetic zero-field resonances were identified
at 16.48(2) and 16.96(1) cm−1. We will refer to them in the
following as resonances 1 and 2, respectively. The application of
a magnetic field broadens the resonances. Thereby, resonance 1
mainly extends to lower energies, whereas resonance 2 extends
to higher energies. Additional features with varying absorption
for various magnetic fields were observed at energies of
approximately 16.2, 18.6, and 21.1 cm−1. However, no shift in
energy or broadening with magnetic field was observed.
Therefore, these features are not of magnetic origin and,
hence, not further considered here.
The temperature dependence of the two resonances is shown

in Figure 6. Both resonances decrease in absorption with
increasing temperature, indicating ground-state transitions.
Further, we found that the position in energy of resonance 1
does not shift with temperature. In contrast, those of resonance
2 decreases with increasing temperature from 16.96(1) cm−1 at
2.4 K to 16.7(1) at 30.2 K.87 The observation of two resonances
indicates the presence of a rhombic E term. Simulations using
EasySpin and eq 1 with D/hc = 16.72(2) cm−1, E/hc = 0.24(3)

Figure 4. Splitting of energy levels according to NEVPT2/CASSCF
calculations. On the left side, the d8 energy levels of a free Co(I) ion are
shown.81 The calculated nonrelativistic energy splitting of 1 is shown in
the center for states associated to 3F, 1D, and 3P. The assigned
irreducible representation in (idealized) D3h symmetry is also included.
The ZFS of the ground-state triplet after inclusion of spin−orbit
interaction is shown on the right. Triplet, S = 1, and (singlet, S = 0)
states are shown in black (red). The dashed lines are guides to the eyes,
which should help to identify splittings.

Table 2. Nonrelativistic States for 1a

energy/hc/cm−1 symmetry contribution to D/hc/cm−1

0 3A2′ 0.0

9932 3E″ 8.2

9977 8.3
11 464 3A1″ −0.2
11 507 3A2″ 0.0

15 657 1A2′ 0.0

15 660 1A2′ 0.0

22 596 3E′ 0.0

22 690 0.0
23 428 1E″ −3.1
23 457 −3.1
24 541 1A1′ 10.4

25 322 3E″ 0.0

25 399 0.0
38 206 3A2 0.0

aNonrelativistic states, associated to 3F, 1D, and 3P states of the free
Co(I) ion, obtained from CASSCF/NEVPT2 calculations for
molecule 1, together with their irreducible representation in
(idealized) D3h symmetry and their contribution to the calculated
D/hc value of 18.7 cm−1.
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cm−1, and g = 2.0(1) reproduce the field dependence of theΔBA
spectra of 3 (see Figure 5).88

The variations in D values between the three Co(I)
clathrochelates (see Table 3) are 1 order of magnitude above
the accuracy of FD-FT THz-EPR experiments. However, they
are far beyond those of SQUID magnetometry and state-of-the-
art quantum chemistry methods. In addition, the lack of reliable
crystal structures for 2 and 3 hinders the use of the latter.
Therefore, 2 and 3 were not investigated with these techniques.

Although the obtained E/D ratio of 3 of 0.014(2) is small, it is
significantly different from zero. Hence, the increased
rhombicity of 3 as compared to 1 and 2 was assigned to a
stronger deviation from C3 symmetry in the former case. This
change may result from alterations of the Co(I) ligand
environment induced by the bulkier counterion [P(C6H5)4]

+

as compared to [N(n-Bu)4]
+ or [P(Me2N)4]

+.
A further important experimental observation is that the ZFS

of 1 and 3 observed by FD-FT THz-EPR decreases with
increasing temperature (see Figures 3 and 6). The ZFS is often
assumed to be independent of temperature. However, temper-
ature-dependent structural changes in the environment of the
paramagnetic ion could lead in turn to a temperature-dependent
ZFS. This can be due to structural phase transitions,57 lattice
vibrations,89,90 lattice expansions,91,92 dynamic distor-
tions,57,93−95 dynamic Jahn−Teller effects,96,97 or weak IMIs.98

If a structural phase transition would occur, the crystal
packing of the Co(I) clathrochelates should change with
temperature, as it was observed for a related Co(II)
clathrochelate.57 In principle, a structural phase transition
could be investigated with X-ray diffraction. However, at the
temperature range of our interest, this would be a challenging
undertaking. A change in crystal packing may affect the structure
of individual molecules because of breaking and formation of
intermolecular contacts. In turn, this could affect the ZFS.
However, it is expected that a structural phase transition should
lead to rather abrupt changes in crystal packing. Hence, changes
in ZFS should be also abrupt, which are not observed.
Another possible reason for the temperature dependence of

the ZFS is dynamic distortions, similar to those reported for
iron(II)93 and nickel(II) complexes.94 Very recently, it was
observed that small structural differences in two polymorphs of a
cobalt(II) clathrochelate lead to a 50% difference in D.95

Indications for dynamic distortions should be reflected either in
the bond lengths or in the shape of the thermal ellipsoids
determined from X-ray diffraction. The 100 K X-ray structure of
the Co(I) clathrochelate 1 is almost perfectly axial, and the
thermal ellipsoid of the cobalt ion seems only slightly elongated
in the direction of one of the chelate ribs (indicating some
anisotropic motion at 100 K). However, as the Co(I) ion is
placed on a symmetry axis, deviations in the molecular structure
might be averaged out, as was recently observed for a high-spin
cobalt(II) clathrochelate.57 All of the above described
complexes had an orbitally degenerate ground state, which is
prone to Jahn−Teller or Renner−Teller distortions, responsible
for the dynamic distortions. In contrast, the d8 ion Co(I) in
trigonal prismatic geometry has an orbitally nondegenerate
ground state.
The third possible reason for a temperature-dependent ZFS is

structural changes induced by lattice expansion.91 Nothing is
known about the potential interconnection between lattice
dynamics and the ZFS of the Co(I) clathrochelate. However, for

Figure 5. Field dependence of FD-FT THz-EPR spectra of 3: ΔBA
spectra (black lines) and simulations (green lines, D/hc = 16.72 cm−1,
E/hc = 0.24 cm−1, and g = 2.00) at different magnetic fields B0 and a
fixed temperature of 2.4 K. The spectra are offset according to the
magnetic field value and rescaled with a single factor for measurements
(and simulations) with the applied field. A different scaling factor was
used for the data measured without magnetic field. The clculated
transition energies for B0 parallel to the main molecular anisotropy axes
(dashed, dotted, and solid for x, y, and z axes, respectively) are shown as
blue lines.

Figure 6. Temperature dependence of FD-FT THz-EPR spectra of 3:
Left: ΔBA spectra measured at different temperatures. Right:
Absorbance energies (peak maxima) as a function of temperature.

Table 3. Magnetic Anisotropy Parameters of 1, 2, and 3
Obtained in This Work by Different Experimental Methodsa

method D/hc/cm−1 E/hc/cm−1 g

1 CASSCF/NEVPT2 18.7 0.0 2.08
χT 14.4 0.0 2.036
FD-FT THz-EPR 16.43(1) 0.0(1) 2.0(1)

2 FD-FT THz-EPR 16.67(4) 0.0(1) 2.0(1)
3 FD-FT THz-EPR 16.72(2) 0.24(3) 2.00(5)

aFor comparison, computational results are also included.
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a similar Co(II) complex,92 the unit cell expanded by
approximately 0.1% from 30 to 60 K, proving a reasonable
estimate of the thermal expansion for the Co(I) clathrochelate.
For paramagnetic centers as probes in diamagnetic matrices,

weak effects of phonons on the ZFS were observed.89,90 This was
rationalized by an inherent displacement of the paramagnetic
center that affects the ZFS. The temperature-dependent phonon
density might therefore introduce temperature dependence in
the ZFS. To assign such spin−phonon correlations in molecular
compounds is currently out of reach. However, the previously
observed effects were approximately of similar relative size as
those reported herein for Co(I) clathrochelates 1 and 3.
The clathrochelate ligand forms a protective cage for the

Co(I) ion. Hence, IMIs are expected to be rather weak.
Inspection of potential exchange pathways in the crystal
structure of 1 let us consider interactions only along the crystal
b axis (see Supporting Information). The present situation of
spins S = 1 weakly (compared to the magnetic anisotropy)
coupled solely along one axis was studied recently.98−100 A
temperature dependence of the EPR transition, as observed
here, was predicted.100 On the basis of the observed temperature
dependence, we estimated aD/|J| ratio between 250 and 600 for
1 (with J, the exchange interaction strength in Ĥexchange = J∑i=0

∞ Ŝi·
Ŝi+1). This corresponds to D/hc = 16.37 cm−1 (16.30 cm−1) and
an antiferromagnetic J/hc of 0.06 cm−1 (0.03 cm−1) for D/|J| =
250 (600), respectively (see Supporting Information). Remark-
ably, these values exceed the expected dipolar interactions (see
Supporting Information) by one order of magnitude. Exchange
IMIs thus emerge as a plausible reason for the temperature
dependence of ZFS. In principle, the proposed chain model can
be probed experimentally. However, high-field EPR on single
crystals98,100 is currently not feasible because of the too small
maximum crystal sizes obtained for Co(I) clathrochelates. In an
INS experiment, the dispersion, caused by the exchange
interaction, of transitions can be observed. It is, however, very
challenging (even in spite of recent progress in INS of molecular
clusters101−105), as large D/|J| makes this dispersion not very
pronounced (see Figure S13). An obvious way to test the impact
of IMIs on ZFS would be to increase the distance between the
spin centers. This can be reached by experiments on a low-
concentration frozen solution or by magnetic dilution with a
diamagnetic analogon of the Co(I) ion. The former is
challenging because of strong nonmagnetic absorption of
solvents. The latter is not feasible, as the only other transition-
metal ion reported to be stable in the oxidation state +1 inside a
clathrochelate ligand is iron.106

In summary, on the basis of the currently available data, we
cannot exclude any of the explanations. However, a structural
phase transition or a dynamic Jahn−Teller effect are very
unlikely to cause the observed temperature dependence of the
ZFS. More likely reasons for the observed ZFS shift are lattice
expansions, spin−phonon effects, or weak IMIs.

■ CONCLUSIONS
ZFS in a series of Co(I) clathrochelate was determined with high
precision by advanced FD-FT THz-EPR. The complementary
use of susceptibility measurements alongside with FD-FT THz-
EPR for 1 allowed for an assignment of both absolute value and
sign of D/hc = +16.43(1) cm−1. This approach also
demonstrated that FD-FT THz-EPR provides much higher
accuracy and reliability in the determined ZFS values than single
fits to magnetic susceptibility data. The determined magnetic
anisotropy is of a hard-axis type (D > 0) and fully axial (E/hc =

0.0(1) cm−1). The latter may be rationalized by the fact that the
X-ray structure shows only very little deviation from a perfect C3
symmetry. Ab initio NEVPT2/CASSCF calculations provided a
reasonable estimate of the ZFS. However, they are indispensable
for understanding the contribution of the electronic structure to
the magnetic properties. In conjunction with symmetry
arguments, the calculations allowed to rationalize the con-
tributions to the ZFS for 1. ZFS of 2was found fully axial (E/hc =
0.0(1) cm−1) with slightly increased hard-axis anisotropy
compared to 1 (D/hc = 16.67(4) cm−1). In contrast, slight
rhombicity (D/hc = 16.72(2) cm−1, E/hc = 0.24(3) cm−1) was
found for 3, indicating distortion from the C3 symmetry. 2 and 3
have been synthesized in the same way as 1, but with a different
counter-ion. Although these changes might seem irrelevant for
the coordination sphere of the Co(I) ion, we observed an effect
on the ZFS. Hence, determination of the ZFS by FD-FT THz-
EPR provides a powerful probe for effects of the exchange of the
counter-ion on the ligation shell of the Co(I) ion. In fact, it was
the only accessible probe because of the lack of crystal structures
for 2 and 3. The superior resolution of FD-FT THz-EPR further
revealed a slight temperature dependence of the Co(I) ZFS.
Possible explanations include temperature-dependent structural
changes, spin−phonon interactions, and weak chain-like
antiferromagnetic IMIs with J of only a few per mille of D. As
this phenomenon occurs in a compound with the metal ion well
isolated from the environment, a further discrimination of intra-
and intermolecular contributions to the magnetic properties
would be of great interest. This adds another aspect that needs to
be kept in mind while designing newMNMs. The observation of
such subtle effects has been difficult up to now, as they require
high-purity samples exhibiting narrow lines and high-end
spectroscopy. We, however, expect that further progress in
high-frequency EPR instrumentation will soon make themmore
widely accessible.
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