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ABSTRACT: Direct time-domain simulation of continuous-wave
(CW) electron paramagnetic resonance (EPR) spectra from
molecular dynamics (MD) trajectories has become increasingly
popular, especially for proteins labeled with nitroxide spin labels.
Due to the time-consuming nature of simulating adequately long
MD trajectories, two approximate methods have been developed to
reduce the MD-trajectory length required for modeling EPR spectra:
hindered Brownian diffusion (HBD) and hidden Markov models
(HMMs). Here, we assess the accuracy of these two approximate
methods relative to direct simulations from MD trajectories for three
spin-labeled protein systems (a simple helical peptide, a soluble
protein, and a membrane protein) and two nitroxide spin labels with differing mobilities (R1 and 2,2,6,6-tetramethylpiperidine-
1-oxyl-4-amino-4-carboxylic acid (TOAC)). We find that the HMMs generally outperform HBD. Although R1 dynamics
partially resembles hindered Brownian diffusion, HMMs accommodate the multiple dynamic time scales for the transitions
between rotameric states of R1 that cannot be captured accurately by a HBD model. The MD trajectories of the TOAC-labeled
proteins show that its dynamics closely resembles slow multisite exchange between twist-boat and chair ring puckering states.
This motion is modeled well by HMM but not by HBD. All MD-trajectory data processing, stochastic trajectory simulations,
and CW EPR spectral simulations are implemented in EasySpin, a free software package for MATLAB.

■ INTRODUCTION

Electron paramagnetic resonance (EPR) spectroscopy can
reveal local, quantitative information about protein dynamics
and structure. By performing site-directed spin labeling,1,2

where a paramagnetic “spin label” is attached to or
incorporated into the backbone of a host protein, one can
measure a protein’s rotational dynamics, conformational
changes, accessibility to solvent or lipid bilayers, and much
more. However, since the EPR spectrum reflects the behavior
of both the spin label and the host protein, it can be complex
and difficult to interpret. Accurate modeling of the spin label,
the protein, and their surrounding environment is essential for
extracting detailed structural and dynamic information from
the EPR spectrum.
The primary difficulty in simulating continuous-wave (CW)

EPR spectra of spin-labeled proteins is that the time scale of
the spatial molecular dynamics (≈0.1−10 ns at room
temperature) is comparable to the inverse of the spectral
anisotropy (the maximum change in resonance line positions
as the spin-label orientation is varied). In this regime, both
spatial molecular dynamics and quantum spin dynamics need
to be treated on the same footing. Some early developments in
this area focused on perturbational calculations3,4 and
diffusion-coupled Bloch equations5,6 to simulate EPR spectra.
However, the dominant method for tackling this problem has

been to simulate EPR spectra using a simple rigid-body
hindered Brownian diffusion model (HBD), solving the
associated stochastic Liouville equation (SLE) in the frequency
domain via an eigenfunction expansion, and fitting the model
parameters to experimental data.7−11 Existing programs12,13

that perform this task are very fast, and the method has been of
immense value in many structural and dynamic studies.
However, the model is extremely simplistic and is not able
to fully capture the multistate and multitimescale structural
dynamics of the spin label and its environment. Additionally,
these programs are limited to nitroxides, but several spin labels
other than nitroxide radicals have been increasingly employed
(Gd3+,14 Cu2+,15 triarylmethyl16). To model spectra with these
labels and more complex label-environment interactions, more
general methods are required. As a result, there has been
growing interest in obtaining EPR spectra of spin-labeled
proteins directly from molecular dynamics (MD) or other
time-domain trajectories.17−41

This time-domain approach utilizes dynamical orientational
trajectories of the paramagnetic spin system to calculate the
time-dependent magnetization after a 90° pulse, i.e., the free-
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induction decay (FID), then perform a Fourier transformation
and scale the frequency axis to obtain the field-swept CW
spectrum. This approach is attractive because it can
accommodate motional models of arbitrary complexity,
anywhere between simple rigid-body Brownian diffusion and
all-atom MD trajectories.
The primary aim of this paper is to compare several MD-

trajectory-based methods of EPR spectral simulation (see
Figure 1). The simplest method is to directly use the MD
trajectory to model the motion of the spin label and calculate
the time-dependent FID (direct method, black).28,33 In this
approach, a sufficient number of MD trajectories of adequate
length need to be calculated to result in a converged simulated
EPR spectrum. However, a typical FID can last several
hundred nanoseconds and, at present, it would be prohibitive
to simulate many MD trajectories of this length, which require
time steps on the order of 1 fs to accurately model molecular
motion and interactions. As a result, two approximate spectral
simulation methods were developed that reduce the required
MD simulation trajectory length by extracting their structural
and dynamic information into simpler stochastic models and
the simulating stochastic trajectories until the spectrum
converges: (1) building a single, effective orientational
potential-energy function and a local rotational diffusion
tensor to simulate hindered Brownian diffusion (HBD method,
red)17,37 and (2) projecting the relevant spin-label coordinates
onto a hidden Markov state model to simulate stochastic jump
trajectories (HMM method, blue).34,36 Although these
methods were successfully applied to separate sets of
experimental data, they have not been directly compared on
a common system. Therefore, their relative merits are unclear.
Here, we determine which approximate method most
accurately models the behavior of the (more accurate) direct
method and best agrees with experimental data. As a
benchmark compared to previous work, we investigate the
spin-labeled amino acid R142,43 ((1-oxyl-2,2,5,5-tetramethyl-3-
pyrroline-3-methyl) methanethiosulfonate reacted with a
cysteine side chain). We deploy the HBD model in its full
generality, utilizing a three-angle orientational potential and

several recently published methods for calculating the
rotational diffusion tensor from MD trajectories. Also, we for
the first time investigate the motional dynamics of the spin-
labeled amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-
amino-4-carboxylic acid (TOAC),44−48 provide a force field
parameterization, and identify a HMM-based motional model
with up to four states that reproduces the MD dynamics very
well.
A secondary aim of this paper is to provide a consolidated,

modular approach to the time-domain EPR spectral simulation
problem. There are many relevant works that use various
formalisms and strategies (see refs 19, 29 for comprehensive
reviews). However, there has not been a comprehensive
software that takes advantage of the best aspects of each
approach and allows direct comparisons. Here we present a
single, unified framework newly implemented in EasySpin,13 a
freely available software suite in MATLAB.
The structure of this paper is as follows. We first present the

theory of time-domain EPR spectral simulations. We describe
how the approximate HBD and HMM models are constructed
from the MD trajectories and how they are used to generate
stochastic trajectories and simulate EPR spectra. Then, we
compare the results of the HBD and HMM methods with the
direct method. We first examine two model systems: a simple
helical peptide (a 20-residue polyalanine helix) labeled with
the spin labels R1 and TOAC. Then, we investigate two more
realistic systems: the globular soluble protein T4 lysozyme
labeled with R1 and the membrane protein phospholamban
labeled with TOAC. For these systems, we also compare the
simulated spectra with experimental data.
Despite these comparisons, the main goal of this paper is to

compare the direct MD method to the approximate HBD and
HMM models and not to provide fully converged MD
trajectories. Other works have extensively addressed the
problem of undersampling during MD simulations using
techniques such as umbrella-sampling36 and replica-exchange
dynamics.39

Figure 1. Flow chart depicting the different time-domain simulation methods and their hierarchy. HBD: hindered Brownian diffusion, HMM:
hidden Markov model, FID: free-induction decay, FT: Fourier transformation.
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■ THEORY
In this section, we summarize the theory for the three methods
(direct, HBD, and HMM) shown in Figure 1. Additional
details are given in the Supporting Information (SI). All of the
methods presented here are implemented in EasySpin,13 thus
providing a unified platform for consistent model evaluation
and comparison.
Orientational and Dihedral Trajectories. Starting from

a given MD trajectory, first the global motion of the protein is
removed, using a standard method that is spelled out in the SI.
This yields an MD trajectory that only contains internal
motions. From this, two reduced trajectories are calculated: the
orientational trajectory of a spin-label-fixed frame M, needed in
all three methods, and a trajectory of spin-label side-chain
dihedral angles, needed for the HMM model.
The definition of frame M for both nitroxides (R1 and

TOAC) is shown in Figure 2. Letting O, C1, and C2 represent

the vectors from the nitrogen atom to the adjacent oxygen and
carbon atoms, the frame vectors are20

x z

y z x

; ;O
O

C O O C
C O O CM M

M M M

2 1

2 1
= =
= ×

× + ×
× + ×

(1)

These vectors are combined into a rotation matrix R = (xM, yM,
zM). The matrix R is calculated for each time point in the MD
trajectory. The time sequence of R(t) constitutes one
representation of the orientational trajectory Ω(t). Alternative
representations are obtained by converting the rotation
matrices to quaternions, Euler angle triplets, or Wigner D-
matrices, as needed. Further details on this are given in the SI.
The angles for the dihedral trajectory are defined as shown

in Figure 2. For R1, we use the five side-chain dihedral angles,
χ = (χ1, χ2, χ3, χ4, χ5). For TOAC, two of its six dihedral angles
are sufficient to describe its side-chain conformation. We use χ
= (χS2, χR2) with the endocyclic torsion angles χS2 = Cα − CS

β −
CS
γ − Nδ and χR2 = Cα − CR

β − CR
γ − Nδ. R and S indicate pro-

R and pro-S relative to the prochiral Cα. The time sequence of
χ(t) constitutes the dihedral trajectory.
HBD Model. For the MD-based HBD method and for

modeling global rotational diffusion for combining with local
dynamics, we utilize single-particle hindered Brownian rota-

tional diffusion (HBD) dynamics. Implementation and
notation for this commonly applied model vary across previous
works.17,20,24,33,37,40,41,49−51 The implementation given here is
based on refs 17, 18, 20, 33. Full details are given in the SI.
Briefly, we generate stochastic trajectories by integrating the

noninertial Euler−Langevin equation for the angular velocity,
using a quaternion representation for the orientation. This
stochastic equation depends on the orientational gradient
∇V(Ω) of an effective orientational potential energy V(Ω) and
on an anisotropic spin-label-fixed local rotational diffusion
tensor Dlocal. Numerical integration of this equation, starting
from given initial orientations, yields stochastic orientational
trajectories.
We obtain V(Ω) from the MD-derived orientational

trajectories. For this, we first construct the numerical
histogram over Euler angles of all orientations occurring in
the orientational trajectories. We use a grid with 4° resolution
for each of the three Euler angles and apply a convolutional
Gaussian smoothing filter with a standard deviation of 2.6°. If
built from sufficiently long trajectories, the histogram
approximates the equilibrium orientational probability distri-
bution, Peq(Ω). The potential-energy histogram is then
obtained via

V k T P( ) ln ( )B eqΩ Ω= − (2)

From this, ∇V(Ω) is calculated numerically and then
represented as a gridded interpolant for use in repeated
sampling. As an alternative, EasySpin also supports using a
complete Wigner function expansion model for V(Ω) with an
analytical gradient when simulating stochastic orientational
trajectories. For details, see the SI.
To extract an effective rotational diffusion tensor Dlocal from

an MD trajectory, known techniques from recent literature are
based on short-time least-squares fitting of the mean square
angular displacement (MSAD),52 autocorrelation functions of
quaternion rotations,53 or fitting of quaternion covariance
functions over the entire trajectory,54 though only for
unrestricted rotational diffusion. Here, we apply the MSAD
method, though we apply it to the quaternions obtained from
the spin-label orientational trajectory and not to those
obtained from minimizing the atomic root-mean-square
deviation (RMSD) between snapshots (see the SI for details).
Previous work on MD-based EPR simulations disregarded the
dynamic information contained in the MD trajectories and
used a diffusion tensor only as a fitting parameter when
modeling experimental data.17,18,37

Finally, the resulting stochastic orientational trajectories are
converted to interaction tensor trajectories.

HMM Model. The MD-based hidden Markov model
(HMM) with multivariate Gaussian emission probabilities is
built in several steps.34,55

For R1, if the trajectory does not have enough transitions
between the two sets of conformations with χ3 ≈ ±90°, the
longest subtrajectory in one χ3 state is extracted. We consider a
transition undersampled if it occurs less than about 20 times
during a microsecond-long MD trajectory. Similarly, if TOAC
transitions are undersampled, we extract the longest sub-
trajectory from one of the sufficiently sampled conformational
subspaces.
Next, we categorize the snapshots from the χ trajectory into

N clusters based on their conformational similarity using k-
means clustering. The choice of N is described below. The
Euclidean distance metric between two χ vectors needs to

Figure 2. Spin labels R1 and TOAC. The molecular frame, valid for
both labels and defined in eq 1, is shown in blue on the lower right.
The side-chain dihedral angles are shown in red.
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carefully take into account the circular nature of the angles.
The cluster centroids are initialized by choosing random points
from the time series using the k-means++ algorithm.56 This
process is performed at least 10 times using different
initializations, and the best result is selected. The cluster
analysis assigns each snapshot to one of the N clusters,
resulting in a hidden-state jump trajectory. Additionally, it
yields a set of centroids {μ̃k} and covariance matrices {Σ̃k} of
multivariate Gaussian distributions summarizing the location
and spread of each of the N clusters in the dihedral space.
In the next step, the χ and state trajectories are down-

sampled to a desired lag time τlag of the HMM, usually on the
order of 100 ps (more on how τlag is chosen later). From the
state trajectories, a transition probability matrix P̃ and
stationary probability distribution π̃ are calculated while
enforcing detailed balance using the L-BFGS algorithm.57,58

Finally, an initial population distribution p̃ is initialized using
π̃.
Together, the parameters ({μ̃k}, {Σ̃k}, p̃, P̃) constitute the

first guess of the parameters of the HMM model. They are
then refined using the expectation−maximization algo-
rithm,59−61 yielding the optimized HMM model parameters
({μk}, {Σk}, p, P), where detailed balance is again enforced at
every step. For this model, the most-probable state trajectory
associated with the downsampled, MD-derived χ trajectory is
calculated using the Viterbi algorithm.61 Occasionally, states
are missing from this state trajectory due to low probabilities,
which can be caused by undersampling or using too many
states in the HMM construction. In such cases, the entries for
nonsampled hidden states are removed from ({μk}, {Σk}, p),
and (P, π) are recalculated.
The choice of N for the HMM is important. For R1-labeled

proteins, N = 54 states are used in the cluster analysis to
accommodate the expected multiplicity of energy minima
along χ1 (3), χ2 (3), χ4 (3), and χ5 (2) when in either of the χ3
≈ ±90° states (the latter are designated here as p3 and m3,
respectively). The transition rate between p3 and m3 states is
very slow compared to the length of typical MD simulation
trajectories,34,39 making it prone to undersampling. However, it
is also very slow on the EPR time scale at X-band and higher
frequencies. Therefore, the two χ3 subpopulations are treated
as isolated dynamic ensembles. Here, we use a p3 state as a
starting conformation for the MD trajectories and use the
longest portions of MD trajectories during which R1 remained
in p3 states. Results obtained from m3 are given in the SI. For
TOAC-labeled proteins, we use N = 4 and 2 states for TOAC-
polyalanine and TOAC-phospholamban, respectively, to
account for twist-boat and chair conformations of the six-
membered ring that are observed in the MD trajectories. We
indicate the four possible conformers as mm, pm, mp, and pp,
according to the signs of χS2 and χR2. As with the slow
transition rates between p3/m3 for R1, for TOAC-polyalanine
transition rates are slow between the twist-boat state mm and
the other chair (mp and pm) and twist-boat (pp)
conformations, so a CW EPR spectrum was simulated using
the longest portion of MD trajectory belonging to the latter
subpopulation.
The second important HMM parameter that must be chosen

is the lag time τlag. The conformational coordinates χ must be
sampled from MD trajectories at a time lag τlag such that the
resulting time series is approximately Markovian (memory-
less). However, at the time scale between MD-trajectory
snapshots, typically around 1 ps, the dynamics is strongly

inertial, and the spin-label dynamics is coupled to nearby
conformational degrees of freedom. Therefore, τlag values
much larger than that are required. To identify an appropriate
value for τlag, the relaxation time scales τi are examined. These
are calculated from the left eigenvalues λi of P

/lni ilagτ τ λ= − (3)

Regions of τlag where all τi are approximately independent of
τlag indicate that the associated state trajectories are
approximately Markovian. Additionally, τlag should be chosen
to be larger than all τi, to assure proper representation of the
associated dynamics.
From the N-state HMM model, we generate a number of

state jump trajectories (Markov chains) of sufficient length.
For each trajectory, first a stochastic initial state is generated by
sampling from the equilibrium distribution π. States at
subsequent time points are generated by sampling from the
conditional probability distributions, i.e., the rows of the
transition probability matrix P. Details about the sampling
algorithm are given in the SI.
The resulting state trajectories are converted to trajectories

of interaction tensors utilizing state-specific effective tensors.
These are calculated for each state k of the N states by
averaging tensors over all MD frames assigned to a given state
k.

Trajectory Processing. The time step used in the spatial
trajectories, both MD and stochastic, can be quite small (1 ps
< Δt < 100 ps). However, since EPR spectra at X-band are not
very sensitive to changes in dynamics at those time scales and
because propagation of the quantum dynamics is computa-
tionally expensive, we employ time-block averaging of the
interaction tensors20 to coarse grain the time step to a larger
value. The time step must satisfy the Nyquist criterion Δt < 1/
(2Δν), where Δν is the frequency bandwidth of the spectrum.
For a 14N nitroxide at X-band, 1/(2Δν) is about 2.2 ns.
In addition, for the direct method, a “sliding time window”

technique20,26,28,33 was employed to most efficiently utilize the
information contained in the long MD trajectories. This
method generates multiple shorter trajectories from a long
tensor trajectory. More details are given in the SI.
Finally, molecular diffusion rates are known to be under-

estimated in MD simulations employing the TIP3P water
model.62,63 As such, based on previous MD-based EPR spectral
simulation works,33,35,36 the time step of the spatial trajectories
was scaled as needed to correspondingly correct the diffusion
rates of the spin label due to its degree of water exposure.
These scaling factors are given explicitly in the Results section.

Quantum Spin Propagation. The tensor trajectories,
obtained either from the MD-based orientational trajectories
or from the HBD- and HMM-based stochastic trajectories, are
used for time evolution of the spin-space density operator ρ̂(t)
based on the Liouville−von Neumann (LvN) equation

t
t H t t

d
d

( ) i ( ), ( )ρ ρ̂ = − [ ̂ ̂ ]
(4)

The experiment that is simulated is a simple pulse−acquire
with a 90° pulse, resulting in an FID

M t S t( ) ( )ρ∝ ⟨ ̂ ̂ ⟩+ + (5)

where the angled brackets indicate an ensemble average over
all trajectories (see Figure 3). The number of trajectories must
be chosen such that the overall FID is converged.
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To integrate the LvN equation, we implement two methods
that differ in scope and performance. One represents the spin
Hamiltonian in terms of irreducible spherical tensor operators
and is applicable to spin systems with any number of spins of
arbitrary multiplicity.28,41,64,65 The second approach specializes
the Hamiltonian and the above equations to the case of S = 1/
2 with up to one nucleus, neglecting nuclear Zeeman and
nuclear quadrupole interactions as well as nonsecular
components of the hyperfine interaction.20,33 Both approaches
yield identical results for nitroxides. However, since the second
approach is significantly faster, we utilize it for the nitroxide
simulations in this paper. Full details about both approaches
are provided in the SI.
The converged FID is then used to calculate the frequency-

swept CW EPR absorption spectrum I(ω) via Fourier
transformation

I t M t( ) Re d e ( )t

0

i∫ω ∝ ω
∞

−
+

i
k
jjj

y
{
zzz (6)

The field-swept CW EPR spectrum is obtained from I(ω) by
converting the frequency axis to a field axis. The first-harmonic
CW EPR spectrum is obtained by numerical differentiation, by
pseudomodulation, or by multiplication with 2π i t prior to
Fourier transformation.
Since this paper focuses on the effects of MD-based models

on CW EPR spectral lineshapes, spin relaxation mechanisms
other than those due to rotational diffusion are not explicitly
treated. Additional homogeneous and inhomogeneous broad-
ening mechanisms that commonly affect CW EPR spectra66,67

are treated phenomenologically using spectral convolution.

■ RESULTS AND DISCUSSION
In this section, we compare the results of simulating CW EPR
spectra from MD simulations using the approximate HBD and
HMM methods against those of the direct method and, when
applicable, experimental data. We examine four MD-simulated
spin-labeled protein systems: a simple helical peptide (R1-
polyalanine and TOAC-polyalanine), a water-soluble protein
(R1-T4 lysozyme), and a membrane protein (TOAC-
phospholamban). The EPR spectral simulation parameters
corresponding to each model are shown in Table 1 (additional

parameters are given in the SI). The molecular modeling and
rendering for figures was performed using VMD.68 All EPR
spectra in the main text were simulated using an X-band
frequency (9.5 GHz); additional spectra simulated using a W-
band frequency (95 GHz) are given in the SI.
In an effort to more efficiently sample the conformational

space of R1, some previous works33−36 simulated many short
MD trajectories (10−100 ns long each) with different starting
conformations of R1. Other works28,30−32,39 have employed
single MD trajectories of varying length when simulating CW
EPR spectra with some success. Here, for each spin-labeled
protein, we simulated one long MD trajectory (800 ns to 1 μs)
with spin label starting conformations chosen by energy
minimization. This strategy was adopted to assess the efficacy
of each spectral simulation method when given a minimal set
of MD-trajectory data and provide a valid comparison between
the direct method and the others. Although the HBD and

Figure 3. In-phase part of FID signals of an 14N nitroxide simulated
from five individual stochastic trajectories with the same starting
orientation (gray) and an ensemble average over 80 000 trajectories
(red). Each trajectory was simulated using isotropic Brownian
rotational diffusion with a diffusion constant D = 0.11 rad2 ns−1

(rotational correlation time τR = 1.5 ns) and additional Lorentzian
broadening of 0.1 mT (T2 ≈ 110 ns).

Table 1. List of EPR Spectral Simulation Parameters for
Each Model

model g A/2π (MHz)
Dglobal

(rad2 μs−1)c

R1-polyalanine [2.00900 2.00600
2.00200]

[16.8 16.8
100.9]

0

TOAC-polyalanine [2.00900 2.00600
2.00200]

[16.8 16.8
100.9]

0

R1-T4 lysozymea [2.00811 2.00586
2.00202]

[16.8 11.2
103.7]

18

TOAC-
phospholambanb

[2.00861 2.00622
2.00205]

[16.3 11.2
93.3]

0

aFrom ref 36. bDetermined by nonlinear least-squares fitting to the
direct result. cDiffusion rate used to superimpose trajectories of
isotropic global rotational diffusion.

Figure 4. (Top) Snapshot of R1-labeled polyalanine taken from an
800 ns MD simulation trajectory. The molecule-fixed coordinate
system that was used to extract the orientation of the spin label’s
Zeeman and hyperfine interaction tensors is indicated in orange (x-,
y-, and z-axes). (Bottom) Corresponding CW EPR spectra simulated
based on the MD simulation trajectory with state p3 using the direct
(black), HBD (red), and HMM (blue) methods.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.9b02693
J. Phys. Chem. B 2019, 123, 10131−10141

10135

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b02693/suppl_file/jp9b02693_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b02693/suppl_file/jp9b02693_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b02693/suppl_file/jp9b02693_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcb.9b02693


HMM methods are capable of utilizing multiple short MD
trajectories with T < 100 ns, the minimum required trajectory
length for the direct method is the decay time of the FID, on
the order of 100−200 ns at X-band and 30−80 ns at W-band.
As a result, transitions that are very slow on the X-band CW

EPR time scale, such as those between p3/m3 for R1 and p2R/
m2R for TOAC, are indeed undersampled in the MD-trajectory
data. However, the contribution of such long-lived states
toward the total CW EPR spectrum can be approximated by
simulating spectra from each of these states individually and
adding them linearly. For these reasons and to avoid
undersampling transitions, when simulating CW EPR spectra,
we selected the longest portions of each trajectory during
which the spin label remained in these long-lived states. We
consider a given dihedral state undersampled if the total
number of transitions into and out of it is less than about 20.
Although such cases could accurately reflect a transition rate
on the time scale of the MD-trajectory length, the associated
large uncertainty will significantly affect their estimation.
Regarding convergence behavior of the spectral simulation
methods, in the SI we examine the effects of varying the MD-
trajectory length used to simulate each spectrum.
For each MD simulation, the integration time step was 2 fs

and the time step between saving snapshots was 2 ps. More
detailed information regarding the MD and spectral simu-
lations as well as the trajectories of the dihedral angles χ for
each spin-labeled system can be found in the SI.

R1- and TOAC-Polyalanine. As simple model systems,
following the example set by ref 33, we use two water-solvated
20-residue polyalanine helices, labeled with either R1 (attached
to a cysteine) or TOAC (mutated from alanine) at position 10.
To prevent unfolding of the helix in the all-atom MD
simulations, the backbone atoms of the helix were harmon-
ically restrained in each case. The time axis was scaled by a
factor of 2.5 due to the labeling site’s high water exposure, as
was done in refs 33, 35. Cartoons of the spin-label/helix
systems, excluding solvent molecules, are shown at the top of
Figures 4 and 5, along with the molecule-fixed frames.
No global diffusion was superimposed so as to examine the

effects of spin-label motion on CW EPR spectra in the absence
of peptide tumbling. There exist experimental data of spin-
labeled peptides tumbling in the solution for both R169−72 and
TOAC.73,74 However, in these data, the spin-label motion is
masked by the rapid and anisotropic nature of the peptide’s
global motion. There do not appear to be experimental data in
which the spin-label motion is unhindered and the peptide is
immobilized. As a result, the approximate method results are
compared with those of the direct method in this section.
The CW EPR spectra simulated from the MD trajectory of

R1-polyalanine using the direct (black), HBD (red), and
HMM (blue) methods are shown at the bottom of Figure 4.
The direct method result shows a relatively sharp lineshape
indicating fast reorientational motion with a correlation time
on the order of sub-nanoseconds. The high- and low-field lines
each show two distinct features, which are probably caused by
differential degrees of motional restriction between rotameric
states of the label. These features are only captured by the
HMM method. In the HBD method, the orientational
histogram has several prominent maxima, and Dlocal ≈ (208,
280, 630) rad2 μs−1 (we represent Dlocal using its eigenvalues
here and throughout this section) was obtained from fitting the

Figure 5. (Top) Snapshot of TOAC-labeled polyalanine taken from a
1 μs MD trajectory. (Center) Corresponding CW EPR spectra
simulated based on the MD trajectory with states mp, pm, and pp
using the direct (black), HBD (red), and HMM (blue) methods.
(Bottom) Histogram of the distribution of TOAC endocyclic torsion
angles in the MD trajectory, using contour levels at 1, 2, 5, 10, 20, and
50% of the maximum value.

Figure 6. (Top) Snapshot of V131R1-labeled T4 lysozyme taken
from an MD trajectory. (Bottom) Experimental (green) and
simulated CW EPR spectra. The simulated spectra are based on the
MD trajectory with p3 using the direct (black), HBD (red), and
HMM (blue) methods with Dglobal = 18 rad2 μs−1. The experimental
data was taken from ref 77.
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MSAD of the label’s orientational trajectory. However, the
HBD spectrum is significantly more broadened than that of the
direct method, indicating that the time scales of the estimated
rotational diffusion tensor are too slow. On the other hand, the
HMM method result agrees significantly better with the direct
method, although the features are slightly more broadened.
This could be due to faster transition rates between states or
lesser differences in motional restriction. For additional
simulated CW EPR spectra of R1-labeled polyalanine using a
different starting conformation (m3), see the SI.
For TOAC-labeled polyalanine (Figure 5), the simulated

EPR spectra reflect reorientational motion near the rigid limit.
The dynamics of TOAC here more closely resembles multisite
exchange among four states (two twist-boat and two chair ring
conformations) rather than Brownian rotational diffusion.
State lifetimes differed greatly. For example, the chair
conformation χ ≈ (44, −33°) has a lifetime of 3.0 ns, whereas
χ ≈ (−38, 40°) has a lifetime of 0.3 ns, as determined by the
HMM method. The HBD method showed several prominent,
sharp maxima as the only features shown in the orientational

histogram, and Dlocal ≈ (44, 79, 35) rad2 μs−1, indicating that
TOAC is undergoing fast, very restricted dynamics. This
model provides a reasonable approximation of the direct-
method spectrum, though the HBD lineshape is consistently
broader. The spectrum from the HMM method, on the other
hand, is nearly identical to that of the direct method, thus
validating the four-state ring conformation model of TOAC’s
dynamics. This is because the HMM is capable of
approximating stochastic jump behavior with multiple time
scales between orientationally averaged states.

R1-T4 Lysozyme. The first realistic MD-simulated system
is water-solvated R1-labeled V131C T4 lysozyme75 (PDB ID
5G27, where existing ligands were removed). In this case, the
entire label-protein system was allowed to undergo unre-
strained dynamics for a single 1 μs trajectory. To avoid biases
due to undersampling of global protein tumbling, the global
motion was removed from the MD trajectory by least-squares
atomic RMSD alignment of the protein between snapshots
(see the SI). Based on an estimate obtained from fitting
experimental CW EPR spectra of T4 lysozyme in an earlier
work,76 stochastic global rotational diffusion with Dglobal = 18
rad2 μs−1 was then superimposed on the MD-derived
orientational trajectories. Additionally, the time axis for this
model was scaled by a factor of 2.0,36 as the solvent exposure
was expected to be slightly less than R1-labeled polyalanine.
Figure 6 shows the simulated CW EPR spectra for V131R1

T4 lysozyme. The experimental spectrum (green) reflects
reorientational motion with a correlation time on the order of
nanoseconds with some orientational ordering. This is
expected for a solvent-exposed labeling site located on a
short helix that would provide motional ordering. The direct
result (black) agrees relatively well with the experimental
result. The HBD method result (red) was obtained using Dlocal
= (220, 220, 340) rad2 μs−1 as extracted from the MD
trajectory, and the orientational histogram showed a large
number of peaks. Compared to the experiment, the HBD
spectrum shows sharper features, indicating that the HBD
model is faster and/or less orientationally restricted. In
contrast, the HMM simulation agrees excellently with the
experiment. The results show that a majority of the state
lifetimes are less than 1 ns. See the SI for additional simulated
CW EPR spectra of R1-labeled T4 lysozyme with a different
starting conformation (m3). The HBD method showed better
agreement with the experiment for this other starting
conformation, indicating different effective types of orienta-
tional motion between the two conformational subspaces.

TOAC-Phospholamban. We also simulated CW EPR
spectra based on a 1 μs long MD simulation of TOAC-labeled
phospholamban78 (at position 37 of PDB ID 2KB7) in a lipid
bilayer. In contrast to TOAC-polyalanine, here only two ring
puckering states were revealed (one twist-boat and one chair
conformation) and were used for the HMM method. The
smaller number of TOAC conformer states compared to
TOAC-polyalanine is probably due to steric effects, such as the
presence of the bulky neighboring F36 and L38 sidechains in
phospholamban compared to the smaller alanine neighbors in
polyalanine. Unlike for the peptide and T4L, the time axis was
not scaled since the spin-label location is buried inside the lipid
bilayer, and the incorrect viscosity of TIP3P water will not
affect the spin-label dynamics. The global motion of
phospholamban was not removed for the spectral simulations
in this section, as including it yielded excellent agreement with
the experiment.

Figure 7. (Top) Snapshot of TOAC-labeled phospholamban in a
lipid bilayer taken from an MD trajectory. (Center) Corresponding
CW EPR spectra from the experiment (green) and simulation based
on the MD trajectory using the direct (black), HBD (red), and HMM
(blue) methods. (Bottom) Histogram of the distribution of TOAC
endocyclic torsion angles in the MD trajectory, using contour levels at
1, 2, 5, 10, 20, and 50% of the maximum value.
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Figure 7 shows the directly simulated CW EPR spectrum
(black) together with the HBD simulation (red), the HMM
simulation (blue), and the experimental spectrum (green). As
expected for the conformationally restricted TOAC label
located on a transmembrane helix, the experimental spectrum
shows a lineshape of reorientational motion that is very slow
on the time scale of X-band EPR. Once again, the direct
method showed excellent agreement with the experiment,
indicating that TOAC’s conformational dynamics was
sufficiently sampled by the MD trajectory. Regarding the
HBD method result, as with TOAC-polyalanine, the principal
values of the fitted rotational diffusion tensor (Dlocal = (10, 13,
7) rad2 μs−1) were large. This showed relatively good
agreement with the experiment, further confirming that the
optimal Brownian model for approximating TOAC’s behavior
is fast, very restricted dynamics. The improved HBD method
agreement here relative to TOAC-polyalanine is probably due
to the greater conformational restriction exhibited for TOAC-
phospholamban (two states vs. four states), making the effects
of multisite exchange with multiple transition time scales less
significant. Finally, the HMM method showed excellent
agreement as well, which further validates the strategy of
using TOAC’s ring puckering to model its reorientational
dynamics.
W-Band EPR Spectra. To complement the X-band EPR

spectra simulated and discussed above, we also simulated W-
band spectra for each model using the direct and HMM
methods. Experimentally, a multifrequency analysis provides
stronger constraints on dynamic parameters that are
extractable from the data. Additionally, spectra acquired at
W-band frequencies are more sensitive to faster dynamics
relative to X-band, allowing one to more closely examine the
effects of spin-label side-chain dynamics. We did not include

the HBD method here, as it performs worse than HMM
already at X-band.
The W-band simulations are shown in Figure 8. Confirming

the results shown by X-band spectra, the W-band spectra show
that the HMM is able to reasonably approximate the result of
the direct simulation. The agreement is excellent for TOAC
-polyalanine. For R1-polyalanine, the choppiness of the direct-
method spectrum is due to the longest subtrajectory within the
p3 conformational subspace being too short (ca. 600 ns) to
fully sample R1 dynamics, whereas for the HMM simulation, as
many stochastic trajectories can be simulated as needed to
converge the simulated spectrum. Note that both spectra are
simulated without additional global rotational diffusion.
Adding global rotational diffusion renders the agreement
between the two excellent, as shown in the SI.
There are discrepancies between the direct and HMM

methods for R1-T4 lysozyme and TOAC-phospholamban. By
comparing with the X-band spectra counterparts, the differ-
ences that are already present in the X-band spectra are now
enhanced in the W-band spectra. For R1-T4 lysozyme, the
direct-method spectrum shows a larger degree of broadening.
For TOAC-phospholamban, the direct-method spectrum is
wider as well. Both indicate slower apparent dynamics for the
direct method in their respective motional regimes (slow vs.
very slow). Finally, the comparison between HMM simulation
and experiment reveals an agreement similar to that shown in
ref 36, further confirming that the HMM parameters are well
determined from the MD trajectory.

■ CONCLUSIONS

In this paper, several trajectory-based time-domain methods of
CW EPR spectral simulation based on MD simulations of spin-
labeled proteins were presented. Three models of MD-derived

Figure 8. W-band EPR spectra (95 GHz) simulated using the direct (black) and HMM (blue) methods. Experimental data only available for R1-
labeled T4 lysozyme (green) is from ref 77.
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spin-label dynamics of differing complexity (direct MD, HBD,
and HMM) were examined and compared across three
different proteins and two spin labels with very different
mobilities: R1 and TOAC.
When compared with experimental data, the direct method

worked very well for both slow motion in TOAC-
phospholamban and faster motion in R1-T4 lysozyme,
indicating sufficient conformational sampling in each MD
trajectory. In general, more advanced sampling methods such
as umbrella-sampling36 and replica-exchange dynamics39 will
be needed to ascertain complete sampling.
Regarding the approximate methods (HBD and HMM), the

HMM method is, in general, superior as it can account for
multiple time scales for transitions between spin-label
orientations, whereas the HBD method only uses a single
rotational diffusion tensor and an orientational potential
energy. Given its stark simplicity, the HBD method performed
surprisingly well. However, for the very restricted, multisite
jump-like motion of TOAC-polyalanine as well as for both R1-
labeled systems, the HMM method was clearly superior
compared to the HBD method, indicating the flexibility of the
HMM method for spin labels with different types of dynamics.
For these reasons and due to its consistent performance, we
conclude that the HMM method is the preferred approx-
imation for simulating EPR spectra from MD simulations, both
for R1 and TOAC labels.
The computation times for the faster-motion spectra of R1-

labeled proteins using HBD were about 50 times longer than
with HMM. The bottleneck in the HBD method is the
interpolative evaluation of the torque term at each time step.
This is a second reason for which the HMM is preferred.
To the authors’ knowledge, TOAC-labeled proteins had not

been studied via MD simulation prior to this work. The results
given here show that the dynamics of TOAC in α-helical sites
can be accurately modeled as two- or four-site exchange
between twist-boat and chair conformations.
Finally, a key practical aspect of the present work is that all

three models of spin-label dynamics as well as the ability to
directly interface with MD simulation data have been
implemented in a time-domain CW EPR spectral simulation
software suite in the freely available software EasySpin.13 This
allows anyone to perform similar spectral simulations using
dynamical orientational trajectories from any MD program and
test different models of spin-label dynamics of nitroxides or
any other spin system on a single platform.
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