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ABSTRACT
Electron paramagnetic resonance (EPR) spectra of molecular spin centers undergoing reorientational motion are commonly simulated using
the stochastic Liouville equation (SLE) with a rigid-body hindered Brownian diffusion model. Current SLE theory applies to specific spin
systems such as nitroxides and to high-symmetry orientational potentials. In this work, we extend the SLE theory to arbitrary spin systems
with any number of spins and any type of spin Hamiltonian interaction term, as well as to arbitrarily complex orientational potentials. We
also examine the limited accuracy of the frequency-to-field conversion used to obtain field-swept EPR spectra and present a more accurate
approach. The extensions allow for the simulation of EPR spectra of all types of spin labels (nitroxides, copper2+, and gadolinium3+) attached
to proteins in low-symmetry environments.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139935., s

I. INTRODUCTION

Continuous-wave electron paramagnetic resonance (CW EPR)
spectra reveal important information about the structural and
dynamic properties of paramagnetic spin centers. In particular, the
spectral line shape can be highly sensitive to the nature and time
scale of rotational dynamics of the spin center. An important appli-
cation in this regard is the study of the dynamics of spin labels
attached to soluble or membrane proteins [see Fig. 1(a)].

On the simplest level, the time scale of rotational dynamics
of a spin center is characterized by its rotational correlation time,
τc, which is related to the rotational diffusion rate constant R by
τc = 1/6R. The shape of the CW EPR spectrum depends on the rela-
tion of τc to the width of the rigid-limit spectrum, Δω. If τcΔω≫ 1,
then the rotational motion has very little effect on the spin dynam-
ics, the spectrum resembles the one in the immobile limit (τc →∞),
and the rotational motion can be neglected for spectral simulations.
If, on the other hand, τcΔω ≤ 1, then the motion is fast enough to
mostly average out all anisotropies, and the observed spectrum is
a sum of individual lines, similar to the one in the isotropic limit
(τc = 0). In this fast-motion regime, spectra can be simulated by
using an isotropic Hamiltonian and treating the rotational motion

as a perturbation. The intermediate regime, where approximately
1 < τcΔω < 100, is called the slow-motion regime. In this regime,
the rotational motion and the spin dynamics are strongly coupled,
and the spectrum is sensitive to the details of the rotational motion.
For simulating spectra in the slow-motion regime, the spin dynamics
and the rotational dynamics have to be treated on an equal footing.
For nitroxide radicals at X-band fields (∼0.34 T), Δω/2π ≈ 200 MHz
so that the slow-motion regime is around τc ≈ 1–100 ns. This is the
range often observed for nitroxides attached to proteins.

Several approaches for the simulation of slow-motion CW EPR
spectra have been developed. They are based on motional mod-
els that range from full deterministic atomistic molecular dynamics
(MD) to simple stochastic reorientation.1–5 A simple and, therefore,
widely applied model is hindered Brownian diffusion (HBD).6 As
illustrated in Fig. 1(b), the HBD model represents the tumbling spin
center as a single rigid body undergoing Brownian rotational dif-
fusion with an anisotropic rotational diffusion rate R. Besides the
orientation Ω of the body, no other spatial degrees of freedom are
dynamic in this model. All internal degrees of freedom are con-
sidered fixed. The nano-environment (such as a protein or lipid
environment), also assumed fixed, hinders the rotational diffusion.
Its effect is modeled with an orientation-dependent potential energy
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FIG. 1. (a) The motion of a nitroxide radical tethered to a protein is constrained
by neighboring amino acids (T4 lysozyme T115R1, pdb 2IGC36). (b) The hindered
Brownian diffusion (HBD) model consists of a rigid body (representing the spin cen-
ter) stochastically rotating in an external mean-field orientational potential energy
surface (representing the interaction between the spin label and the protein or lipid
nanoenvironment).

function U(Ω) that imposes an orientation-dependent torque onto
the rigid body.

The motional model is combined with spin quantum dynam-
ics to simulate the slow-motion CW EPR spectrum. For the HBD
model, the most efficient and widely used approach is a sophisti-
cated frequency-domain method based on the stochastic Liouville
equation (SLE), pioneered by Kubo and co-workers.7–18 It employs
highly efficient numerical methods and has the advantage of signifi-
cantly lower computational cost compared to other HBD solvers that
are based on stochastic diffusive or jump trajectories.

The SLE theory was originally developed to simulate CW EPR
spectra for slow-tumbling nitroxide radicals in solution or liquid
crystals.10,13 The expressions derived were particular to nitroxides,
and the orientational potentials employed were of high symmetry.
Since then, the theory has been expanded to include two mag-
netic nuclei19,20 and it has been extended and applied to rigid bis-
nitroxides.21–23 The slowly relaxing local structure (SRLS) model
was developed to include additional rotational dynamics of the
cage encompassing a spin label.18,24,25 A nuclear magnetic resonance
(NMR)-focused program, Spinach, can solve the SLE for large spin
systems in the absence of orientational potentials.26 Simulation of
slow-motion spectra for high-spin systems (S > 1/2) has also been
reported. For instance, slow-motion spectra of triplets (S = 1) in
the absence of magnetic nuclei have been simulated using the SLE27

or a discrete-jump approach.28–30 The SLE has been employed to
calculate CW EPR linewidths for Gd3+ centers (S = 7/2) undergo-
ing unhindered rotational dynamics by including additional internal
degrees of freedom such as vibration31 or pseudo-rotation.32 Lower-
symmetry orientational potentials have been utilized in work on
biaxial liquid crystal phases.33 Software codes stemming from several
of these works are available.

Despite these advances, there exist no comprehensive method-
ology and software for calculating slow-motion spectra using the
SLE approach without constraints on the constitution of the spin
center and/or on the complexity of the environment hindering the
reorientational motion (represented by the orientational potential).
Such an extended SLE theory is needed due to the increased use of
spin labels to study protein dynamics and the increased use of spin
labels other than nitroxides in recent years.

In this paper, we present expressions that extend SLE theory to
(a) orientational potentials of arbitrary complexity and to (b) spin
centers of arbitrary composition, i.e., with any number of electron
and nuclear spins and spin Hamiltonian interaction terms (Zeeman,
hyperfine, zero field, exchange interactions, nuclear quadrupole,
etc.). Furthermore, we examine the issue of calculating the field-
swept CW EPR spectrum. Traditionally, SLE solvers calculate a fre-
quency spectrum that is then converted to a field-swept spectrum
using a first-order approximation. This method is inaccurate for
systems with highly anisotropic g-tensors, and we present a more
accurate way to simulate field-swept spectra.

In the following, Sec. II comprehensively lays out the SLE
theory. Section III briefly summarizes implementation details.
Section IV illustrates the extended scope of the theory with simula-
tions of high-spin systems, low-symmetry potentials, and multinu-
clear systems. A few numerical aspects are discussed. Section V con-
tains concluding discussions. All methods presented in this paper are
implemented in the open-source software package EasySpin.5,34,35

II. THEORY
In this section, we present the key expressions of SLE the-

ory,13,16,17,37 including our extensions. We will use a series of space-
fixed and body-fixed frames, which are shown in Fig. 2(a). The
laboratory frame (L) is a space-fixed frame with its z axis along

FIG. 2. (a) Definition of space- and body-fixed frames and their relative orientations. (b) Definition of Euler angles ΩU→D = (α, β, γ) transforming frame U (xU, yU, zU) to
frame D (xD, yD, zD). The intervals of definition are [0, 2π) for α and γ, and [0, π] for β.
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the external static magnetic field and its y axis along the oscillatory
magnetic-field component of the microwave radiation. The poten-
tial frame (U) is a frame that is attached to the nano-environment
hindering the motion of the spin center, e.g., a protein, a membrane
bilayer, a polymer matrix, or a liquid-crystal phase. We limit our-
selves to situations where proteins and membranes are immobile,
i.e., where the potential frame is space-fixed. Often, the frame U is
also referred to as the director frame. The potential frame will be
our space-fixed reference frame. The mobile spin center is associated
with a series of body-fixed frames that have time-dependent orien-
tation: There is a molecular frame (M) associated with the molecular
geometry. Each of the interaction tensors (g-tensors, hyperfine ten-
sors, etc.) has a body-fixed eigenframe. The diffusion tensor (vide
infra) is body-fixed as well, and the associated eigenframe is called
the diffusion frame (D). It will serve as our body-fixed reference
frame. To specify the relative orientation between any two frames,
we use a triplet of Euler angles, indicated by Ω = (α, β, γ) and defined
in Fig. 2(b). Some of the relative orientations used in the following
are indicated in Fig. 2(a).

A. Spin and rotational dynamics
The spin state of a tumbling spin center is described by

the quantum spin density operator ρ(t). Its orientational state is
described classically by the orientation Ω(t). Ω indicates the ori-
entation of a body-fixed reference frame relative to a space-fixed
reference frame, as described above.

The evolution in time of ρ(t) is described by the Liouville–von
Neumann equation

∂tρ(t) = −i[H(Ω(t)), ρ(t)]. (1)

Here, ∂t indicates the time derivative, and [H, ρ] is the commutator
Hρ − ρH. The spin dynamics is coupled to the rotational dynam-
ics via the orientational trajectory of the spin centers, Ω(t). H is the
spin Hamiltonian operator (in angular-frequency units) summing
all EPR-relevant interactions within the spin center and between the
spin center and the external static magnetic field. H is implicitly
time-dependent through the time dependence of Ω. During irradia-
tion with the microwave field, H is explicitly time-dependent. How-
ever, for our purpose of simulating CW EPR spectra, we do not need
to consider the interaction of the spin system with the microwave
irradiation. It is possible to rewrite Eq. (1) as

∂tρ(t) = −iH×(Ω(t))ρ(t), (2)

where H× is called the Hamiltonian commutation superoperator
and is defined by its operation on ρ, H×ρ ≡ [H, ρ]. The space spanned
by all possible ρ is called the Liouville space. H× is an operator on this
space.

Instead of dealing with explicit orientational trajectories Ω(t)
and the associated dynamic equation, the rotational rigid-body
dynamics is modeled using the orientational distribution of the spin
centers in the sample at time t, P(Ω, t). The time evolution of
this distribution is described by the Fokker–Planck-type differential
equation6

∂tP(Ω, t) = −Γ(Ω)P(Ω, t), (3)

where Γ(Ω) is the diffusion operator representing the rotational
dynamics. Γ is assumed to be independent of the spin degrees of
freedom, reflecting the reasonable and accurate assumption that the
rotational dynamics of a spin center is independent of its spin state.

The explicit form of Γ depends on the model that is used
to describe the rotational dynamics.13 Here, we focus on hindered
Brownian rotational diffusion (HBD) in the presence of an orient-
ing potential U(Ω). Brownian motion assumes the absence of iner-
tial motion, i.e., it assumes that the diffusion process is Markovian
(memoryless). U(Ω) describes an orientation-dependent effective
potential energy for the spin center which is a result of the inter-
action of the spin center with its immediate nanoenvironment. This
potential encodes that different orientations of the spin center have
different energies. It leads to a systematic torque on the spin cen-
ter (in the downhill direction on the potential-energy surface). The
associated Γ is6

Γ = ∑
i,j=x,y,z

RijJiJj +
1

kBT ∑
i,j=x,y,z

RijJi(JjU(Ω)). (4)

Here, Jx, Jy, and Jz are differential angular-momentum operators
around the axes x, y, and z of a body-fixed reference frame. Rij are
the real-valued elements of the body-fixed diffusion tensor, which is
symmetric (Rij = Rji) and is assumed to be time-independent.

During a CW EPR experiment, the orientational distribution
is at thermal equilibrium at all times. The thermal-equilibrium
orientational distribution Peq is stationary (∂tPeq = 0) and is
given by

Peq(Ω) = Z−1e−U(Ω)/kBT (5)

with the partition function

Z = ∫ dΩ e−U(Ω)/kBT , (6)

where kB is the Boltzmann constant and T is the temperature.
The dynamical equations for the spin and the orientational

degrees of freedom [Eqs. (2) and (3)] can be combined into a single
equation, the stochastic Liouville equation (SLE)8,10,16

∂tρ(Ω, t) = −iH×(Ω)ρ(Ω, t) − Γ(Ω)ρ(Ω, t). (7)

Here, ρ(Ω, t) is the total spin density operator for all spin centers
with orientation Ω at time t, no matter which orientation Ω0 they
had initially,

ρ(Ω, t) = ∫ dΩ′ ρ(t∣Ω′)P(Ω, t∣Ω′, 0)P(Ω′, 0). (8)

P(Ω′, 0) is the initial orientational distribution at time zero,
P(Ω, t|Ω′, 0) is the distribution at time t given that the orientation
was Ω′ initially, and ρ(t|Ω′) is the spin density matrix at time t given
that the orientation was Ω′ initially. Note that ρ(Ω, t) is different
from ρ(t) in Eq. (1).

In the presence of a potential, Γ of Eq. (4) is not Hermitian.
It is advantageous to transform it to Hermitian form.6 This can be
achieved by the transformation Γ̃ = P−1/2

eq ΓP1/2
eq . The diffusion equa-

tion then becomes ∂tP̃ = −Γ̃P̃, with the scaled distribution function
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P̃ = P−1/2
eq P. Defining in addition the scaled density ρ̃ = P−1/2

eq ρ, the
SLE with Γ̃ reads

∂t ρ̃(Ω, t) = −iH×(Ω)ρ̃(Ω, t) − Γ̃(Ω)ρ̃(Ω, t), (9)

where now both H× and Γ̃ are Hermitian. Since H× and Γ̃ are time-
independent, the integral of this equation is

ρ̃(t) = e−(iH
×+Γ̃)t ρ̃(0). (10)

(We omit from now on the explicit indication of the depen-
dence on Ω.) An explicit form of the Hermitianized diffusion
superoperator is6

Γ̃ = ∑
i,j=x,y,z

[Ji − (JiU)/2kBT]Rij[ (Jj + (JjU)/2kBT]. (11)

In the body-fixed diffusion frame, the diffusion tensor is diago-
nal, i.e., Rij = Riδij. We use this as the body-fixed reference frame
without loss of generality but with significant simplifications in
the expressions for Γ̃. In the diffusion frame, Γ̃ from Eq. (11)
simplifies to37

Γ̃ = ∑
i=x,y,z

RiJ2
i + ∑

i=x,y,z
Ri[

1
2kBT

(J2
i U) − 1

4k2
BT2 (JiU)2], (12)

where we have separated the potential-independent and potential-
dependent terms.

The potential function U is best expanded in a complete
orthogonal basis of Wigner functions DL

M,K because DL
M,K have sim-

ple transformation properties under rotation—they are simultane-
ous eigenfunctions of J2 and Jz . The expansion is

U(ΩU→D) = −kBT ∑
L,M,K

λL
M,K DL

M,K(ΩU→D), (13)

where the − sign is a matter of convention. Here, ΩU→D is the triplet
of Euler angles (α, β, γ) that describes the orientation of the body-
fixed diffusion frame (D) relative to the space-fixed potential frame
(U) (see Fig. 2). The Wigner functions DL

M,K are defined as38,39

DL
M,K(ΩU→D) = DL

M,K(α,β, γ) = e−iMα dL
M,K(β) e−iKγ, (14)

where dL
M,K are real-valued functions consisting of sums of products

of cos(β/2) and sin(β/2). The sum in Eq. (13) runs over all possible
combinations of integer rank L and projections M and K (L ≥ 0;
−L ≤ M ≤ L; −L ≤ K ≤ L). λL

M,K are dimensionless coefficients
that may be complex-valued. Since U is real-valued and dL

−M,−K

= (−1)M−K dL
M,K , the coefficients satisfy λL

−M,−K = (−1)M−K(λL
M,K)

∗.
Applying the Ji operators to the Wigner expansion of U, the

potential-dependent part of Γ̃ in Eq. (12) reduces to a linear combi-
nation of Wigner functions. Γ̃ becomes

Γ̃ = ∑
i=x,y,z

RiJ2
i + ∑

L,M,K
X̃L

M,K DL
M,K(ΩU→D). (15)

The scalar expansion coefficients X̃L
M,K depend on Ri and on

λL
M,K and are given in Appendix C. They have the symmetry

X̃L
−M,−K = (−1)M−K(X̃L

M,K)∗. If all λL
M,K are real-valued, then all X̃L

M,K

are real-valued as well. The largest L for which X̃L
M,K is non-zero

is twice the largest L for which λL
M,K is non-zero. Note that the

potential-dependent part of Γ̃ is a purely multiplicative operator,
whereas the potential-independent part contains the differential
operators Ji.

The use of the complete expansion [Eq. (13)] and the ensu-
ing expressions for X̃L

M,K constitute extensions of the existing theory,
where the expansion is limited to terms with M = 0, with low even
values of L and K (L = 2, 4; K = 0, 2, 4) and with real-valued coeffi-
cients λL

M,K . These specializations stem from the fact that the theory
was initially developed for spin probes in uniaxial liquid crystals and
model membranes with nanoenvironments of cylindrical symmetry
(D∞h) and required only high-symmetry potentials.40 However, the
nanoenvironment hindering the rotational motion of spin labels on
proteins is generally of much lower symmetry (C1), and the orienta-
tional potential expansions, consequently, needs more terms. There-
fore, the general expansion of Eq. (13) is necessary for being able to
broadly apply the HBD model to protein-attached spin labels.

B. The spin Hamiltonian
A general EPR spin Hamiltonian for a system of coupled

electrons and magnetic nuclei is

h̵H =∑
i
μBBg(i)S(i) −∑

k
μNg(k)n BI(k)

+∑
i
S(i)D(i)S(i) +∑

i,k
S(i)A(i,k)I(k)

+∑
i<j

S(i)J(i,j)S(j) +∑
k
I(k)P(k)I(k). (16)

The first two terms are the electron and nuclear Zeeman interac-
tions, with the Bohr magneton μB, the external magnetic field vector
B, the ith electron g-tensor g(i), the ith electron spin vector S(i),
the nuclear magneton μN, the kth nuclear g factor g(k)n , and the
kth nuclear spin vector I(k). The third term contains all zero-field
interactions for electron spins S(i) ≥ 1, with the zero-field inter-
action tensors D(i). The fourth term collects all hyperfine interac-
tions between electrons and nuclei, with the hyperfine tensors A(i ,k).
The fifth term sums over all electron–electron interactions, with
the associated coupling tensors J(i ,j). The last term represents the
electric quadrupole interactions for nuclei with I(k) ≥ 1, with the
quadrupole tensors P(k). We assume that all vectors and tensors are
represented in the same space-fixed frame. For a tumbling molecule,
B is time-independent in this frame, and all the interaction tensors
(g, D, A, J, P) are time-dependent.

The spin Hamiltonian of Eq. (16) is a sum over bilinear forms,

h̵H =∑
μ
aμ ⋅ Fμ ⋅ bμ =∑

μ
∑

i,j=x,y,z
(Fμ)ij(aμ)i(bμ)j, (17)

where aμ and bμ are the spin vector operators or the magnetic field
vector, Fμ are the time-dependent Cartesian tensors, and the axes
x, y, and z refer to a space-fixed frame. The index μ runs over all
interaction terms. Table I lists the correspondence between Eqs. (17)
and (16).

For modeling rotational dynamics, it is advantageous to refor-
mulate H from a sum over terms with distinct physical origin to
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TABLE I. Spin Hamiltonian interaction terms, aμ ⋅ Fμ ⋅ bμ.

Interaction type aμ Fμ bμ

Electron Zeeman B +μBg(i) S(i)

Nuclear Zeeman B −μNg(k)n I(k)

Zero-field splitting S(i) D(i) S(i)

Hyperfine S(i) A(i ,k) I(k)

Electron–electron coupling S(i) J(i ,j) S(j)

Nuclear quadrupole I(k) P(k) I(k)

a sum over terms with distinct rotational properties. For this, we
rewrite H as a sum over scalar products of irreducible spherical
tensors and tensor operators,13,18,41

h̵H =∑
μ

2

∑
l=0

F(l)μ ⋅ T(l)(aμ, bμ)

=∑
μ

2

∑
l=0

l

∑
m=−l
(−1)mF(l,−m)

μ T(l,m)(aμ, bμ). (18)

Here, F(l)μ are spherical tensors constructed from the matrix ele-
ments of Fμ, and T( l)(aμ, bμ) are spherical tensor operators con-
structed from the Cartesian components of aμ and bμ. l is the rank
of the spherical tensor. Each Cartesian tensor is decomposed into
three spherical tensors with ranks l = 0, 1, and 2. These three ten-
sors have distinct rotational properties. Each spherical tensor has
2l + 1 components (m = −l, . . ., l), indicated by F( l ,m) and T( l ,m).
The scalars F(l,m)μ and the operators T( l ,m)(aμ, bμ) can be constructed
in a straightforward fashion from Fμ, aμ, and bμ. All the required
expressions are listed in Appendix A.

As in Eqs. (16) and (17), also in Eq. (18), all vectors and inter-
action matrices are represented in a space-fixed frame. Choosing the
laboratory frame (L), indicating it by an additional subscript, and
using (−1)mF( l ,−m) = (−1)lF( l ,m)∗ (see Appendix A), we write the
Hamiltonian as

h̵H =∑
μ
∑

l
∑
m
(−1)lF(l,m)∗μ,L T(l,m)(aμ,L, bμ,L). (19)

The laboratory frame components F(l,m)μ,L of F(l)μ are expressed in

terms of the time-independent diffusion frame components F(l,m)μ,D
using

F(l,m)∗μ,L = (∑
m′′

F(l,m
′′
)

μ,D Dl
m′′ ,m(ΩD→L))

∗

=∑
m′′

F(l,m
′′
)∗

μ,D Dl
m,m′′(ΩL→D), (20)

where Dl
m,m′′ are again Wigner functions as defined in Eq. (14) and

ΩL→D represents the Euler angles that parameterize the transforma-
tion from the laboratory frame L to the body-fixed diffusion frame D
(see Fig. 2). We decompose this transformation into two consecutive
transformations via the intermediate potential frame (U),

Dl
m,m′′(ΩU→D) =∑

m′
Dl

m,m′(ΩL→U)Dl
m′ ,m′′(ΩU→D). (21)

Combining this with the previous two equations and defining the
operators

Pl
m′′ ,m = h̵−1∑

μ
(−1)lF(l,m

′′
)∗

μ,D T(l,m)(aμ,L, bμ,L) (22)

and

Ql
m′ ,m′′ =∑

m
Dl

m,m′(ΩU→D)Pl
m′′ ,m (23)

gives the compact expression

H =∑
l
∑

m′ ,m′′
Dl

m′ ,m′′(ΩU→D)Ql
m′ ,m′′ . (24)

Since both L and U are space-fixed stationary frames, the only
time dependence is in the stochastically varying orientation ΩU→D.
The rotational time dependence is now fully isolated in the Wigner
function prefactors. The time-independent operators Ql

m′ ,m′′ , which
we call rotational basis operators (RBOs), contain all the internal
specifics of the spin system as well as the orientation of the potential
frame relative to the lab frame. Note that this expression is similar to
the potential-dependent term of the diffusion operator in Eq. (15).

Equation (24) is general in the sense that the RBOs can be
constructed using the same procedure regardless of the number of
spins in the spin system, the number of interaction terms, or the
nature or relative size of those terms. No matter how large or com-
plex the tumbling spin system is, all of the information about the
system that is needed to calculate the EPR spectral response is col-
lected into 35 RBOs (one rank-0, 9 rank-1, and 25 rank-2). If all
the interaction matrices are symmetric, as is commonly the case, all
rank-1 RBOs vanish. If the symmetry is high (for example, axial and
collinear interaction tensors), then the number of non-zero RBOs
reduces further. Equation (24) covers two separate situations: (i) a
single potential-frame orientation ΩU→D (e.g., an oriented mem-
brane or a protein crystal) and (ii) an orientational distribution of
potential-frame orientations (such as a solution of essentially immo-
bile proteins or liposomes). The latter model with a disordered static
distribution of proteins, but mobile spin labels, has been termed the
MOMD (microscopic order macroscopic disorder) model.14 For cal-
culation in such cases, the Pl

m,m′′ operators are precomputed, and
the Ql

m′ ,m′′ operators are efficiently computed from Pl
m,m′′ for each

potential-frame (protein) orientation, ΩU→D, without the need of
recomputing any matrix elements.

The expression for the Hamiltonian presented above is quite
general: it includes situations with tensor eigenframes tilted arbitrar-
ily with respect to the diffusion frame; it includes rank-1 terms; and it
permits any number of spins and types/strengths of interactions. In
addition, the pre-calculation of RBOs renders simulations efficient,
particularly for disordered samples.

C. The CW EPR spectrum
The SLE, together with the expressions for the diffusion oper-

ator and the spin Hamiltonian, can be used to calculate the signal
from any type of EPR experiment (pulse or CW). Here, we focus
on CW EPR. The frequency-swept CW EPR spectrum is propor-
tional to the Fourier–Laplace transform of the free-induction decay

J. Chem. Phys. 152, 094103 (2020); doi: 10.1063/1.5139935 152, 094103-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

(FID) following a non-selective microwave pulse. (Alternatively, it
can be calculated using linear-response theory.16,42) We start with
the equilibrium density distribution ρeq ≈ SzPeq (corresponding to
ρ̃eq ≈ SzP1/2

eq ), where z is the laboratory z axis. The detectable part
of the state immediately after a microwave pulse with oscillating
magnetic-field component along the laboratory y axis is SxPeq, where
x is the laboratory x axis. The FID signal is the expectation value of
Sx (or of∑i S(i)x if there are multiple electron spins) for this state,

⟨Sx⟩(t) = ⟨Sx∣ρ(Ω, t)⟩ = ⟨Sx∣P1/2
eq ρ̃(Ω, t)⟩

= ⟨SxP1/2
eq ∣e−(iH

×+Γ̃)tSxP1/2
eq ⟩, (25)

where H× is the static spin Hamiltonian superoperator in the
absence of the microwave field. The notation ⟨u|v⟩ indicates inte-
gration of u†v over all orientations and trace over all spin space.

The real part of the Fourier–Laplace transform of the FID gives
the spectrum

I(ω, B)∝ ∫
∞

0
⟨Sx⟩ cos(ωt)dt = Re∫

∞

0
⟨Sx⟩ eiωtdt

= Re⟨SxP1/2
eq ∣[iH×(B) + Γ̃ − iω]−1SxP1/2

eq ⟩. (26)

Here, ω is the microwave angular frequency and B is the magnitude
of the applied static magnetic field.

D. Basis expansion
In order to evaluate the expression in Eq. (26), the quantities

involved (H×, Γ̃, and SxP1/2
eq ) are expanded in an appropriate basis

that encompasses both the quantum spin states and the classical ori-
entational degrees of freedom. This transforms the integral expres-
sion in Eq. (26) into a linear-algebra expression (vector × matrix
inverse × vector) that can be solved efficiently using numerical
methods.

We use a basis where each basis function ∣σξ⟩ is a direct product
of a spin basis function ∣σ⟩ and an orientational basis function ∣ξ⟩,

∣σξ⟩ = ∣σ⟩⊗ ∣ξ⟩. (27)

The spin basis functions, ∣σ⟩, are given by the complete set of
single-transition operators in the Zeeman (high-field) basis.43 Each
single-transition operator is parameterized by a pair of projection
numbers for each spin in the system

∣σ⟩ = ∣m′1, m′′1 , m′2, m′′2 , . . . ⟩
= (∣m′1⟩⊗ ∣m′′1 ⟩)⊗ (∣m′2⟩⊗ ∣m′′2 ⟩)⊗⋯, (28)

where the spin projection quantum numbers (along the z axis of the
potential frame) m′i and m′′i for spin i run from −Si to +Si or −Ii to
Ii for nuclear spins. The basis functions in Eq. (28) are orthonor-
mal, and there are a total of ∏i(2Si + 1)2∏k(2Ik + 1)2 of them.
Instead of using m′i and m′′i , the single-transition operators can also
be indexed by pi = m′i − m′′i and qi = m′i + m′′i . This facilitates the
application of spin-space truncation schemes, such as limiting the
basis to single-quantum transitions (|pi| ≤ 1) and application of the
high-field approximation (only pi = +1).13

The orientational basis functions are normalized Wigner func-
tions [see Eq. (14)] of ΩU→D,

∣ξ⟩ = ∣LMK⟩ =
√

2L + 1
8π2 DL

M,K(ΩU→D) (29)

with the full range of L, M, and K. These functions are
orthonormal, i.e.,

⟨ξ1∣ξ2⟩ = ⟨L1M1K1∣L2M2K2⟩ = δL1 ,L2δM1 ,M2δK1 ,K2 . (30)

They are a convenient choice because they have simple properties
under rotation and are also the coefficients for the transformation
of the spherical tensors and tensor operators between coordinate
frames. The complete set of Wigner functions is infinite, and in
practice, the basis must be truncated. A simple truncation scheme
is to impose separate upper limits on even L, odd L, |K|, and |M|.
A more sophisticated pruning procedure has been developed.15,17

In general, slower rotational diffusion and larger interaction tensor
anisotropies require larger orientational basis sets to produce accu-
rate and converged simulated spectra. A crucial practical point is the
confirmation that a simulated spectrum is sufficiently converged as
a function of orientational basis size.

In the basis of Eq. (27), the matrix elements of the Hamiltonian
superoperator in Eq. (26) are

⟨σ1ξ1∣H×∣σ2ξ2⟩ =∑
l
⟨σ1∣Q× l

ΔM,ΔK ∣σ2⟩⟨ξ1∣Dl
ΔM,ΔK ∣ξ2⟩ (31)

with ΔM = M1 − M2 and ΔK = K1 − K2. The sum runs over all
l = 0, 1, 2 that also satisfy |L1 − L2| ≤ l ≤ L1 + L2 and l ≥ |ΔM| and
l ≥ |ΔK|. Since l ≤ 2, the matrix is at most pentadiagonal in each of
L, M, and K. Any zero RBO Q× l

m′ ,m′′ will further thin this nonzero
bandedness along M and K.

The expressions for the Wigner function matrix elements
needed in Eq. (31) are given in Appendix B. The matrix represen-
tations of Q× l

m′ ,m′′ are constructed as follows: (1) The spin matrices
S(i)x , S(i)y , S(i)z , I(k)x , I(k)y , and I(k)z (where x, y, and z refer to the lab-
oratory frame) in the standard Hilbert-space ∣mi⟩ representation are
constructed for each spin, and spherical tensor matrices are con-
structed using the expressions from Table III; (2) the Ql

m′ ,m′′ matri-
ces are constructed using Eqs. (22) and (23); (3) the correspond-
ing Liouville-space matrices are constructed using the Kronecker
product ⊗ according to

Q× = I⊗Q −QT ⊗ I (32)

in which I is the identity matrix of the same size as the Q matrix; and
(4) any spin-space truncations are applied.

The matrix elements of Γ̃ in the chosen basis are

⟨σ1ξ1∣Γ̃∣σ2ξ2⟩ = δσ1 ,σ2⟨ξ1∣Γ0∣ξ2⟩ + δσ1 ,σ2∑
L

X̃L
ΔM,ΔK

× ⟨ξ1∣DL
ΔM,ΔK ∣ξ2⟩ (33)

with the required matrix elements of Γ0 given in Appendix C. Γ̃ is
diagonal in the spin quantum numbers. The sum runs over all L that
satisfy |L1 − L2| ≤ L ≤ L1 + L2 and L ≥ |ΔM| and L ≥ |ΔK|.

In general, the Γ̃ matrix is Hermitian. In our choice of frame
where R is diagonal (the diffusion frame) and in the absence of a
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potential, Γ is diagonal if the diffusion tensor is isotropic or axial;
otherwise, it is tridiagonal. For a non-zero potential, if the poten-
tial contains only terms with M = K = 0, or if all λ coefficients are
real-valued, then Γ̃ is real-valued and symmetric; otherwise, it is
complex-valued and Hermitian.

Finally, the vector elements of SxP1/2
eq in the chosen basis are

⟨σξ∣SxP1/2
eq ⟩ = ⟨σ∣Sx⟩⟨ξ∣P1/2

eq ⟩. (34)

⟨σ∣Sx⟩ is obtained by vectorizing the ∣mi⟩matrix representation of Sx
in column-major order, i.e., by stacking the columns of the matrix.
The vector elements of P1/2

eq are given by

⟨ξ∣P1/2
eq ⟩ = Z−1/2

√
2L + 1

8π2 ∫ dΩ (DL
M,K)

∗
e−U/2kBT . (35)

Analytical evaluation of the triple integral in this expression is only
possible for very simple potentials.17 In general, the integral needs
to be evaluated numerically. If U does not depend on α and/or γ
(representing the cylindrical symmetry of the environment and/or
the spin label), then the dimensionality of the integral reduces.

The norm-squared of the P1/2
eq vector equals 1 in the infinite-

basis limit.38 If the basis is excessively truncated, this will be signifi-
cantly less than 1. This can serve as a diagnostic of basis overtrunca-
tion.

E. Numerical evaluation
With matrix representations of all relevant quantities in hand,

we now describe how to evaluate Eq. (26). Denoting with A the
matrix representation of iH× + Γ̃ in the chosen truncated basis, with
b the vector representation of SxP1/2

eq in the same basis, and with I the
identity matrix of the same size as A, the spectral line shape function
of Eq. (26) is

I(ω) = Re[b†(A − iωI)−1b]. (36)

Evaluation of this as a function of ω for a fixed external magnetic
field (i.e., fixed A) gives the frequency-swept EPR spectrum.

A variety of approaches are available to numerically evaluate
the right-hand side of Eq. (36). The straightforward diagonaliza-
tion method16,44 computes eigenvectors and eigenvalues of A (such
that A = UΛU−1 with the diagonal matrix of eigenvalues Λ and the
matrix of eigenvectors U) and transforms the expression into the
eigenbasis of A, resulting in a sum over Lorentzian lines

I(ω) = Re∑
k

Sk

Λkk − iω
Sk = (b†U)k(U−1b)k, (37)

which can be easily evaluated as a function of ω. In the above equa-
tion, both Sk and Λkk are in general complex-valued. The real and
imaginary parts of Λkk give the linewidth and the line position,
respectively. Sk determines the amplitude and phase of the line.
Another method uses a linear-equation solver to calculate the solu-
tion x(ω) of (A − iωI)x(ω) = b for each ω and then obtains the
spectral values via I(ω) = Re(b†x(ω)). This method does not explic-
itly break the signal down into its line shape components. Both

methods are general and work for any A without symmetry restric-
tions. A variety of well-established numerical algorithms (conjugate
gradient, Lanczos, etc.) can be used for diagonalization and as linear
solvers.

A much faster and very elegant method is applicable if A is
complex symmetric. In this case, the complex symmetric Lanczos
algorithm45 is used to tridiagonalize A with b as the starting vec-
tor.11,12,16,17 The spectral function is then represented as a continued-
fraction expansion containing the matrix elements of the tridiagonal
matrix, and it can be evaluated very efficiently left-to-right using the
modified Lentz method.46 This method is fast because it converges
rapidly as a function of iteration count and because the spectral
function can be cheaply evaluated for the entire desired range of fre-
quencies with only one tridiagonalization. The continued-fraction
expansion is possible only if A is complex symmetric, i.e., if the
matrix representations of both H× and Γ̃ are real-valued. In the σξ
basis, this is only the case for a very small class of high-symmetry
situations. However, under certain conditions, it is possible to con-
vert A to complex symmetric form by transforming it to a new
K-symmetrized basis with functions ∣σLMK̄jK⟩ that are parame-
terized by L, M, K̄, and jK , where K̄ = ∣K∣, and jK = ±1 for K
≠ 0 and jK = (−1)L for K = 0.13,17 The transformation is achieved
using A′ = TKAT†

K , with the elements of the unitary transformation
matrix TK given by

⟨σ′L′M′K̄jK ∣σLMK⟩ = δσ′ ,σ
√

jK
√

2(1 + δK,0)
δL′ ,LδM′ ,M

× [δK̄,K + jK(−1)L+KδK̄,−K]. (38)

In a basis ordering where the functions with identical L, M, and K̄ are
adjacent, the matrix TK is block diagonal, consisting of a sequence
of 2 × 2 blocks (for K̄ ≠ 0) and 1 × 1 blocks (for K̄ = 0) along the
diagonal.

Prior work derived explicit expressions for the matrix elements
of H× and Γ̃ in this new basis for some special cases.13,17,37 Here, we
perform this transformation numerically at the matrix level. Since
all matrices are sparse (the number of non-zero elements in TK only
grows linearly with basis size), this operation is very efficient.

In the K-symmetrized basis, the matrix of any Hamiltonian
of the form given in Eq. (17) is real-valued, irrespective of the
number, symmetry, and relative orientation of interaction tensors—
as long as the tilt between the potential frame and the lab frame
only involves a β angle (α = γ = 0). The situation is more com-
plicated for Γ̃. In the LMK basis, Γ̃ is real-valued for arbitrary
complicated potentials. However, in the K-symmetrized basis, it is
real-valued only if all potential coefficients are real-valued and the
potential contains only terms with either all M = 0 or all K = 0
(or both). Otherwise, the transformation will generate a complex-
valued Hermitian Γ̃. In these cases, the transformation is not use-
ful, and the spectral line shape function must be calculated using
the diagonalization or linear-solver methods instead of the Lanczos
method.

Numerical aspects of solving Eq. (36) efficiently and robustly
are complicated, in light of the fact that iterative methods such as
Lanczos can be numerically unstable. Previous work has carefully
evaluated the merits of Lanczos vs conjugate-gradient methods.16,17
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F. Field sweep
The line shape of Eq. (36) is expressed as a function of

microwave frequency ω, in the presence of a constant applied mag-
netic field. In practice, CW EPR experiments are performed by vary-
ing the external field strength B over a range from Bmin to Bmax while
irradiating the sample at fixed frequency ωmw.

For the field-swept spectrum, a separate Hamiltonian at each
field point B is required, as evident from Eq. (26). Since the Hamil-
tonian is linear in the magnetic field, Hamiltonians for different field
values can be constructed very efficiently. For this, each RBO Ql

m′ ,′m′′

is separated into a field-dependent term and a field-independent
term,

Ql
m′ ,m′′(B) = Q0,l

m′ ,m′′ + B Q1,l
m′ ,m′′ . (39)

The field-independent RBOs Q0,l
m′ ,m′′ and Q1,l

m′ ,m′′ are pre-calculated,
and then Eq. (39) is used to assemble Ql

m′ ,m′′ for each field point,
thus providing minimal overhead in Hamiltonian re-calculation. To
minimize the number of field points for which the spectral func-
tion needs to be evaluated, an adaptive iterative bisection interpola-
tion method analogous to one used for constructing Zeeman energy
diagrams can be used.47

If the complex symmetric Lanczos method is applicable (i.e., if
the matrix representation of iH×+ Γ̃ is complex symmetric), then the
calculation of a frequency-swept spectrum is orders of magnitude
more efficient than the calculation of a field-swept spectrum. In this
case, the field-swept spectrum can be approximated by a frequency-
swept spectrum,

I(ωmw, B) ≈ I(ω, B0). (40)

Here, B0 = (Bmin + Bmax)/2 is the center of the desired field range,
and the auxiliary frequency ω is obtained from B in one of two ways,

(i) ω = ωmw
B0

B
,

(ii) ω = ωmw −
μBgiso

h̵
(B − B0).

(41)

giso is the isotropic g-value of the spin system. Approach (i) is exact
for systems with g anisotropy and no other anisotropy (hyperfine,
zero-field). For other systems, it leads to systematic errors in the
resonance field positions. Approach (ii) is accurate if g is isotropic
and the Zeeman interaction dominates; otherwise, there are system-
atic errors in the resonance field positions. At X-band, the errors in
approach (ii) are very small for nitroxides, but they can be significant
for copper. Approach (i) and approach (ii) give identical frequencies
for B = B0 and for B = h̵ωmw/μBgiso.

Finally, the field-modulated first-harmonic spectrum is
obtained from the field-swept absorption spectrum via pseudo-field
modulation48 or, in the limit of zero modulation amplitude, via
numerical differentiation.

III. METHODS
The theory outlined above is implemented in version 6

of the open-source MATLAB-based EPR simulation package
EasySpin5,34,35 in the function chili.

All matrices are sparse and are handled in MATLAB’s com-
pressed sparse column (CSC) format. The spectral line shape can
be calculated using either the diagonalization, the linear-solver, the
Lanczos method (only if applicable, given the symmetry of Γ̃), or
the biconjugate gradient stabilized method as implemented in the
MATLAB function bicgstab.

The integrals necessary for the vector elements in Eq. (34) are
evaluated numerically using the 15-point Gauss–Kronrod quadra-
ture as implemented in the MATLAB function integral, with abso-
lute and relative error tolerances of 10−6. Even after using selec-
tion rules to reduce the number and dimensionality of necessary
numerical integrations, the evaluation of the root-equilibrium-
distribution vector [Eq. (34)] constitutes the major performance bot-
tleneck in the overall calculation in the presence of low-symmetry
potentials.

Wigner 3-j symbols for Eqs. (B4) and (C2) are evaluated using
specialized expressions for small angular momenta [min(L1, L, L2)
≤ 2]38,39,49 and using a general expression otherwise.50 For large
angular momenta [max(L1, L, L2) > 20], arbitrary-precision integer
arithmetic (using the Java class BigInteger) is used for intermedi-
ate results. This results in a significant computational bottleneck
for large angular momenta. Values of 3-j symbols calculated via
these methods in EasySpin have been extensively tested for angular-
momentum values up to 5000 against arbitrary-precision results
obtained using Wolfram Mathematica 11.

IV. APPLICATION EXAMPLES
In this section, we illustrate the scope of the extended the-

ory by demonstrating examples of simulated CW EPR spectra for a
high-spin system, for lower-symmetry orienting potentials, and for
a spin system with multiple nuclei. We also discuss some numerical
aspects.

A. High-spin system: Gadolinium(III)
As an example of a high-spin system, Fig. 3 shows a series of

simulated spectra of a prototypical Gd(III) complex over a range
of rotational time scales from the fast-motion regime to the quasi-
rigid limit. Gd(III) is a high-spin 4f7 ion with an S = 7/2 ground
state. Its magnetic properties are described by the spin Hamiltonian
h̵H = μBgBS + SDS with isotropic g-value and the diagonal zero-field
tensor D = diag(−D + E, −D − E, 2D).

The simulations in Fig. 3 are plotted as absorption spectra. With
a rotational correlation time τc = 0.1 ns (R = 1/6τc = 1.7 rad2 ns−1),
the spectrum consists of a single peak because rotational motion
is so rapid that the zero-field interaction is almost averaged out.
At τc = 100 ns (R = 1.7 rad2 μs−1), the motional EPR spectrum is
indistinguishable from the rigid-limit simulation.

B. Orientational potentials
Figure 4 illustrates the effect of different potential energy func-

tions on the X-band spectrum of a nitroxide radical in the quasi-rigid
limit with τc = 10 ns. Each simulation has a different orientational
potential defined by the pair of coefficients λL

M,K = (−1)M−KλL
M,K

= 1, with various combinations of L, M, and K. The gray spectrum is
calculated in the absence of an orientational potential. The spectral
line shape depends strongly on the particular term. The size of the
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FIG. 3. Simulated field-swept EPR spectra over a range of rotational time
scales for a Gd(III) complex with isotropic g-value 2 and axial zero-field splitting
D/h = 500 MHz and E/h = 0, at a microwave frequency of 9.2 GHz, with a residual
Gaussian broadening of 2 mT FWHM. Black: motional spectra without orientational
potential, with isotropic rotational correlation times τc = 1/6R indicated next to each
spectrum. Gray: rigid-limit spectrum, calculated via spin Hamiltonian matrix diag-
onalization. All spectra are normalized to equal area. The orientational basis was
truncated at (Leven

max , Lodd
max, Mmax, Kmax) = (50, 0, 4, 0), and the spin basis was

limited to transitions with |m′S − m′′S | ≤ 1. The basis size is 9546 (222 orientational
and 43 spin basis functions).

deviation from the unhindered potential-free spectrum is dependent
on (L, M, K) as well. For a given λ, this deviation is generally smaller
for odd values of M and K (and L) than for even values.

C. Multiple nuclei
As an example of slow-motion simulations for spin systems

with multiple magnetic nuclei, Fig. 5 shows simulations of a model
copper(II) complex in which two of the ligand atoms are nitrogen-14
nuclei and the other ligand atoms are non-magnetic. The copper-
63 nucleus has nuclear spin I = 3/2, and each of the nitrogen-14
nuclei has nuclear spin I = 1. An orientational potential with the
coefficients λ2

2,2 = λ2
−2,−2 = 1 was used.

The simulations show how the spectrum changes with rota-
tional correlation times from the fast-motion regime (small τc) to
the quasi-rigid limit (large τc). At τc = 0.1 ns, the spectrum is close to
the fast-motion regime. Most of the structure in the spectrum is due
to averaged nitrogen hyperfine interactions, with some weak resid-
ual features in the low-field region from copper hyperfine splittings.
As τc increases, the copper peaks become more distinct and reveal
the non-isotropic orientational potential.

A major challenge with the simulation of multi-spin spectra
using the SLE is the rapid factorial growth of the spin basis size with
the number of spins. Three approaches at truncating this space can
be applied individually or simultaneously: (a) limit the coherence

FIG. 4. The effect of various orientational potentials on the EPR spectrum of a
nitroxide radical in the slow-motion regime (τc = 10 ns) at 9.5 GHz, with g-tensor
principal values (2.009, 2.006, 2.002) and 14N hyperfine tensor principal values
(20, 20, 100) MHz. Each simulation has a pair of nonzero potential coefficients
λL

M,K = (−1)M−KλL
−M,−K = 1 with (L, M, K) given in the figure. The poten-

tial frame is collinear with the lab frame. The gray spectrum is calculated in the
absence of an orientational potential. The orientational basis was truncated at
(Leven

max , Lodd
max, Mmax, Kmax) = (10, 3, 6, 6), and the spin basis is complete. The

basis size is 13 248 (368 orientational and 36 spin basis functions).

orders |pk| for each nucleus k; (b) limit the total maximum nuclear
coherence order |∑kpk|; and (c) utilize the high-field approxima-
tion where for the electron spin S only the subspace with pS = +1
is utilized. Truncation approaches based on subpartitioning based
on the spin coupling topology, well established in NMR,26 are only
marginally beneficial for EPR systems since the latter typically have
a star topology (all nuclei coupled to a central electron spin) that
cannot be partitioned into subgraphs.

A perturbation-based approach at reducing the spin-space
dimension is applicable if the hyperfine couplings are such that
a subset of nuclei have hyperfine couplings A small enough to
fall into the fast-motion regime (A ≪ 1/τc). In this approach,
the SLE-simulated spectrum of the spin system containing only
the nuclei that fall into the slow-motion regime is convolved with
the perturbation-based simulated spectrum of the remaining fast-
motion-regime nuclei. This post-convolution approach factors the
spin space and has been implemented for isotropic diffusion in the
absence of a potential.51,52 It is not applicable if the hyperfine tensors
in the system are of comparable magnitude.

The application of these truncations and approximations is cru-
cial for making many-spin simulations feasible. Numerical experi-
ments must be performed to carefully ascertain that any truncation
does not degrade the convergence of the simulated spectrum. Practi-
cally, simulations of systems with more than about six spins are very
memory- and time-consuming. Luckily, very few slow-motion CW
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FIG. 5. Simulated 9.5 GHz spectra of a copper(II) complex with two nitrogen-14
ligands (exact field sweep). Parameters: g = [2.0, 2.0, 2.25], A63Cu = [50, 50, 500]
MHz, A14N = [80, 80, 10] MHz. The orientational potential is λ2

2,2 = λ2
−2,−2 = 1,

with the potential frame aligned with the laboratory frame. The orientational basis
was truncated at (Leven

max , Lodd
max, Mmax, Kmax) = (10, 0, 4, 4) and the spin basis at

a maximum nuclear coherence order of 3 for 63Cu and 1 for 14N. The basis size is
153 664 (196 orientational and 784 spin basis functions).

EPR spectra resolve splittings or other features from more than a few
electron or nuclear spins.

D. Numerical aspects
Lanczos and conjugate-gradient methods are numerically

unstable under certain conditions since they do not produce a fully
orthogonal basis. In EPR simulations, it is known that this instability
can manifest, for instance, in the presence of anisotropic diffusion
tensors and very slow motion, leading to a failure to obtain a con-
verged spectrum. In case numerical instabilities are encountered, a
slight change in the orientational basis (by adding a few rotational
basis functions) often mitigates the issue. As a safe fallback, other
linear solvers or diagonalization can be used as described above.
However, this comes at a significant computational cost. Our imple-
mentation shows reasonable stability of the Lanczos-based approach
in difficult regimes. For example, Fig. 6 illustrates simulations in
the presence of a strongly anisotropic diffusion tensor, with corre-
lation times up to 1000 ns. With the chosen basis, which is not larger
than necessary to obtain smooth spectra, convergence is not an
issue.

Another practical numerical aspect is the time cost of simula-
tions. It strongly depends on whether the continued-fraction expan-
sion of the spectral function can be computed (via, e.g., the complex
symmetric Lanczos method). If yes, only one tridiagonalization is
necessary for simulating the entire spectrum. If not, diagonalization
or linear-solver methods need to be used at every field/frequency

FIG. 6. Simulation of the 350 mT EPR spectrum of a doublet spin system
with rhombic g-tensor with principal values (1.8, 2.0, 2.2), an ordering potential
with λ2

00 = 0.5, and a strongly anisotropic axial diffusion tensor (τz = 0.1 ns;
τxy = 0.3 ns, 1 ns, 3 ns, 1 ns, 30 ns, 100 ns, 300 ns, 1000 ns). The magnetic
field is aligned with the axis of the potential. The quasi-rigid-limit spectrum in
gray was simulated with τz = τxy = 1000 ns. The orientational basis was trun-
cated at (Leven

max , Lodd
max, Mmax, Kmax) = (60, 0, 4, 8) for the motional spectra and at

(80, 0, 2, 60) for the gray spectrum.

point and result in significant runtime slowdowns. For the spectra in
Fig. 3, the slowdown is >100× (0.92 s vs 123.5 s). For the simulations
in Fig. 4, the slowdowns range between 30× and 7000×.

V. DISCUSSION
In this paper, we have laid out expressions to apply the SLE

methodology for HBD models to spin systems with any number
or nature of interaction terms. From the familiarly defined lab-
frame spin vector operators and molecular-frame Cartesian interac-
tion tensors, ISTOs and RBOs are constructed. From the RBOs and
the choice of orientational basis, the elements of the Hamiltonian
superoperator and of the rotational diffusion operator are calculated.
Once the calculation of the elements of H× and Γ is complete, the
spectral line shape function is evaluated.

We have also presented an expression for the diffusion operator
in the presence of orienting potentials of any form, even of very low
symmetry. This is useful for two scenarios: (1) for fitting an effective
potential to an orientational histogram obtained from a molecular-
dynamics trajectory and (2) for fitting a potential expansion to an
experimental CW EPR spectrum. For the first case, many terms in
the potential expansion are needed. For the second case, one has to
consider the limited information content and the given signal-to-
noise ratio of the CW EPR spectrum and limit modeling to potentials
with relatively few terms.

Care must be taken to assure the orientational basis and the spin
basis are large enough to provide sufficient convergence of the spec-
trum. The allowable truncation level depends on the spin Hamilto-
nian parameters, the rotational diffusion rates, and the orientational
potential.
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For systems with highly anisotropic g-tensors, care must be
taken to simulate explicit field sweeps when fitting experimental
spectra. Using an approximate field sweep method, it is possible
that the fit parameters extracted from the best-fit simulation will
be inaccurate due to the error in the peak positions and spectral
width of the frequency-to-field converted simulation. Explicit field
sweep simulations are more time consuming, but the construction of
field-independent and field-dependent RBOs allows for reasonable
simulation times in small to medium-sized spin systems.

Several important numerical challenges remain. (1) One is the
efficient evaluation of the integrals for the basis representation of
the root equilibrium distribution P1/2

eq , as given in Eq. (34). Numeri-
cal integration for this, as done in this work, constitutes a significant
computational bottleneck, particularly for large orientational basis
sets where the basis contains highly oscillatory large-L basis func-
tions. (2) Another challenge is the identification of additional sym-
metrizing basis transformations, similar to the K-symmetrization in
Eq. (38), and the M-symmetrization/truncation, which is applica-
ble only in the high-field regime13 for M = 0 potentials. The goal of
the symmetrizations is to allow for efficient basis truncation and for
the application of the complex symmetric Lanczos method. (3) The
factorial growth of the spin space with the number of spins repre-
sents a challenge for large spin systems since the simulation times
grow factorially, despite the spin-space truncations outlined above.
(4) The Lanczos algorithm can be numerically unstable and fail to
converge occasionally. Future advances addressing these challenges
will improve the performance and robustness of the simulations.

It is important to reiterate the assumptions underlying the
HBD model: (1) The spin dynamics does not affect the rotational
dynamics. This assumption is accurate in all known cases. (2) The
spin center is internally rigid, i.e., the principal values and rela-
tive orientations of the interaction tensors are time-independent in
a body-fixed frame. This assumption is violated in some Gd(III)
complexes, where there can be significant internal conformational
dynamics.31,32 In such cases, the HBD model needs to be expanded
by additional degrees of freedom, with associated potential energy
functions and interaction tensor dependencies. (3) The rotational
motion is Brownian, i.e., there are no inertial effects. This assump-
tion is reasonably well satisfied for spin labels in solution and for spin
labels at mobile solvent-exposed sites in proteins but is less appropri-
ate for more restricted sites, where a multi-site Markov jump model
might be more successful.4,5,53 (4) The motion can be described with
a single diffusion tensor (i.e., there is a single time scale). Since the
rotational motion of a spin label is a consequence of simultaneous
torsional motions around several different bonds, rotational motion
may occur over multiple time scales. To what degree an assump-
tion about a single time scale is adequate remains to be explored.
(5) The external potential is time-independent, at least on the time
scale of the rotational diffusion. This assumption disregards the fact
that different parts of the nano-environment might move at different
time scales and that some of these time scales might be on the order
of the spin label diffusion time scale, which would complicate the
situation.

Our extensions of the SLE theory now allow assumptions (4)
and (5) to be tested against atomistic molecular-dynamics simula-
tions and against experimental data. The HBD model can then be
quantitatively compared to other approaches, such as Markov state
models.
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APPENDIX A: SPHERICAL TENSORS
Tables II and III list irreducible spherical tensor components.41

The tables give expressions for the conversion of vectors and ten-
sors from their Cartesian form to irreducible spherical tensor form.
Table III can be derived from Table II using the Cartesian tensor C
with Cij = biaj (not aibj).

F( l ,m) and T( l ,m) satisfy the symmetry relations

F(l,−m) = (−1)l−mF(l,m)∗, T(l,−m) = (−1)l−mT(l,m)†. (A1)

All T( l ,m) are real-valued in the conventional Zeeman basis.
The frame transformation of the spherical tensors is as follows:

F(l)μ,B = (F
(l)
μ,A)

TDl(ΩBA) = (Dl(ΩBA))TF(l)μ,A = (D
l(ΩAB))∗F(l)μ,A, (A2)

where we have used Dl(ΩAB) = Dl†(ΩBA) with ΩBA = (α, β, γ) as in
Fig. 2 and ΩAB = (−γ, −β, −α).

The Wigner matrix for the composition of two transforma-
tions is given in terms of the Wigner matrices of the component
transformations by

Dl(ΩCA) = Dl(ΩBA)Dl(ΩCB). (A3)

APPENDIX B: OPERATOR MATRIX ELEMENTS
IN THE WIGNER BASIS

Using the shorthand ∣ξi⟩ = ∣Li, Mi, Ki⟩ [see Eq. (29)], the matrix
elements for the angular-momentum operators are38,39

⟨ξ1∣J2∣ξ2⟩ = δLMδK1 ,K2 ⋅ L(L + 1), (B1)

⟨ξ1∣Jz ∣ξ2⟩ = δLMδK1 ,K2 ⋅ (−K2), (B2)

TABLE II. Irreducible spherical tensor components F( l ,m ) in terms of the Cartesian
components Fi j of the interaction tensor F.

(l, m) F( l ,m)

(0, 0) − 1
√

3
(Fxx + Fyy + Fzz)

(1, 0) − i
√

2
(Fxy − Fyx)

(1, ±1) − 1
2 [(Fzx − Fxz) ± i(Fzy − Fyz)]

(2, 0) +
√

2
3 [Fzz − 1

2(Fxx + Fyy)]
(2, ±1) ∓ 1

2 [(Fxz + Fzx) ± i(Fyz + Fzy)]
(2, ±2) + 1

2 [(Fxx − Fyy) ± i(Fxy + Fyx)]
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TABLE III. Irreducible spherical tensor operator components for a product of two vector operators a and b, with
a± = ax ± iay .

(l, m) T( l ,m) (a, b), from Cartesian T( l ,m) (a, b), from polar

(0, 0) − 1
√

3
(axbx + ayby + azbz) − 1

√
3
[azbz + 1

2(a+b− + a−b+)]
(1, 0) + i

√
2
(axby − aybx) − 1

2
√

2
(a+b− − a−b+)

(1, ±1) + 1
2 [(azbx − axbz) ± i(azby − aybz)] − 1

2(a±bz − azb±)
(2, 0) +

√
2
3 [azbz − 1

2(axbx + ayby)] +
√

2
3 [azbz − 1

4(a+b− + a−b+)]
(2, ±1) ∓ 1

2 [(axbz + azbx) ± i(aybz + azby)] ∓ 1
2(a±bz + azb±)

(2, ±2) + 1
2 [(axbx − ayby) ± i(axby + aybx)] + 1

2 a±b±

⟨ξ1∣J±∣ξ2⟩ = δLMδK1 ,K2±1 ⋅
√

L2(L2 + 1) − K2(K2 ± 1), (B3)

where J± = Jx ± iJy. x, y, and z refer to a body-fixed frame and δLM
= δL1 ,L2δM1 ,M2 . Note the negative sign in the equation involving Jz .

The matrix elements of DL
M,K are

⟨ξ1∣DL
M,K ∣ξ2⟩ = (−1)K1−M1

√
2L1 + 1

√
2L2 + 1

×(
L1 L L2

−M1 M M2
)(

L1 L L2

−K1 K K2
), (B4)

where the expressions in parentheses are Wigner 3-j symbols.38,39

Due to the selection rules for the 3-j symbols, the matrix elements
can be non-zero only if |L1 − L2| ≤ L ≤ L1 + L2 and M = M1 − M2
and K = K1 − K2. They are all real-valued and possess the symmetry

⟨ξ2∣DL
M,K ∣ξ1⟩ = ⟨ξ1∣DL∗

M,K ∣ξ2⟩ = (−1)K−M⟨ξ1∣DL
−M,−K ∣ξ2⟩. (B5)

Additionally, the following matrix elements are useful:

⟨ξ1∣J±DL
M,K ∣ξ2⟩ = ⟨ξ1∣DL

M,K±1∣ξ2⟩ ⋅
√

L(L + 1) − K(K ± 1), (B6)

⟨ξ1∣JzDL
M,K ∣ξ2⟩ = ⟨ξ1∣DL

M,K ∣ξ2⟩ ⋅ (−K). (B7)

APPENDIX C: DETAILS ABOUT THE DIFFUSION
OPERATOR

The matrix elements of the isotropic part of the diffusion
operator in the LMK basis are

⟨ξ1∣Γ0∣ξ2⟩ = δL1 ,L2δM1 ,M2δK1 ,K2

× [R⊥(L2(L2 + 1) − K2
2) + RzK2

2]

+ δL1 ,L2δM1 ,M2 Rd[δK1 ,K2+2c+
L2 ,K2+1c+

L2 ,K2

+ δK1 ,K2−2c−L2 ,K2−1c−L2 ,K2], (C1)

with Rd = (Rx − Ry)/4, R� = (Rx + Ry)/2, and
c±L,K =

√
L(L + 1) − K(K ± 1).

The expansion coefficients X̃L
M,K in Eq. (15) are given by

X̃L
M,K = −

1
2
[Rdλ

L
M,K+2c−L,K+1c−L,K+2 + Rdλ

L
M,K−2c+

L,K−1c+
L,K−2

+ R⊥λL
M,K(L(L + 1) − K2) + RzλL

M,K K2]

− 1
4
(2L + 1)(−1)K−M ∑

L1 ,M1 ,K1

∑
L2 ,M2 ,K2

λL1
M1 ,K1

λL2
M2 ,K2

×(
L1 L L2

M1 −M M2
)
⎡⎢⎢⎢⎢⎣

Rdc+
L1 ,K1 c+

L2 ,K2(
L1 L L2

K1 +1 −K K2 +1
)

+ Rdc−L1 ,K1 c−L2 ,K2(
L1 L L2

K1−1 −K K2−1
)

+ R⊥c+
L1 ,K1 c−L2 ,K2(

L1 L L2

K1 +1 −K K2−1
) + RzK1K2(

L1 L L2

K1 −K K2
)
⎤⎥⎥⎥⎥⎦

.

(C2)
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