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Determining electron–nucleus distances and
Fermi contact couplings from ENDOR spectra†

Stephan Pribitzer, Donald Mannikko and Stefan Stoll *

The hyperfine coupling between an electron spin and a nuclear spin depends on the Fermi contact

coupling aiso and, through dipolar coupling, the distance r between the electron and the nucleus. It is

measured with electron-nuclear double resonance (ENDOR) spectroscopy and provides insight into the

electronic and spatial structure of paramagnetic centers. The analysis and interpretation of ENDOR

spectra is commonly done by ordinary least-squares fitting. As this is an ill-posed, inverse mathematical

problem, this is challenging, in particular for spectra that show features from several nuclei or where the

hyperfine coupling parameters are distributed. We introduce a novel Tikhonov-type regularization

approach that analyzes an experimental ENDOR spectrum in terms of a complete non-parametric

distribution over r and aiso. The approach uses a penalty function similar to the cross entropy between

the fitted distribution and a Bayesian prior distribution that is derived from density functional theory

calculations. Additionally, we show that smoothness regularization, commonly used for a similar purpose

in double electron–electron resonance (DEER) spectroscopy, is not suited for ENDOR. We demonstrate

that the novel approach is able to identify and quantitate ligand protons with electron–nucleus distances

between 4 and 9 Å in a series of vanadyl porphyrin compounds.

1 Introduction

Hyperfine interactions, the magnetic couplings between unpaired
electron spins and nearby nuclear spins, provide insight into the
spatial distribution of the electron spin density and the geometric
structure of paramagnetic spin centers. Hyperfine interactions are
probed by high-resolution electron-nuclear double resonance
(ENDOR) spectroscopy in solids1 and solutions.2,3 ENDOR directly
measures nuclear resonance frequencies from which hyperfine
couplings are extracted. Among the many pulse ENDOR
techniques,4 Davies ENDOR5 and Mims ENDOR6 are the two most
common. ENDOR is extensively used, often in combination with
isotope labeling, to determine the presence of magnetic nuclei
near unpaired electron spins,7–9 the extent of electron spin density
delocalization,10–13 and the distance and location of magnetic
nuclei relative to an unpaired electron.14–19 Electron–nucleus
distances of up to 15 Å have been measured.20

The analysis of ENDOR spectra heavily relies on spectral
simulation using ordinary least-squares fitting (LSQ) to fit a spin
Hamiltonian model to the experimental spectrum. For spin-1/2
nuclei, the hyperfine parameters from this model uniquely

determine the ENDOR spectrum, which can be calculated from
them in a straightforward fashion. The hyperfine interaction
between an electron and a nucleus is represented by a hyperfine
tensor that depends on up to six parameters: the isotropic
Fermi contact coupling constant aiso, the axial dipolar coupling
constant T (which determines the effective distance r), the
rhombicity Z, and three parameters that describe the orienta-
tion of the tensor within the spin center. The number of
parameters is reduced for nuclei distant from the electron spin
density (aiso E 0, Z E 0) and in the case of non-orientation-
selective ENDOR, where the three orientational parameters
do not affect the ENDOR spectrum. The hyperfine coupling
parameters contain information about the extent to which
electron spin density is present at the nucleus, about the
effective distance between the nucleus and the delocalized
electron, and in orientation-selective situations, the location
of the nucleus relative to the delocalized electron spin
distribution.

Ordinary LSQ works reasonably well if the ENDOR spectrum
contains non-overlapping features of only one or a few mag-
netic nuclei. It is more challenging for spin centers with many
nuclei with overlapping ENDOR signatures and in the presence
of substantial spread in the hyperfine couplings due to struc-
tural disorder (strain effects). In this case, extracting hyperfine
parameters from the spectrum is a mathematically ill-posed
problem in the sense that no unique solution exists, and that
the solution is extremely sensitive to noise in the data.
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A similar problem exists in double electron–electron resonance
(DEER) spectroscopy. Like ENDOR, DEER probes magnetic
dipolar couplings between pairs of spins, both electrons in this
case. Experimental situations in DEER are usually such that
contact couplings are negligible, the distances are relatively
large, and orientation selection is absent. Therefore, the only
coupling parameter that affects the dipolar spectrum is the
effective inter-spin distance. In DEER, one common solution to
the inversion problem of analyzing the data is Tikhonov
regularization,21 yielding a distribution of distances r between
the two electrons.22–25

Here, we present a novel regularization-based method that
analyzes an experimental ENDOR spectrum in terms of a
complete non-parametric distribution over hyperfine para-
meters. We first show that ordinary LSQ fails, and that Tikhonov
regularization, widely employed in DEER spectroscopy, is
inadequate. We then introduce a regularization approach that
augments the LSQ objective function with a penalty term that
measures the dissimilarity between the distribution and a prior
probability distribution that is obtained from computational-
chemistry predictions. This term penalizes regions in hyperfine
parameter space that are deemed nonphysical for the molecules
under investigation, based on the calculations. We demon-
strate and evaluate the method on non-orientation-selective
ligand 1H ENDOR spectra of a series of vanadyl porphyrin
compounds. These pose a particularly challenging problem,
as they have a large number of protons with strongly over-
lapping ENDOR spectra, as well as protons with significant
distributions of hyperfine parameters.

2 The ENDOR spectrum

ENDOR provides a spectrum of nuclear resonance frequencies
nn of the spin center. For a spin-1/2 nucleus interacting with a
spin-1/2 electron with an isotropic g value, they are26

nn(mS) = 8(nI1 + mSA)zL8 (1)

where mS = �1/2, ||. . .|| indicates the Euclidean norm, zL is the
unit vector along the applied laboratory magnetic field B0, 1 is
the 3 � 3 identity matrix, and nI = �gnmNB0/h is the nuclear
Larmor frequency, with the nuclear g factor gn, the nuclear Bohr
magneton mN, the applied magnetic field magnitude B0, and the
Planck constant h.

A is the molecule-fixed hyperfine coupling tensor, in fre-
quency units. It is a 3 � 3 matrix consisting of a sum of two
main physical contributions

A = aiso1 + Adip (2)

The first term is the isotropic Fermi contact coupling constant

aiso ¼
8p
3

m0
4p

mNgnmBge
h

rðRÞ (3)

Here, m0 is the magnetic constant, mB the Bohr magneton, ge is
the electron g value, and r(R) is the (positive or negative)
electron spin density at R, the location of the nucleus. This
term captures the interaction between the nucleus and the

electron spin density at its position. The second term in eqn (2)
is the dipolar coupling tensor, with elements

ðAdipÞij ¼
m0
4p

mNgnmBge
h

ð
rðrÞ3ninj � dij

r� Rk k3 dr (4)

where i, j = x, y, z, r is the electron location, ni and nj are
components of the unit vector n = (r � R)/||r � R|| along the
nucleus-electron direction, and dij is the Kronecker delta. This
term captures the anisotropic through-space magnetic dipolar
coupling of the nucleus with the electron averaged over
the electron spin density distribution. Note the inverse-cube
dependence on the electron–nucleus distance.

In its principal-axis system, the dipolar tensor is diagonal,
and the hyperfine tensor is

A ¼

aiso � Tð1� ZÞ 0 0

0 aiso � Tð1þ ZÞ 0

0 0 aiso þ 2T

0
BBB@

1
CCCA (5)

where the dipolar coupling constant T describes the strength of
the dipolar interaction and the rhombicity parameter 0 r Z r 1
quantifies the deviation of r(r) from cylindrical symmetry around
the n axis.

In this work, we mostly restrict ourselves to the situation
where the nucleus and the electron spin density distribution
are far enough apart such that the point-dipole approximation
holds, i.e. the electron–nucleus distance is much larger than
the spread of the spin density. In this case, rhombicity is
negligible (Z E 0), and T becomes

T ¼ m0
4p

mNgnmBge
h

1

r3
(6)

where r is the effective distance between nucleus and electron.
Through eqn (1), the ENDOR spectrum depends on the

orientation of the spin center relative to the applied field. The
ENDOR spectrum for a powder or frozen-solution sample with a
uniform distribution of spin center orientations is the integral
of these spectra over all orientations of the spin center. The
shape and width of the resulting ‘‘powder’’ spectrum strongly
depend on aiso and T.

When using Mims ENDOR to measure the ENDOR spectrum,
spectral intensities are subject to a frequency-dependent suppres-
sion that depends on t, the delay between the first two pulses in
the Mims ENDOR pulse sequence.28 It results in blind spots,
i.e. frequencies of maximal suppression, at nI � n/2t, where
n = 0, 1, 2,. . .. This suppression effect is illustrated in Fig. 1a.
The Mims ENDOR spectra (color) are overlaid on the unsuppressed
ENDOR spectra (dashed, gray lines). The hyperfine parameters
used for the simulations are shown in Fig. 1b. The suppression
effect has a significant impact on the shape of the ENDOR
spectrum; narrow spectra in particular end up resembling pairs
of Gaussians due to the central blind spot at n = nI (n = 0;
the ‘hole in the middle’29).

Besides magnetic nuclei that are part of the spin center,
ENDOR also reveals interactions with nuclei from the solvent
matrix and from other spin centers. These nuclei are spatially
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uniformly distributed and lead to a narrow peak in the ENDOR
spectrum centered at the Larmor frequency that can have
significant intensity despite the t-dependent suppression. The
appearance of this matrix peak has been studied in detail,30,31

and an excluded-volume model similar to one used in DEER
can be applied.32 Since all data in this paper were acquired at
low concentrations in fully deuterated solvents, the overall
proton density is low. Therefore, we model the matrix peak as
a Lorentzian

LðnÞ ¼ 1

p
d=2

n � nI 1Hð Þð Þ2 � d=2ð Þ2
(7)

were d describes the width of the Lorentzian. Other choices of
matrix line shapes are possible.

3 Model compounds

We demonstrate our method with the four uncoordinated
vanadyl porphyrin compounds shown in Fig. 2a. They all have
an identical porphin core with close protons (pyrrole and
meso), and differ in the substitution patterns that provide a
large number of distant protons. We investigate the effect of
meso substituents on the ENDOR spectrum by using vanadyl
tetraphenylporphyrin (VO-TPP; no meso protons) and vanadyl
diphenylporphyrin (VO-DPP; two meso protons). In vanadyl
octaethylporphyrin (VO-OEP) and vanadyl etioporphyrin (VO-EP),
the pyrrole protons are all substituted with ethyl groups (VO-OEP)
or a mix of methyl and ethyl groups (VO-EP), but the protons at the
four meso positions are preserved. The large number of protons
with similar small hyperfine couplings makes it particularly
challenging to analyze the associated ENDOR spectra.

We use density functional theory (DFT) calculations to predict
all 1H hyperfine tensors for all five complexes in Fig. 2a.
The results are shown in Fig. 2b. Different types of protons
appear in distinct regions of the (r,aiso) plane. Protons directly
attached to the tetrapyrrole ring (meso and pyrrole) have non-
negligible and positive aiso. In contrast, all protons from
aliphatic and aromatic substituents and from the THF ligand
have aiso values close to zero, but of either sign. The DFT
calculations also predict that all proton hyperfine tensors are
essentially axial, with Z E 0.07 for the meso protons and
Z o 0.04 for all others (data not shown). The distinction
between protons from THF and ortho protons from VO-TPP
and VO-DPP is difficult, as both have aiso close to zero and r in
the range of about 5 Å. In general, distant protons from larger
axial ligands and closer protons on ring substituents are not
distinguishable based on aiso and r alone.

4 Ordinary least-squares analysis

The calculation of the ENDOR spectrum S(n) for a given
hyperfine parameter distribution P(r,aiso) is straightforward:

S = KP (8)

Fig. 1 (a) Simulated powder Mims ENDOR spectra (colored) of protons
with typical axial hyperfine tensors, with t = 150 ns, together with
simulated spectra without t suppression (gray). The shape and the width
of the spectrum depend on aiso and T. Spectra are centered around the
nuclear Larmor frequency of the proton nI(

1H), were simulated at 344 MHz,
and are scaled to maximum 1. (b) Hyperfine parameters used for the
spectra in (a), in addition to Z = 0. The top and bottom horizontal axes
show the dipolar coupling constant T and the associated effective
electron–nucleus distance r. The vertical axes show aiso and the associated
contact electron spin density r(R), expressed as a fraction in relation to
the contact spin density in a hydrogen atom, r0, corresponding to aiso,0 =
1420 Mhz.27

Fig. 2 (a) Lewis structures of the four model compounds examined in this study, plus VO-TPP axially coordinated by tetrahydrofuran (THF). The different
types of protons are indicated in color. (b) Hyperfine coupling parameters determined from DFT calculations for protons from all structures.
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Here, S is the ENDOR spectrum in vector form, and P is the
vector form of a histogram representation of P(r,aiso) discre-
tized over a sufficiently fine grid of r and aiso, i.e. Pi = P(ri,aiso,i).
K is a kernel matrix where column i contains the simulated
ENDOR spectrum for the parameter combination (ri,aiso,i).
These spectra form the basis functions of the problem.
To model the matrix peak, one column is added to K that
contains the Lorentzian line from eqn (7), and the P vector is
augmented by one element to provide the amplitude of the
matrix peak basis function.

Inverting eqn (8) consists of estimating P from the measured
spectrum S. One possible approach is to use ordinary least-
squares fitting

Pfit ¼ argmin
P�0

jjS � KPjj2 (9)

where P Z 0 indicates that all values in the distribution vector
must be nonnegative. This constitutes a mathematically
ill-posed problem, since the condition number of K is very
large (on the order of 1018 in our case). In other words, the set of
ENDOR basis spectra in K have very similar shapes and are
almost linearly dependent. This is illustrated in Fig. 3, which
shows that a spectrum from a proton with medium r and small
aiso can be fit by a proton with long r and a wide distribution of
aiso. This means small changes in the spectrum (such as noise)
can lead to large changes in the fitted distribution, and a
measured noisy spectrum may be fit equally well by several
different P.

Fig. 4a top shows the experimental spectrum of VO-TPP in
red and the fitted spectrum obtained using eqn (9) in blue,
together with the residual vector. The bottom panel shows the
fitted P(r,aiso) as well as its projections onto the r and aiso

dimensions. For reference, the results of the DFT calculations
from Fig. 2 are shown as gray circles. The fit to the spectrum is
excellent, with the residuals not displaying any noticeable
systematic deviations. However, the fitted P(r,aiso) strongly
deviates from the physical predictions obtained from DFT.

Clearly, the LSQ approach is unsatisfactory. This is a con-
sequence of the severe ill-posedness of the problem. Additional
information must be included in the analysis to obtain a
unique and stable solution.

5 Regularized least-squares analysis

To include additional information, we use Tikhonov
regularization.21 This is a well-established method that aug-
ments the objective function with a P-dependent quadratic
penalty term:

Pfit ¼ argmin
P�0

jjS � KPjj2 þ a2jjGPjj2
� �

(10)

with a regularization operator G and a regularization parameter
a. This second term helps to stabilize the solution. Various
choices for the regularization operator G exist: the identity
operator minimizes the amplitude of each basis function and
avoids spikes in the target distribution. The first and second
differential operators can be good choices if the probability
distributions are expected to be smooth. Other operators are
possible as well.

The regularization parameter a controls the balance between
data agreement and regularization; a large value for a prior-
itizes the regularization and will tolerate a discrepancy between
fit and data. What exactly constitutes a large or small value for a
depends on the number of data points, the scale of the
spectrum, and the regularization operator. Various approaches
exist for the selection of an a value, based on various concep-
tions of optimality.33 To select appropriate regularization para-
meters, we used the Akaike information criterion (AIC).34 For
DEER spectroscopy, AIC has been shown to be one of the most
reliable selection methods.33

The second term in eqn (10) represents additional informa-
tion, and from a Bayesian perspective, it represents a prior, i.e.
information about the spin center that is available prior to
taking the ENDOR spectrum into account.

We examine two choices for G. First, we utilize the second
derivative, corresponding to a smoothness prior, and show that
it does not work. Then, we introduce an operator that calculates
the dissimilarity to a physically expected distribution, obtained
from structure-based DFT calculations.

5.1 Smoothness regularization

We first examine the use of the second derivative for the
regularization operator G in eqn (10). This choice is very common
in DEER spectroscopy.22–25 There, a one-dimensional distance
distribution P(r) is fitted to the experimental signal. In contrast,
in our case the target distribution P(r,aiso) is two-dimensional.
We therefore include separate regularization terms along the r
dimension and the aiso dimensions:

Pfit ¼ argmin
P�0

jjS � KPjj2 þ ar2jjGrPjj2 þ aa2jjGaPjj2
� �

¼ argmin
P�0

jjS � KPjj2 þ
arGr

aaGa

 !
P

�����
�����
2

0
@

1
A (11)

Fig. 3 Demonstration of linear dependence within the basis set of Mims
ENDOR spectra. (a) An anisotropic spectrum (aiso = 0.62 MHz, T =
0.64 MHz), simulated at B0 = 350 mT, is fit accurately by a linear
combination of basis spectra with a small dipolar contribution and large
variation in contact coupling (aiso = �0.1–1.6 MHz, T = 0.079 MHz). The
resulting superposition (red) reproduces the anisotropic spectrum almost
perfectly. The combinations or r and aiso are shown in (b). Color saturation
of the dots for the basis spectra indicates relative weights in the linear
combination.
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Here, Gr and Ga are matrices representing the second derivative
along aiso and r, respectively, and aa and ar are the associated
independently selectable regularization parameters.

An analysis of the ENDOR spectrum of VO-TPP using this
approach, combined with AIC for the selection of both regulari-
zation parameters, is shown in Fig. 4b. The fit to the spectrum
is excellent, as in the case of ordinary LSQ. However, the fitted
distribution is starkly different. There is significant density at
nonphysical combinations of long r and large aiso, inconsistent
with the expectations from the DFT calculations (Fig. 2b). Also,
the fitted distribution in Fig. 4b shows extended ridges. The
more vertical ridge runs along locations of constant |aiso + 2T| E
1.4 MHz and corresponds to a set of spectra with equal overall
width (see Fig. 1a). Peaks at some locations along this ridge are also
visible in the LSQ fit. The more horizontal ridge runs along
locations of constant |aiso � T| E 0.15 MHz. The associated set
of spectra have identical locations of their inner peaks (see Fig. 1a).
Both ridges are a consequence of the smoothness requirement
imposed by the second term in eqn (11). Varying ar and aa or using
the identity or the first derivative as regularization operators does
not improve the situation.

The reason this approach fails is that the added requirement
of smoothness along the r and aiso dimensions is not entirely
physical. While it might be reasonable to expect some distribu-
tion of aiso for the meso protons as a result of structural
flexibility of the molecule, the distribution of aiso for more
distant protons is expected to be much narrower. Imposing a
uniform smoothness requirement over the entire range of aiso

is therefore not representative of the physical expectation.
A similar argument holds for distributions along the r

dimension, where different nuclei will have vastly different
distributions of r, depending on the local structural flexibility
in the molecule.

5.2 Structure-based regularization

Since we have information from DFT that enables us to
distinguish physical from nonphysical solutions, it is advanta-
geous to incorporate this information directly and quantita-
tively into the objective function. To do this, we solve the
regularized minimization problem

Pfit ¼ argmin
P�0

jjS � KPjj2 þ aP2jjGPPjj2
� �

(12)

with a regularization operator GP that penalizes P in (r,aiso)
regions that are deemed non-realistic based on structural
information from quantum-chemical calculations. One form
of GP that achieves this is the multiplicative operator

GP = �ln P̃ (13)

where P̃ is a probability distribution over r and aiso that
captures physical expectations about P(r,aiso). Unphysical
regions in the (r,aiso) domain have small values of P̃ and
therefore large values of GP, and increase the value of the
objective function. With this operator, the discretized form of
the norm in the regularization term in eqn (12) is

GPPk k2 ¼
X
i

½ð� ln ~PiÞPi�2 (14)

This is similar to the cross entropy35–37 of P̃ relative to P,P
i

ð� ln ~PiÞPi. Although it is possible to use the cross entropy

Fig. 4 (a) The solution for the ordinary least square fitting approach for VO-TPP, eqn (9). (b) The same data analyzed with smoothness regularization as
shown in eqn (11). (c) Regularization with penalty function based on the P̃ shown in Fig. 5 and using eqn (12). For (b) and (c) the regularization parameters
were selected via the AIC method. The top panels show the experimental spectrum in red and the fit to it in blue, as well as the residuals with a
magnification factor of 10. The bottom panels show the density distribution over distance r and contact coupling aiso that was fit to the spectrum, with
contour levels at 0.02, 0.05, 0.1, 0.2, 0.5, 0.75, and 0.9 of the distribution maximum. The DFT results for the protons in VO-TPP (pyrrole, ortho, meta,
and para) are shown as gray dots. The dotted lines in the lower panel of (b) indicate locations of constant |aiso + 2T| E 1.4 MHz and of constant
|aiso � T| E 0.15 MHz.
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directly as a regularization term, we utilize the squared form
to keep the objective function of the general quadratic form
in eqn (10).

The distribution P̃ for the application case in this paper is
shown in Fig. 5. It is constructed using the results from the DFT
calculations shown in Fig. 2. Mathematical details are given in
the Methods section below. It is designed to have significant
amplitude at and near locations of DFT predictions, and very
small but non-zero amplitude everywhere else, thereby repre-
senting our expectation about P. Significant broadening is
added to represent uncertainty that accounts for potential
errors in the DFT calculations or the underlying structures.
One possible alternative to this structure-based P̃ is to comple-
tely exclude basis functions from the kernel that lie in physi-
cally unrealistic regions, equivalent to setting P̃ to zero in these
regions. In principle, excluding basis functions could also be
applied to the LSQ and smoothness approaches, which is just

another way of incorporating additional information. However,
a P̃ that is non-zero everywhere has a crucial advantage, as it
does not categorically exclude any (r,aiso) region from being
included in the fit. With P̃ as defined, the method is able to
identify protons with large r and aiso if there is strong evidence
for them in the data. In general, it is important to keep P̃ diffuse
enough not to categorically exclude any region.

The result of analyzing the VO-TPP spectrum using eqn (12)
with AIC-selected regularization parameter aP is shown in
Fig. 4c. The fit to the data is as excellent as with the other
methods. The fact that all three methods result in excellent fits
to the spectra that are more or less identical despite gross
differences among the fitted distributions illustrates the strong
ill-posedness of the problem and the importance of including
additional information via regularization. Importantly, how-
ever, now the fitted distribution is more physical: it contains
very little intensity outside the expected regions, and extended
ridges are absent.

As in any regularization approach, the selection of a value
for aP plays an important role. If aP is chosen too small, the
effect of regularization is reduced, leading to density in areas of
nonphysical (r,aiso). On the other hand, large values of aP lead
to Pfit with very narrow spikes at some of the maxima of the
prior probability function P̃.

6 Results for all compounds

The results for the analysis of all four model compounds are
shown in Fig. 6. All ENDOR spectra are fitted very accurately,
with all residual vectors showing no significant systematic
deviations from zero. All fitted hyperfine distributions are
physically reasonable. The method recovers the expected hyperfine

Fig. 5 The probability distribution P̃, overlaid on the results from the DFT
calculations (gray). Contour levels are at 0.05, 0.1, 0.2, 0.5, 0.75, and 0.9 of
the distribution maximum.

Fig. 6 Analysis of the four model vanadyl porphyrin compounds, (a) VO-TPP, (b) VO-DPP, (c) VO-OEP, and (d) VO-EP. The top panels show the
experimental spectrum in red and the fit to it in blue, as well as the residuals with a magnification factor of 10. The bottom panels show the distance r vs.
contact coupling aiso distribution that was fit to the spectrum, with contour levels at 0.02, 0.05, 0.1, 0.2, 0.5, 0.75, and 0.9 of the distribution maximum,
as well as its projections along aiso and r. Results from the DFT simulations for protons of the same type as in the individual compounds are shown
as gray dots.
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couplings well for all investigated compounds: it correctly deter-
mines that meso protons are absent in VO-TPP and present in all
other complexes, and that there are no pyrrole protons in VO-OEP
and VO-EP, in contrast to VO-TPP and VO-DPP.

From the contour plots of the fitted P(r,aiso), it appears that
for VO-DPP and VO-OEP the meso protons are barely present.
This is due to the broad distribution of aiso values for these
protons. This manifests in the spectra in the form of broad
humps in the range between 0.75 to 1.2 MHz for VO-DPP and
0.5 to 1.25 MHz for VO-OEP and VO-EP. For comparison, the
line shape of a meso proton with sharp aiso is shown in Fig. 1a
in red. The origin of this distribution is a distribution of ring
distortions, which affect the amount of spin density that leaks
from the V ion to the meso protons.

Also noticeable in all four cases is non-zero density at
slightly negative aiso mostly around.6 DFT calculations indeed
predict negative aiso in this area for some of the aliphatic
protons (see Fig. 2). However, VO-TPP only has aromatic pro-
tons with aiso very close to zero, which indicates that the
experimental spectra do not have sufficient spectral resolution
and sensitivity to resolve aiso to less than 0.05 MHz.

VO-OEP and VO-EP show density at aiso E 0 and r E 9 Å,
even though there are no protons with these parameters in
these compounds. This indicates that the resolving power of
ENDOR for these long distances is limited. Two reasons for this
are that the associated very narrow spectra have very low intensity
due to the suppression of intensity close to nI in Mims ENDOR,
and that every other proton contributes intensity around nI as
well, leading to spectral congestion. Therefore, the analysis for
this region of (r,aiso) is unreliable in these examples.

The fitted distributions make it possible to determine the
relative abundance of the various types of protons. For this,
specific areas of Pfit attributed to each proton type are inte-
grated. The integration areas are based on the 0.05 contour line
of P̃ and are shown in Fig. 7a using the contour plot of VO-DPP
as an example. Probability mass outside of these areas is
designated as unassigned.

The results of this analysis for all compounds are shown in
Fig. 7b. Expected values from the Lewis structures are shown in

the upper bar, and integrated intensities obtained from Pfit in
the lower bar. Overall, the relative intensities are recovered well,
particularly for the pyrrole and substituent protons. About
5–10% of intensity results unassigned. Meso protons are under-
estimated most in VO-DPP, where a small fraction is attributed
to coordinated protons. Even though the samples did not
contain an axial ligand, Fig. 6b shows small values for the area
around 4.5 Å. This is due to the fact that protons from axial
ligands and the ortho protons from DPP have similar r, as
discussed in Section 3.

7 Three-dimensional distributions

It is straightforward to extend the approach introduced in this
work to situations where the hyperfine tensors can have
significant rhombicity Z. This requires a three-dimensional
hyperfine parameter distribution P(r,aiso,Z), discretized over a
3D grid such that Pi = P(ri,aiso,i,Zi), and an associated three-
dimensional prior, P̃(r,aiso,Z). To demonstrate this, we analyzed
VO-EP with a three-dimensional prior, constructed in the same
fashion as the 2D prior from the same DFT calculation, but
without neglecting Z. To avoid an explosion of the number of
basis functions, it was necessary to halve the kernel resolution
along r and aiso.

Fig. 8a shows the fit to the spectrum. To visualize P(r,aiso,Z),
its projections along Z, aiso, and r are shown in Fig. 8b, c, and d,
respectively. The projection along Z produces a two-
dimensional distribution P(r,aiso) that matches the results
from the two-dimensional prior (Fig. 6d) very well. This
indicates that the choice of a two-dimensional prior was
justified. Analysis of the spectra with the three-dimensional
prior yields similar results and in all cases the relative inte-
grals ratios are roughly the same as in the two-dimensional
case (data not shown). One significant challenge when going
from the 2D to the 3D model is the much larger number of
basis functions required in the kernel, resulting in computa-
tions with significantly larger memory requirements and
slower performance.

Fig. 7 Ligand proton quantitation. (a) Integration areas that were used to calculate the relative abundances of the proton types. For better illustration, the
contour plot of Pfit for VO-EP is shown as well. (b) Relative proton abundances for each compound. The upper bar for each compound shows the
expected stoichiometric ratios, obtained from the Lewis structure, and the lower bar shows the ones obtained from integration of the fitted hyperfine
parameter distribution.
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8 Discussion and conclusions

In this work we demonstrated a novel approach to qualitatively
and quantitatively analyze ENDOR spectra that uses a model
based on a two-dimensional hyperfine parameter distribution.
We showed that smoothness regularization fails at recovering
the correct target distributions. To overcome this, we regular-
ized the problem with a term that penalizes dissimilarity to a
prior distribution based on DFT calculations. We demonstrated
the method with four model vanadyl porphyrin molecules. The
fitted distance vs. contact coupling distributions quantitatively
reproduce the spectra and are in good agreement with the
physical expectations based on DFT predictions. We also
showed that the approach can be extended to extract three-
dimensional distributions of distances, contact couplings, and
rhombicities. Although demonstrated here for Mims ENDOR
only, this method can be applied to other ENDOR experiments
(Davies, continuous-wave), as long as the ENDOR line shape for
a given hyperfine coupling can be accurately modelled.

The problem discussed here shares the same physical basis
as DEER spectroscopy, but several key differences relevant to
the analysis exist: (1) in most systems investigated by DEER,
contact couplings (exchange couplings) are negligible. This
is not the case in ENDOR. Therefore, ENDOR requires a two-
dimensional distribution P(r,aiso), whereas DEER needs only
P(r). (2) In DEER, typically only one other electron spin is
significantly coupled to the probed electron spin, whereas in
ENDOR there can be many coupled protons. This can lead to
significant spectral overlap in ENDOR and aggravates the
inversion problem. (3) Whereas in DEER, the dipolar coupling
can be distributed due to flexibility of spin labels, in ENDOR it
is more often the isotropic coupling that is distributed as a
result of structural variability.

We expect distance vs. contact coupling distributions to
facilitate analysis and interpretation of ENDOR spectra parti-
cularly in difficult cases with significant spectral overlap due to
many nuclei in the same distance range and with appreciable
hyperfine parameter distributions for some nuclei. One parti-
cular application could be the speciation of vanadyl petropor-
phyrins in crude oil.38–41 However, this ENDOR analysis

method is applicable to other families of paramagnetic com-
pounds for which DFT calculations can be obtained or where
additional information is available that allows the generation
of a non-flat prior distribution P̃. The structure-based prior can
be extended to include published and validated spectroscopic
data from the class of compounds under investigation.

Given that the results show distributions for aiso, in parti-
cular for the meso protons of VO-DPP, VO-OEP, and VO-EP,
it would be reasonable to include an additional smoothing
term for aiso in the objective function. Even though we were
able to obtain somewhat smoother results by combining the
structure-based regularization with smoothness regularization
along aiso and r, in our opinion the benefits are outweighed by
the fact that values for one (for smoothing only aiso) or two
(smoothing for r and aiso) additional hyperparameters need to
be selected. Methods for determination of multiple regulariza-
tion parameters in a generalized L-curve framework exist,42 but
it is unclear what the best procedure for regularization para-
meter selection would be.

As presented, the approach does not allow the determina-
tion of the absolute number of protons contributing to the
spectrum. To achieve this, the ENDOR amplitude needs to be
calibrated, for example via an internal standard. Quantification
will be more difficult for protons with small aiso and large r,
since the associated narrow ENDOR spectra are very weak due
to the suppression hole at n E nI.

This approach can also be used for orientation-selective
ENDOR spectra, or for a set of orientation-selective ENDOR
spectra acquired as a function of magnetic field, by utilizing an
appropriate kernel K that includes basis functions from a
higher-dimensional hyperfine parameter space.

The signal-to-noise ratio plays an important role in the
analysis. The structure-based regularization is fairly stable with
respect to more elevated noise levels. However, the method
starts fitting the noise if the noise is very strong. This will result
in spikier distributions.

The structure-based regularization discussed here requires
additional knowledge in the form of DFT simulations based
on known structures. If the structure of the spin center is

Fig. 8 Analysis of the ENDOR spectrum of VO-EP using a three-dimensional distribution over r, aiso, and the rhombicity parameter Z. Shown in (a) is the
spectrum (red) and the fit (blue) to it, including the residuals. The projection of the fitted three-dimensional distribution P(r,aiso,Z) along Z is displayed in
(b). Panels (c) and (d) show the integrals of P(r,aiso,Z) along aiso and r, respectively. Contour levels are drawn at 0.02, 0.05, 0.1, 0.2, 0.5, 0.75, and 0.9 of the
maximum of the distribution. The DFT results for protons in VO-EP are shown as gray circles. The regularization parameter aP was determined via the AIC
method, and 7440 basis functions were used.
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unknown, then the approach with P̃ still can be used by cons-
tructing it such that it represents less specific prior knowledge,
for example that it is unlikely to observe a large aiso for long r.

In conclusion, the approach presented here makes con-
gested ENDOR spectra more analyzable, in particular for longer
electron–nucleus distances where spectral crowding is typical.
However, care must be exercised not to over-interpret the
results.

9 Materials and methods
Samples

All model vanadyl complexes were purchased from Frontier
Scientific. The deuterated solvents were obtained from Cambridge
Isotope Laboratories. Samples were prepared with E1 mM
concentration in 1 : 1 (v/v) toluene-d8/CDCl3, filled into 4 mm
o.d. quartz tubes and flash-frozen by immersion into liquid
nitrogen.

ENDOR

ENDOR spectra were measured at X-band on a Bruker EleXsys
E580 spectrometer with an MD4 probe. For the ENDOR mea-
surements, the magnetic field was set to about 340 mT, so that
the microwave was resonant with the mS = �1/2 2 +1/2
transition of VO2+. The resonance frequency of this transition
is essentially orientation-independent and therefore excludes
orientation selection effects.41 The temperature was 41–44 K.
The Mims ENDOR pulse sequence was used with microwave p/2
pulses of 10 ns. The radio frequency pulse length was 30 ms, to
assure narrow-band excitation of the nuclear transitions and
prevent power broadening in the ENDOR spectra. We set
t = 150 ns, which puts the first set of suppression points
(‘‘blind spots’’) with n = �1 at �3.3 MHz, outside the spectral
range of interest. Before analysis, all spectra were phase
corrected, symmetrized, and the amplitude normalized to 1.
All measured spectra are provided in the ESI.†

DFT

DFT calculations were carried out using ORCA 4.1.1.43,44 The
B3LYP45–49 functional was used with the EPR-II50 basis set
on all atoms except the vanadium which was modeled with
the CP-PPP51 basis set. The integration grid of size 4 was used
throughout.

Data analysis

All data analysis scripts were written in MATLAB and are
available in the ESI.† ENDOR basis functions were computed
using EasySpin 652 for a 47 � 61 grid (2867 points) with r
ranging from 3 to 9.9 Å with a 0.15 Å step size and aiso ranging
from �0.2 to 1 MHz with a 0.02 MHz step size, and a convolu-
tional Gaussian broadening with a full width at half maximum
(FWHM) of 30 kHz. The resolution of the kernel was chosen to
be high enough to avoid artifacts when fitting a spectrum
generated with r, aiso values that fall between two grid points.
Suppression envelopes were added according to the experimental

parameters. For modeling the matrix peaks, we used a Lorentzian
with width d = 0.32 MHz as per eqn (7). For regularization
parameter selection, we used the AIC method.25,34 It compares
solutions with different regularization parameters by comparing
relative amounts of information lost for each and selects the one
that retains the most information. The relative abundances of the
various proton types were calculated via integration of the fitted
distribution Pfit over regions where the prior distribution for that
proton had a value of Z0.05 (see Fig. 7a).

Construction of P̃. We construct P̃ as

~Pðr; aisoÞ ¼ max
n

i¼1
Giðr; aisoÞ (15)

where Gi(r,aiso) is a bi-variate unnormalized Gaussian

Giðr; aisoÞ ¼ exp �ðr� r0;iÞ2
2sr2

� ðaiso � a0;iÞ2
2sa0 2

� �
(16)

where r0,i is the distance (based on the dipolar coupling) and
a0,i the contact hyperfine coupling for proton i. Both values are
taken directly from the DFT calculations. The widths sr and sa0

account for uncertainties in the structure and in the DFT
calculations. We used values sr = 0.2 Å and sa0

= 0.04 Å.
When choosing the width of the Gaussians it is important to

choose them large enough to accommodate for uncertainty of
the DFT simulations. If the width is chosen too small the
method will provide narrow, potentially spiky distributions,
and possibly a bad fit. In contrast, if widths for construction
of P̃ are chosen too wide, the penalty for unphysical parameter
combinations will be too weak and the method will run into
similar issues as with least-squares fitting and smoothness
regularization.

In eqn (15) we use max instead of a sum for two reasons.
First, it allows functions Gi(r,aiso) to be placed close to each
other without creating unrealistic ridges, e.g. a ridge between
the meso and pyrrole protons in Fig. 5. Second, the amplitudes
for all Gi(r,aiso) can be set to one, to avoid artificially increasing
bias for areas that have a higher density of DFT predictions,
such as the region of the aliphatic and aromatic substituents.
Other ways of constructing P̃ are possible; they are all valid as
long they represent the DFT predictions (or any other prior
information) acceptably.

For construction of the three-dimensional prior P̃(r,aiso,Z) we
used a 24 � 31 � 10 grid (7440 points) with r ranging from 3 to
9.9 Å with a 0.3 Å step size, aiso ranging from �0.2 to 1 MHz
with a 0.04 MHz step size, and Z ranging from 0 to 0.09 with a
0.01 step size. The prior was constructed in a similar fashion as
the two-dimensional one, using tri-variate Gaussians that
include the results for Z from the DFT calculations. For the
width along the Z dimension we used sZ = 0.0025.
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