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In this paper, we numerically optimize broadband pulse shapes that maximize Hahn echo ampli-
tudes. Pulses are parameterized as neural networks (NN), nonlinear amplitude limited Fourier series
(FS), and discrete time series (DT). These are compared to an optimized choice of the conventional
hyperbolic secant (HS) pulse shape. A power constraint is included, as are realistic shape distortions
due to power amplifier nonlinearity and the transfer function of the microwave resonator. We find
that the NN, FS, and DT parameterizations perform equivalently, offer improvements over the best
HS pulses, and contain a large number of equivalent optimal maxima, implying the flexibility to
include further constraints or optimization goals in future designs.

I. INTRODUCTION

The use of shaped pulses in electron paramagnetic res-
onance (EPR) spectroscopy is a topic of recent interest
[1–6]. They address the basic challenge that the excita-
tion bandwidth of monochromatic square pulses is much
smaller than the spectral line width of samples. This sit-
uation can arise in nuclear magnetic resonance (NMR),
but it is more broadly relevant in EPR. Typical EPR
spectral widths are about 250 MHz for a nitroxide at
Q-band (≈ 1.2 T) or ≈ 2 GHz for a Cu(II) complex at
X-band (≈ 0.35 T). Using shaped pulses can increase
sensitivity and excitation bandwidth.

Broadband pulses have been initially designed for
NMR, including the Kunz–Böhlen–Bodenhausen (KBB)
approach to generate a Hahn echo [7–9]. This sequence
consists of a frequency-swept (chirped) π/2 pulse of
length tp, followed by a chirped π pulse of length tp/2.
The intention of this sequence is to refocus all the spins
within a broad excitation window. The Fourier trans-
form of this echo gives the spectral distribution of the ex-
cited spin ensemble. The more complete the refocusing,
the larger the signal and more accurate the reconstruc-
tion of the spectrum. The original KBB scheme used
pulses with constant amplitudes and a linear frequency
sweep over the designated bandwidth. Performance can
be further improved by shaping the pulses to have an
adiabatic hyperbolic secant (HS) amplitude with the fre-
quency swept according to a hyperbolic tangent [10–13].
In the last decade, pulse shaping has become possible
in EPR as arbitrary waveform generators (AWGs) be-
came fast enough to generate shaped pulses that cover
bandwidths larger than those obtainable by hard square
pulses. For this, microwave pulse amplitude and phase
are modulated with sub-ns timing resolution. Currently,
AWGs with sampling rates of 1.25 GS/s or faster are in
use.

However, HS pulses are not optimal. In practice, lim-
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ited available power limits the maximum achievable pulse
amplitude which in turn limits the frequency sweep rate
and therefore puts a lower bound on the pulse time. How-
ever, relaxation can put an upper limit on pulse duration.
Also, in some sequences, pulse lengths must be shorter
than the evolution periods of the interactions of interest,
for instance dipolar couplings in dipolar EPR. [13]. Thus,
along with the constraint of limited power, constraining
the pulse time can cause the performance of pulses to
suffer.

In response, optimal control methods such as com-
posite pulses [14, 15], adiabatic pulses [16, 17], optimal
control theory (OCT) pulses using different numerical
algorithms [18–22], including gradient ascent pulse en-
gineering (GRAPE) [23–28], were developed to accom-
plish broadband excitation and uniform inversion across
a given bandwidth. In practice, optimal shaped pulses
are distorted by nonlinearities in the power amplifier
and by the resonator transfer function, moving them
away from the extremum in the optimization landscape.
One can try to compensate for these distortions post-
optimization, but the necessary compensation may not
be possible while respecting constraints such as limited
power at fixed pulse time.

In this paper, we use an optimization method that in-
cludes a model of the full experimental transfer chain
and resulting shape distortions while limiting both the
available power along with the length of pulses. We in-
vestigate the use of variously parameterized broadband
pulses for a Hahn echo sequence and the effect of vary-
ing the pulse length ratio on echo amplitude, refocusing
time, and refocusing phase. Due to the freedom of the
large parameter space and low number of constraints, we
find the individual pulses (π/2 and π) act cooperatively
as done previously with NMR COOP pulses [29–32]. This
shows that cooperatively performing pulses are still op-
timal under transmission distortions and in the presence
of a power constraint while in limited pulse length time.
Performances of individual pulses as well as of the entire
pulse sequence are compared. Section II summarizes the
transmitter model and the spin physics model, section
III describes the pulse parameterizations used, section
IV provides details about the optimization method, and
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section V discusses the results.

II. MODEL

In order to model distortions that affect the pulse
shapes, we closely follow the transmitter design of a typi-
cal EPR spectrometer. This is illustrated in Fig. 1. First,
AWG-generated in-phase and quadrature drive functions
I(t) and Q(t) with amplitudes in the range [−1, 1] are
set up using different parameterizations described in de-
tail in the next section. We model the limited output
bandwidth of the AWG by applying a low-pass filter with
transfer function

Hlp(ω) =
1

1 +
(
ω/Γ

)2 . (1)

to I and Q via convolution, yielding

Ilp(t) = VDACF−1 [Hlp(ω) · F [I(t)]] (2)

where F represents the Fourier transform, and VDAC rep-
resents the conversion factor from the digital-to-analog
converter (DAC). Γ represents the 3-dB bandwidth of
the filter. The Q channel pulse shape is similarly dis-
torted into Qlp(t). The conversion factor between the
dimensionless input and the voltage output is combined
with other overall multiplicative factors at the end of the
transmission chain model.

The IQ upconversion of the low-pass filtered Ilp(t) and
Qlp(t) to the carrier frequency ωc yields

V (t) = Ilp(t) cos(ωct)±Qlp(t) sin(ωct) (3)

where the sign depends on whether the carrier reference
for the Q channel mixer is phase shifted +90 or −90
degree relative to the carrier for the I channel mixer.

The upconverted signal can be rewritten in terms of an
amplitude- and phase-modulated oscillation at the car-
rier frequency:

V (t) = V0(t) cos(ωct+ φ(t)) (4)

with the time-varying amplitude

V0(t) =
√
I2lp(t) +Q2

lp(t) (5)

and phase

φ(t) = atan2(Qlp, Ilp), (6)

where atan2 is the two-argument arctangent. The ampli-
fier amplifies and additionally distorts this signal, lead-
ing to the appearance of higher harmonics in the am-
plifier output, Vamp(t). Assuming that the amplifier is
memory-less, that the higher harmonics are rejected by
the narrow-band transmission lines, and assuming sepa-
ration of timescales, i.e. V0(t) and φ(t) vary much more

slowly than the carrier signal cos(ωct), the amplified sig-
nal is represented by

Vamp(t) = G(V0(t))V0(t) cos(ωct+ φ(t)) (7)

where G is the gain function, or in terms of Ilp and Qlp

Vamp(t) = Iamp(t) cos(ωct) +Qamp(t) sin(ωct) (8)

with

Iamp(t) = G(V0(t))Ilp(t) (9)

and a similar expression for Qamp(t).
These equations only model amplitude-to-amplitude

modulation (AM/AM) effects of the amplifier and ne-
glect possible amplitude-to-phase modulation (AM/PM)
effects. AM/PM effects would alter the term φ(t) in
Eq. (7) by mixing the I and Q signals.
In order to carry out numerical optimizations we have

to specify a gain function, and we will use

G(V0(t)) = g
tanh (V0(t)/Vsat)

V0(t)/Vsat
, (10)

where g is the small-signal gain factor and Vsat the input
saturation amplitude. Vsat parameterizes the nonlinear-
ity: for V0(t) ≪ Vsat the amplifier is in the linear regime,
while for V0(t) ≫ Vsat the amplifier is saturated. We as-
sume Vsat is constant over the amplifier bandwidth and
that the amplifier bandwidth is wider than the signal
bandwidth. In principle, we could use different nonlinear
models such as Rapp, Saleh, or polynomial models [33],
or a tabulated function.
Next, the amplified pulse is transmitted to the res-

onator. The resonator transfer function is well described
by

Hres(ω) =
1

1 + iQL(
ω

ωres
− ωres

ω )
, (11)

where QL is the loaded Q-value and ωres is the resonator
frequency. This produces the following pulse shape at
the sample inside the resonator,

B1(t) = C Re
(
F−1 [Hres(ω) · F [Vphasor(t)]]

)
, (12)

where

Vphasor(t) = (Iamp(t) + iQamp(t)) e
−iωct (13)

C is the resonator conversion factor. In the sample, spins
with gyromagnetic ratio γ experience the drive function

γB1(t) = ω1(t) cosϕ(t) (14)

with the drive amplitude ω1 and the phase ϕ. With this
transmitter chain, the maximum drive amplitude that
can be achieved with |I| = |Q| = 1 and ω = ωres is

ω1,max = γgCVsat tanh(
√
2VDAC/Vsat).
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FIG. 1. A schematic overview of the experimental transmitter setup (top), its computational representation (middle) and
exemplary signals (bottom). The input I/Q shapes are modeled and sent through a low-pass filter, amplifier compression
function, and a resonator transfer function before they are used in the spin quantum dynamics calculation of the echo.

Note that there is a subtle difference between imposing
separate constraints on I and Q as we do here versus sim-
ply imposing an overall amplitude constraint. Constrain-
ing I and Q independently restricts the accessible domain
in the I/Q plane to a square rather than a circle. Max-
imum power is only attained at the four corners of the
square when |I| = |Q| = 1, i.e., phases of ±45◦,±135◦.
Changing the phase of a maximum-power pulse will gen-
erally result in a power loss. However, phase cycling can
still be carried out in ±90◦ increments since this domain
is symmetric under ±90◦ rotations.

The laboratory frame Hamiltonian for a given spin
packet with Larmor frequency ωres is

Hlab(ωres, t) = ωresSz + ω1(t) cos (ϕ(t))Sx, (15)

where Si (i = x, y, z) are spin operators. For EPR
experiments, ωres/2π is typically on the order of 10–100
GHz while ω1/2π is on the order of tens of MHz, so the
rotating-wave approximation is valid when moving to a
frame rotating at the carrier frequency, ωc. The rotating-
frame Hamiltonian for a spin packet off-resonant with the
carrier frequency by ∆ω = ωres − ωc is

Hrot(∆ω, t) = ∆ωSz + ω1x(t)Sx + ω1y(t)Sy, (16)

where

ω1x = ω1(t) cos (ϕ(t)− ωct), (17)

ω1y = ω1(t) sin (ϕ(t)− ωct). (18)

In experiments, the signal passes back through the res-
onator and, after downconversion, a bandwidth-limited
video amplifier. The resulting receiver-side distortions af-
fects all echo signals equally and the optimal echo shape,
obtained when all spin packets align on the same axis

along the xy-plane, does not change. Incorporating re-
ceiver distortions does not affect the pulse optimization,
as the optimal echo shape is formed when all spins are
aligned, regardless of receiver distortions, and so we do
not include it in the model.
We now consider an ensemble of spin packets, each

governed by a Hamiltonian with its own ωres, ranging
over a spectral distribution of width δ. We choose to
place ωc in the center of this distribution, so that ∆ω
ranges from −δ/2 to +δ/2. To obtain the effect of a
given pulse we must solve an ensemble of Schrödinger
equations for the propagators U ,

iU̇(∆ω, t) = Hrot(∆ω, t)U(∆ω, t), (19)

corresponding to the different resonant frequencies across
the relevant spectral width.

With our mapping between the I/Q inputs and the
driving functions in the spin Hamiltonian, ω1x and ω1y,
we can solve Eq. (19) for both the π/2 and π pulses for a
representative ensemble of Larmor frequencies within the
desired band. Using the initial condition of U(t = 0) = 1,
where 1 is the identity matrix, we can solve the ensemble
of differential equations, giving us a corresponding evolu-
tion operator for each Larmor frequency. The evolution
operators for the π/2 and π pulse are denoted as U i

π/2 and

U i
π, where i indexes the Larmor frequencies. We combine

these propagators with the free evolution periods in the
rotating frame to obtain the total propagators

U i
tot(t) = U i

free(t)U
i
πU

i
free(τ1)U

i
π/2 (20)

where t = 0 now denotes the end of the π pulse and the
beginning of the second free evolution period. The signal
due to a particular spin packet is

M⊥,i(t) = 2 tr
(
U i
tot(t)ρ0U

i†
tot(t)S+

)
, (21)
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FIG. 2. Four different parameterizations of a pulse shape
(blue: in-phase, red: out of phase).

where ρ0 is the initial density matrix for each spin, ρ0 =
1/2− Sz.

The total magnetization signal from all spins is given
by averaging over all spin packets,

M⊥(t) =
1

N

N∑

i=1

M⊥,i(t), (22)

where in our optimization the Larmor frequencies were
sampled from a uniform distribution. Our goal is to de-
termine optimal shapes of I(t) and Q(t) that maximize
the total magnetization signal, M⊥(t). As a check on the
spin physics, all of the pulses generated were also tested
and confirmed using the matlab package Easyspin, an
open-source software that allows for the simulation and
analysis of EPR spectra [34, 35]. The optimized pulse
shapes and code are publicly available [36].

III. PARAMETERIZATIONS

We start by considering the original KBB broadband
pulse sequence using generalized HS shapes for the π/2
and π pulses. KBB is not the only broadband refocus-
ing sequence we could use. For instance, the CHORUS
sequence [37, 38] uses linear swept pulses with effectively
rectangular amplitude profiles that have more integrated
power than hyperbolic secant pulses for a fixed B1 ampli-
tude and sequence time, and features improved robust-
ness to B1 field inhomogeneity [21, 39]. However, we
consider a strongly power-constrained regime with lim-
ited amplitude and pulse lengths where B1 field inho-
mogeneity is a secondary concern. In this regime, HS
pulses are preferable because they require less power off
resonance, where it is costly to compensate for the pro-
file of the resonator transfer function. Therefore, in this
work we will use the KBB sequence with HS pulses as a
baseline against which to compare other shaped pulses.

Then, while retaining the general bipartite structure
of a π/2 pulse followed by a π pulse, to introduce more
shape flexibility, we consider three models with signifi-
cantly more parameters: a nonlinear amplitude-limited
Fourier series (FS), a discrete-time series (DT), and a
neural network (NN). We do not constrain the pulse flip
angles to be π/2 and π, but we will still refer to them
by those labels in continuity with the KBB design and
in anticipation that the optimization process will indeed
drive them to be such.

A. Generalized HS pulses

For representing generalized HS pulses, we use excita-
tion functions of the form [4, 40]

ω1(t) = A sech
(
2n−1β |t/T |n

)
(23)

ϕ̇HS(t) = ∆ωBW




∫ t

−T/2
sech2

(
2n−1β |τ/T |n

)
dτ

∫ T/2

−T/2
sech2 (2n−1β |τ/T |n) dτ

− 1

2


 ,

(24)

where −T/2 ≤ t ≤ T/2, and ω1(t) and ϕ̇HS(t) are the
amplitude and instantaneous driving frequency at time t
in the rotating frame. Although n is usually considered to
be a positive integer (n = 1 in the original KBB scheme),
we extend the definition to include non-integer n by using
the absolute value of the time. Similarly, while ∆ωBW

is typically set to the desired excitation bandwidth, we
allow this to be a free parameter as well.
These functions are converted to ω1x and ω1y used in

Eq. (16) by using

ω1x = ω1(t) cos(ϕHS(t)), (25)

ω1y = ω1(t) sin(ϕHS(t)), (26)

with the phase ϕHS(t) given by

ϕHS(t) =

∫ t

−T/2

ϕ̇(τ)dτ. (27)

The π/2 and π pulses of this form are chosen such that,
following KBB, the two pulse durations have the ratio
Tπ/2/Tπ = 2. The values of β, n, and ∆ωBW, along with
ω1x and ω1y for each of the two pulses are free parame-
ters, and we optimize them for refocusing spins across a
bandwidth of δ. We do not require the two pulses to pro-
duce π/2 and π rotations for any spin packet, but only
restrict A ≤ ω1,max.
To benefit from the intuitive behavior of HS pulses,

we have to directly parameterize the pulse at the out-
put of the transmitter chain of Fig. 1, then invert the
transfer functions in order to obtain the I/Q inputs that
should be programmed into the AWG. In contrast, the
other parameterizations considered below are for the in-
put I/Q pulse shapes themselves and do not require
pre-compensation. Also note that the HS pulses satisfy
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I(t)2+Q(t)2 ≤ 1, lying within the inscribing circle of the
square domain (|I(t)| ≤ 1, |Q(t)| ≤ 1) available to the
other parameterizations on the I/Q plane, so the HS pa-
rameterization is clearly at a disadvantage to begin with
because it cannot access as much power as a parameteri-
zation that allows, for example, I = Q = 1. However, in
order to focus on the less obvious differences between pa-
rameterizations, we have allowed the HS pulses to access
the circumscribing circle, I(t)2 +Q(t)2 ≤ 2.

B. Nonlinear Amplitude-Limited Fourier series

The second pulse shape model we consider consists of
a nonlinear amplitude-limited Fourier series (FS) for the
two drive functions

I(t) = tanh

[
N∑

n=1

aI,n cos

(
πn

t

T

)]
(28)

Q(t) = tanh

[
N∑

n=1

aQ,n cos

(
πn

t

T

)]
(29)

for each pulse. Here again −T/2 ≤ t ≤ T/2, and aI,n
and aQ,n are real-valued coefficients.

The enclosing tanh function limits I and Q to val-
ues between −1 and 1 by construction. The reasoning
behind imposing the amplitude limit using tanh, as op-
posed to scaling the coefficients, is that the maximum of
the Fourier series signal can only be determined using a
numerical search, which renders the cost function itself
non-differentiable. Due to the nonlinearity of tanh, the
bandwidths of I and Q are not straightforwardly related
to the frequencies included in the cosine series, and the
modeled shapes are nonlinear and compressed compared
to a standard cosine series. We choose N large enough
to cover the desired bandwidth, πN/T ≈ δ. Including
higher-order terms in the series does not improve per-
formance, as those terms are severely attenuated by the
resonator in the relevant case where δ is comparable to
resonator bandwidth ωres/QL. We perform an uncon-
strained optimization over (aI,aQ) for each pulse.

C. Discrete-time series

The third pulse shape model we consider consists of
discrete-time series (DT) for I and Q for each pulse

I = tanh(aI), Q = tanh(aQ), (30)

where I and Q are vectors with elements Ii = I(i∆t) and
Qi = Q(i∆t) for i = −N to N . The time increment ∆t
is chosen to be on the order of sub-ns, in accordance with
the sampling rates of modern AWGs [41, 42]. Just as be-
fore, we use an element-wise tanh as an enclosing function
to constrain the values to between −1 and 1. The π/2
and π pulses are parameterized by separate (aI,aQ).

𝐼!/#

𝑡’
𝑄!/#

𝐼!

𝑄!

1 2 3 4

FIG. 3. A representation of the neural network utilized where
the input layer is a single node consisting of the time t′, 3
hidden layers of 16 nodes each, and the output layer of the 4
drive signal amplitudes at time t′.

D. Neural network

Finally, we follow [43] in creating a deep neural network
(NN) model to represent the pulse shapes. The model,
represented in Fig. 3, is




Iπ/2(t
′Tπ/2)

Qπ/2(t
′Tπ/2)

Iπ(t
′Tπ)

Qπ(t
′Tπ)


 = L4 ◦ L3 ◦ L2 ◦ L1(t

′), (31)

where each layer Li takes a di-dimensional input vector
and maps it to a di+1-dimensional output vector accord-
ing to the function

Li(x) = tanh(Wix+ bi) (32)

with a di+1×di weight matrix Wi, a di-dimensional bias
vector bi, and tanh as an element-wise activation func-
tion that ensures the outputs are confined to between −1
and 1. The first layer contains only a single node (i.e.,
d1 = 1) and the input to it is the dimensionless time
value t′ ∈ [−1/2, 1/2]. Layers 2, 3, and 4 have 16 nodes,
and the final layer contains four nodes that output the
values for the four functions Iπ/2(t

′Tπ/2), Qπ/2(t
′Tπ/2),

Iπ(t
′Tπ), and Qπ(t

′Tπ). We optimize the model param-
eters bi and Wi, 644 in total. In this NN model, all
four pulse shapes are controlled by the same set of pa-
rameters, which enables the model to represent possible
correlations between the two pulses.

IV. OPTIMIZATION

In order to efficiently represent the distortion chain
in our cost function, we utilize fast Fourier transforms
(FFT), sampling the continuous shapes of the HS, FS
and NN models with the same time step, ∆t, as in in the
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DT model. To obtain the total echo amplitude, we use
a numerical solver to solve the ensemble of Schrödinger
equations (19) for 250 frequencies spaced equidistantly
across the desired band for a large enough time range to
encompass any refocusing point.

For each model, we optimize over the full vector of pa-
rameters p to maximize the echo amplitude irrespective
of echo phase. The objective function is

J (p) = max
t

|M⊥(t)|. (33)

In a KBB pulse sequence, the echo occurs at time t =
Tπ + τ1 after the end of the π pulse. However, for the
other pulse shape models, the echo can occur at earlier
or later times.

The objective function used for the optimization of the
hyperbolic secant functions is slightly different. As men-
tioned earlier, because the HS pulse shapes are the out-
put I/Q pulse shapes, we need to ensure that the corre-
sponding input I/Q pulse shapes respect the power con-
straint. For instance, if the HS pulse had an amplitude
of ω1,max while the instantaneous driving frequency is
off-resonant with the resonator, the input pulse required
to compensate for the resonator transfer function would
exceed ω1,max. Thus, we include an extra term in the
objective function to penalize the pulse for exceeding the
power limit at any of the sampling points,

J (p)HS = J (p)−
T/∆t∑

i=0

max
(
0, ωi

in − ω1,max

)
, (34)

where ωi
in is the amplitude at time i∆t−T/2 of the pulse

when compensating for the resonator transfer function,

ωin(t) = F−1 [F [ω1(t)] /Hres(ω)] , (35)

with ω1(t) as given in Eq. (23). We leave out the factor
of ∆t in the second term in Eq. (34) in order to more
heavily weight this term in the cost function to enforce
the amplitude constraint. In practice, the optimization
of J (p)HS leads to the second term being zero and the
optimal value of the objective function is the same as the
echo amplitude.

For the FS parameterization, we use 24 terms per pulse
shape, totaling 96 free parameters for the sequence. For
the DT parameterization, we use a time step of ∆t =
0.625 ns, resulting in 384 parameters for Tπ/2 + Tπ =
120 ns. The NN parameterization uses 644 free parame-
ters, as described in Sec. IIID. We used the Julia pack-
age DiffEqFlux.jl [44] to form the NN parameterization
and the BFGS optimizer from the Zygote.jl and Optim.jl
packages for optimizing the various pulse shape param-
eterizations [45]. The limiting factor in computational
cost is the numerical solution of Schrödinger’s equation
for each of the 250 Larmor frequencies for both pulses at
each optimization step. We solved these in parallel on
cluster computing resources with the Bogacki–Shampine
method (BS5) as implemented in the DifferentialEqua-
tions.jl package. All optimizations were terminated upon
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FIG. 4. The optimized pulse shapes as seen by the spins af-
ter passing through the chain of transfer functions shown in
Fig. 1, along with the formed echoes, the real part of the mag-
netization after rephasing the echo such that the maximum is
completely real. The optimized HS π/2 and π pulse lengths
are 80 and 40 ns long respectively while the FS, DT, and NN
have π/2 and π pulse lengths of 60 ns each. The phase, ϕ, of
each echo is also reported.

the condition that the difference between the current ob-
jective function value and the objective function value
20 steps previous was less than 10−4. All three large pa-
rameterizations took around 500-1000 optimization steps
to converge, whereas the 5-parameter hyperbolic secant
model only took tens of steps. On average, these op-
timizations took around 2-3 hours to complete running
with 36 cores in parallel. However, this substantial opti-
mization time is not a problem, as it is a one-time com-
putational cost for a given spectrometer setup. As long
as the distortion chain has been properly characterized,
the computed pulses should work without (or with mini-
mal) spectrometer-based feedback optimization [46]. The
robustness of these pulses to mischaracterization of the
distortion chain elements and B1 field inhomogeneity is
discussed in Section V.
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and neural network (NN) with 80/40 ns, 60/60 ns, and 40/80
ns pulse lengths from random starting points. The top panel
shows the echo amplitudes for the different pulse types, where
the dashed lines are the echo amplitudes of the best perform-
ing hyperbolic secant (HS) pulses for each respective pulse
length ratio. The 3 circled points represent the 3 best per-
forming pulse shapes for each parameterization that are plot-
ted in Fig. 4. The error bars and dotted lines show the effect
of altering the amplifier compression function as described in
the text. The bottom three panels show the relative echo
amplitude reduction for the case where B1 field is reduced to
80% of its original value, the time between the end of the π
pulse and the echo maximum, and the phase with which the
spins are refocusing, all versus the echo amplitudes.

V. RESULTS

We performed the optimizations using the parameter
values shown in Table I, representative of a Q-band EPR
spectrometer with a nitroxide sample. The carrier fre-
quency of 33.65 GHz corresponds to a static magnetic
field strength of about 1.2 T. The value of Γ corre-
sponds to a 3-dB bandwidth of 450 MHz for the AWG.
The loaded Q-value corresponds to a resonator 3-dB
bandwidth of 168 MHz. The maximum power limit of
ω1,max = 84 MHz corresponds to an oscillatory magnetic
field strength of about 3 mT. The choice of a 120 ns
total pulse time was made in order to examine a case
where the power constraint starts to deteriorate the per-
formance of the hyperbolic secant pulse. The delay time,
τ1, was chosen to be 100 ns. While this value may affect
the path the optimizer takes through the optimization
landscape, pulse shapes optimized with one value of τ1
produce the same echo amplitude for a different value of
τ1. The nonlinear phase dispersion of the π/2 pulse will
still be cancelled by that of the π pulse, and changing the
delay time between them only changes the linear part of
the phase dispersion, thus changing the echo time and
phase but not the echo amplitude.
The optimization and the resulting analysis does not

consider any spins to be coupled. Chirped pulses in
particular have been shown to create unwanted artifacts
compared to rectangular pulses in situations with coupled
electron and nuclear spins [47, 48]. A separate analysis
can be performed to determine the effect that these op-
timized pulse shapes have on multi-dimensional spectra.
For each of the parameterizations, we also considered

three different ratios Tπ/2/Tπ, 2:1, 1:1, and 1:2, keeping
the total pulse time fixed at 120 ns. The KBB sequence
requires a 2:1 ratio, i.e. 80 and 40 ns for the π/2 and π
pulses, respectively. However, a 40 ns π pulse requires
more power to adiabatically flip spins than the available
limit, so many of the spins are under-rotated and the
performance begins to suffer. Decreasing the time of the
π/2 pulse while increasing the time of the π pulse will
alleviate this issue, but it will also cause the phase refo-
cusing aspect of the KBB pulse sequence to suffer [3, 49].
Here, we have optimized the HS pulses for 1:1 and 1:2
pulse length ratios to demonstrate this tradeoff inherent
to the KBB design.
The best HS result overall was for a 2:1 pulse length ra-

tio, with Aπ/2/2π = 23.42 MHz and Aπ/2π = 61.66 MHz
for the amplitudes of the π/2 and π pulses, β = 7.09,
n = 1.57, and ∆ωBW/2π = 138.51 MHz, which produces
an echo amplitude of 0.9070 (see Fig. 4 top). To quan-
tify the effect of artificially allowing the HS to exceed
the power limit as discussed in Sec. IV, we also optimized
strictly within the inscribing circle of the allowed domain
in the I/Q plane, I(t)2+Q(t)2 ≤ 1. This more restricted
optimization resulted in an echo amplitude of 0.8621 for
our example parameters. Of course, the total extra power
gained from accessing the corners of the square domain
diminishes as the value Vsat decreases, since the amplifier
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saturates more readily. Having quantified this effect, be-
low we set it aside and focus on the performance of other
parameterizations compared to the HS with equivalent
maximum power whose echo amplitude is 0.9070. As an
alternative point of comparison, the time length required
for an HS pulse sequence to perform as well as the other
optimized pulse shapes is 180 ns, 50% longer than the
other pulses.

For those other pulse parameterizations, all three pulse
length ratios do allow for both full rotation across the
bandwidth and refocusing, with a 1:1 pulse length ratio
performing the best. The maximized echo amplitudes
are, in increasing order, 0.9852 for the FS, 0.9928 for
the DT, and 0.9951 for the NN. These pulses plotted in
Fig. 4 are the drive functions seen by the spins, i.e. af-
ter passing through the low-pass filter, the amplifier, and
the resonator transfer function (thus the pulses are sev-
eral ns longer than the nominal 60 ns due to the finite
ring-down time). The pulses show irregular shapes; there
are no apparent interpretable features. Clearly, the FS,
DT, and NN pulses offer performance gains compared to
the HS for this scenario of short pulse time and limited
power. Among these three parameterizations, though,
there is not one that stands out as particularly advan-
tageous. As mentioned in Sec. III, the reasoning behind
using the NN was to efficiently represent possible corre-
lations between the two pulses. However, both the FS
and DT show equivalent cooperativity in compensating
for phase accumulation between the π/2 and π shapes,
and the NN parameterization offered no extra advantage
in that regard. The pulse shapes before passing through
the distortion chain are plotted in Fig. S1 of the Supple-
mentary Material [50].

All three parameterizations are equivalently efficient
computationally, taking around the same number of op-
timization steps. The reason for the wide range of per-
formance with many equivalent maxima is that the land-
scape contains many local maxima. Any large parame-
terization flexible enough to access a large area of that
landscape in an unbiased way will lead to many maxima
of varying quality. The outcome of a particular optimiza-
tion depends on the initial point, so it is clearly useful to
try many random initial seeds as we have done.

Figure 5A shows the optimized echo amplitudes for
the three parameterizations and three pulse length ratios.
For each combination of shape and duration, the results
of 20 separate optimization runs with random starting
points are shown. The plots show that for any ratio the
best FS, DT, and NN pulse shapes all outperform even
the best 2 : 1 HS pulse (indicated by vertical dashed
lines). For the FS, DT, and NN parameterizations, the
best performing pulses have 1 : 1 pulse length ratios.

A similar observation regarding pulse length ratios was
made by Kallies and Glaser [32], where they found an op-
timal ratio of 1 : 1.3 for their set of parameters. They
used a different set of constraints, e.g., ω1,max/δ = 0.2
and ω1,max ·(Tπ/2+Tπ) = 6, compared to our ω1,max/δ =
0.35 and ω1,max · (Tπ/2+Tπ) = 10. However, the two sce-

narios are more similar than these numbers would sug-
gest because Ref. [32] did not account for the effect of a
resonator and their pulses allowed a maximum pulse am-
plitude that is independent of the instantaneous driving
frequency. Scaling their pulses to our desired bandwidth
and compensating for low-pass filter and resonator, the
required pulse amplitude is about twice as large in order
to recover their pulse design when driving near the edges
of the bandwidth. So, accounting for the transfer chain
effectively makes their constraints to be ω1,max/δ ≈ 0.4
and ω1,max · (Tπ/2 + Tπ) ≈ 12, similar to ours.

The error bars in Fig. 5A show the effect on the echo
amplitude of reducing the amplifier compression Vsat by
60%, i.e. increasing amplifier compression without chang-
ing maximum output power. The FS, DT, and NN pulses
are all relatively robust against this. This is because
many of the numerically shaped pulses use as much power
as possible, so only the maximum power of the amplifier
matters rather than the shape of the compression func-
tion at intermediate power. This is not entirely clear from
the plots of the output pulse shapes in Fig. 4, but the in-
put pulse shapes of I and Q plotted in Fig. S1 of the
Supplementary Material [50] are typically toggling be-
tween their maximum values of −1 and 1, and the values
plotted are only diminished from maximum amplitude
due to the effects of the low-pass filter and resonator.
Thus, changing the general shape of the amplifying func-
tion does not affect the pulse shapes much. The HS pulse
shapes, on the other hand, do use the full range of the
amplifier, and the dotted lines show how their perfor-
mance is substantially diminished under the same Vsat

reduction.

In the B1 field attenuation plot in Fig. 5B, we plot
the fractional reduction of the echo amplitude when the
B1 field is reduced to 80%. This probes how robust the
echo amplitude is to B1 field inhomogeneity. The best
HS pulse is one of the more robust pulses against B1

field inhomogeneity, since it is constructed as an adia-
batic frequency sweep. Other pulse types include equiva-
lently robust pulses, but generally there is no correlation
between echo amplitude and robustness to inhomogene-
ity because the pulses were not optimized for robustness.
In Fig. S3 of the Supplementary Material [50], we also
plot echo amplitude versus resonator quality factor and
versus B1 field inhomogeneity.

In the refocusing times plot of Fig. 5C, we plot the
time between the end of the π pulse and the peak of the
echo signal for τ1 = 100 ns. Most refocusing times fall in
the range between 80 and 140 ns. Similarly to the results
of Ref. [32], the middle of this optimal range is slightly
longer than the waiting time τ1. There is no correlation
of echo refocusing time with pulse parameterization or
pulse length ratio.

The refocusing phase plot in Fig. 5D shows no evidence
for a predominant echo phase. This is surprising, since
one could imagine echo phase preferences in the presence
of a the |I| ≤ 1, |Q| ≤ 1 power constraint, where the max-
imum drive amplitude can only be achieved with driving
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Quantity Value

ωc/2π 33.65 GHz

δ/2π 240 MHz

Γ/2π 450 MHz

Vsat/VDAC 1.131

QL 200

τ1 100 ns

ωres/2π 33.65 GHz

Tπ/2 + Tπ 120 ns

ω1,max/2π 84 MHz

TABLE I. A list of all the values used in the optimizations.

Offset Frequency (MHz) Offset Frequency (MHz)
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FIG. 6. The excitation profiles of the optimized pulses for the
π/2 pulse (left), and the π pulse (right), calculated from Eq.
(36).

phases ±45◦,±135◦.
This ensemble of optimizations from different random

seeds shows that there is no unique pulse shape that is
optimal. Of course, there is always a trivial degeneracy
of rotating both I and Q by ±90◦,±180◦ resulting only
in a change of echo phase by the same angle (the de-
generacy is four-fold rather than continuous due to the
power constraint being a square rather than a circle in
the I/Q plane), retaining the same refocusing time and
echo amplitude. But beyond that, Fig. 5 shows that there
are many pulse shapes with equivalent echo amplitudes
that are not simply related by a phase transformation,
as is clear from the different echo refocusing times. The
fact that the landscape harbors many comparable max-
ima suggests that there remains a significant amount of
flexibility in the parameterized pulses that could be used
to satisfy additional constraints, such as favoring a par-
ticular refocusing time or phase (as in [32]), robustness
to B1 inhomogeneity, echo phase independence from τ1,
or some other desirable property.

In Fig. 6 we examine the action of the individual pulses
by plotting the z-projection of a spin packet after it is
rotated from the ground state by the shaped π/2 pulse,

2⟨Sz(ω)⟩π/2 = 2 tr(Uπ/2ρ0U
†
π/2Sz), (36)

where ρ0 is the ground state density matrix, and similarly
for the π pulse. We plot over a frequency range extending
slightly outside the δ bandwidth. Recall that we have not
constrained the first and second pulse to be a π/2 and a
π pulse. Yet, Fig. 6 shows that inside the desired band

the optimization always produces nearly perfect π/2 and
π pulses, suggesting this basic structure is optimal for
refocusing. This is not an artifact of a particular initial-
ization of the parameters – we initialize randomly and
the initial pulse shapes are not π/2 or π rotations. We
also see that for the FS, DT, and NN parameterizations,
the effect of the pulses on spins outside the bandwidth
varies wildly with frequency compared to the HS pulses
which do not excite these spins.
Figure 6 strongly suggests that the improvement of

the optimal FS, DT, and NN pulses compared to the
HS pulse comes from i) improved performance near the
band edges and ii) improved intra-band π rotation per-
formance in the presence of the power constraint. For a
more comprehensive visualization of the spin dynamics,
in Fig. S2 of the Supplementary Material [50] we plot
the total magnetization in x, y, and z during each of the
optimized pulse sequences.
In Fig. 7 we further characterize the action of the se-

quence as a whole on any given spin packet. The top left
panel in Fig. 7 is a plot of the phase dispersion at the
refocusing time. This is calculated by first computing
the individual spin packet phases as a function of offset
frequency,

ϕ(ω) = arg
(
tr(ρrefocusS

†
+)

)
, (37)

where

ρrefocus = Utot(trefocus)ρ0U
†
tot(trefocus), (38)

and trefocus denotes the time at which the peak of the
echo occurs. The average phase for spin packets within
the band, which corresponds to the phase of the echo is

ϕavg =
1

δ

∫ δ/2

−δ/2

ϕ(ω′)dω′, (39)

and the phase dispersion plotted is

∆ϕ(ω) = ϕ(ω)− ϕavg. (40)

In other words, this is the azimuthal angle between the
spin packet and the refocusing axis. The top right panel
in Fig. 7 is a plot of the polar angle each spin packet
forms with the z-axis at the refocusing time,

θ(ω) = arccos (2 tr(ρrefocusSz)) . (41)

From these top two panels we see that the phase dis-
persion and the polar angle with the FS, DT, and NN
pulses are closer to ideal than with the HS pulse. The
highly oscillatory polar angle compared to individual po-
lar angles obtained in Fig. 6 is because the effect of a
π pulse on a spin packet depends upon the phase of the
spin packet, which varies rapidly as a function of offset
frequency due to the waiting time between the pulses.
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FIG. 7. Behavior of spin packets as a function of offset fre-
quency. Phase difference ∆ϕ relative to average phase at re-
focusing time (top left), polar angle θ at refocusing time (top
right), projection onto the refocusing axis in the xy-plane at
refocusing time (bottom left), and effective time evolution for
each of the π/2 and π pulses (bottom right) calculated from
Eqs.(40)-(42) and (48) respectively.

In the bottom left panel of Fig. 7 we plot the projection
of each spin packet onto the refocusing axis in the xy-
plane,

⟨R⟩ = 2 tr (ρrefocus (cos(ϕavg)Sx + sin(ϕavg)Sy)) . (42)

The FS, DT, and NN pulses are clearly more consistent
in cooperatively producing an echo across the bandwidth.

In the bottom right panel of Fig. 7 we explore the co-
operativity of the shaped π/2 and π rotations using the
effective evolution time defined in Ref. [32]. Consider the
density matrix as a function of offset frequency at three
intermediate times: immediately after the π/2 pulse, im-
mediately before the π pulse, and immediately after the
π pulse,

ρ1(ω) = Uπ/2ρ0U
†
π/2 (43)

ρ2(ω) = Ufree(τ1)ρ1(ω)U
†
free(τ1) (44)

ρ3(ω) = Uπρ2(ω)U
†
π. (45)

The phase accumulated from the π/2 pulse is

ϕπ/2(ω) = arg
(
tr(ρ1(ω)S

†
+)

)
(46)

and that accumulated from the π pulse is

ϕπ(ω) = arg
(
tr(ρ3(ω)S

†
+)

)
− arg

(
tr(ρ2(ω)S

†
+)

)
. (47)

Unwrapping these phases about the center frequency, the
effective evolution times are defined as [32]

τeff,π/2(ω) =
ϕπ/2(ω)− ϕπ/2(0)

ω
(48)

τeff,π(ω) =
ϕπ(ω)− ϕπ(0)

ω
. (49)

(The values of τeff,π/2(0) and τeff,π(0) are obtained via
interpolation.) This is how long each spin packet would
have to freely evolve following an ideal, instantaneous
rotation in order to obtain the same final dispersion as
produced by the actual rotation. For an echo to form, one
must have a linear total phase dispersion (with negative
slope) after the π rotation. This means any nonlinear
phase dispersion acquired from the π/2 rotation must be
canceled by the nonlinear phase dispersion acquired from
the π rotation.
In other words, since all the spin packet phases

are flipped by the π rotation, echo formation requires
τeff,π/2(ω) − τeff,π(ω) to be a constant [32]. Figure 7
shows that this is indeed the case for the FS, DT, and
NN pulses, which have nonlinear phase dispersions for
the two pulses but cooperate such that their nonlin-
ear parts mutually cancel. Note that the difference
τeff,π/2(ω) − τeff,π(ω) = trefocus − τ1. For example, in
this case, the FS pulse has τeff,π/2(ω) − τeff,π(ω) = −10
ns and so refocuses at 90 ns while the NN pulse has
τeff,π/2(ω) − τeff,π(ω) = 39 ns and refocuses at 139 ns.
The difference τeff,π/2(ω) − τeff,π(ω) is shown in Fig. S4
of the Supplementary Material [50].
As a specific example, in Fig. 8 we use the spectral

distribution of a solid-state dilute disordered sample of
a nitroxide radical with a bandwidth of about 240 MHz,
shown in the left panel. Because the bandwidth of this
distribution is slightly more than the optimized band-
width of δ/2π = 240 MHz, the chosen value of the pulse
carrier frequency for each parameterization was also op-
timized in order to achieve maximum echo height. In
the right panel we plot the differences between the ac-
tual spectrum and the spectra one would recover from
the Fourier transforms of the echoes (note the different
scale compared to the left panel). The FS, DT, and NN
parameterizations result in less error, particularly around
the spectral maximum. All parameterizations have some
unrecovered spectral density towards the lower edge of
the spectrum due to the bandwidth of the exemplary ni-
troxide spectrum being slightly larger than the optimized
bandwidth.
These optimized pulse shapes have not yet been exper-

imentally implemented. To record the echo generated by
these pulses with sufficient fidelity, a receiver of sufficient
bandwidth (> 240 MHz) is required. Higher-bandwidth
detection systems with up to 1 GHz of bandwidth have
become available commercially recently (Bruker SpecJet
3 and VideoAmp 3), so the presented approach is timely
and feasible. Also, non-commercial wideband receiver
systems have been built [4].

VI. CONCLUSION

In this paper, we have shown that it is possible to
obtain about a 10% improvement of the Hahn echo
amplitude over an optimal, generalized hyperbolic se-
cant KBB sequence by optimizing nonlinear amplitude-
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FIG. 8. Left: an exemplary nitroxide EPR spectrum. Right:
the difference between the exemplary nitroxide spectrum and
the Fourier transform of the resulting echoes formed by the
Fourier Series (FS), discrete time (DT), neural network (NN),
and hyperbolic secant (HS) optimized pulse sequences.

limited Fourier series, discrete time series, or neural net-
work parameterized pulses. With these parameterized
pulses, we find a 1:1 pulse length ratio is favorable in
the presence of power constraints because it allows more
energy to be allotted to the π pulse while the pulse shap-
ing is still able to maintain the refocusing. Interestingly,
the optimization landscape for this type of problem has
many equivalent maxima, all of which involve the π/2
and π pulses cooperatively working together to compen-
sate phase dispersions in each other. We find no marked
differences among the three parameterizations. Further-
more, we have demonstrated that nonlinear effects due to
amplifier compression and resonator transfer can be in-
cluded in the optimization workflow, allowing for the us-
age of the full power of an amplifier, including its nonlin-

ear region. These results demonstrate a pathway towards
optimal broadband spectral acquisition with constrained
power.
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I. I/Q OPTIMIZED SHAPES

In the results section of the main manuscript, the optimized pulse shapes which the spins ‘see’ are plotted for the
three parameterizations: Fourier series (FS), discrete time (DT), and neural network (NN). These are the pulse shapes
after passing through the entire distortion chain. Below in Fig. S1 we plot the I/Q shapes before passing through the
distortion chain for these optimized parameterizations.

From Fig. S1, it is clear that for all π pulses, the optimized shapes are using maximum amplitude for almost the
entire duration of the pulse, toggling between an amplitude of 1 and −1. This is also a feature of any optimized pulse
solution regardless of parameterization as the π pulse requires more power than the π/2 pulse. Looking at the π/2
pulses, the NN does not need to use maximum amplitude for the duration of the pulse while the FS and DT use more
power. This is not a feature of the NN parameterization, it is a consequence that the π/2 pulse has more flexibility
in equivalent maxima.
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FIG. S1. Plots of the I/Q shapes before passing through the distortion chain. The top row of pulse shapes are for the π/2
pulses while the bottom row of pulse shapes area for the π pulses. The three columns in order from left to right represent the
FS, DT, and NN pulse shapes further analyzed in the results section of the main manuscript.

II. Mx,My,Mz

The total magnetization in x,y, and z are all plotted in Fig. S2 during the pulse sequences for all 4 optimized
sequences. For the hyperbolic secant (HS) pulse parameterization, the π/2 pulse evolution in the Mz plot shows a
straightforward excitation of all spins in a single sweep. The numerically designed pulses are less transparent in the
spin dynamics, but are all able to obtain a π/2 excitation regardless. All projections, Mx,My,Mz, remain at 0 during
the π pulse as spins are dispersed evenly along the xy-plane and so their magnetizations average out to 0.
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FIG. S2. Plots of the magnetization, Mx,My,Mz, for each of the 4 optimized parameterizations. The evolution leading up
to the first dashed line represents the evolution of the π/2 pulse. The next leading up to the second dashed line is the free
evolution period between pulses. The next evolution to the final dahsed line is the evolution of the π pulse. The final space is
the free evolution period after both pulses.
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FIG. S3. On the left, a plot of echo amplitude versus different QL values of the resonator. All pulses were optimized for a
value of QL = 200. On the right, a plot of echo amplitude versus percentage of B1 field. Again, all pulses were optimized for a
single value of 100%.

III. RESONATOR AND B1 FIELD ROBUSTNESS

In Fig. S3, we plot the robustness of each of the 4 optimized pulse parameterizations to QL of the resonator, from
equation (11) of the main manuscript. While each of the parameterizations were optimized for a value QL = 200, we
see that a lower value of QL actually improves the echo amplitude for the HS pulse sequence. This is because the
resonator profile for a lower value of QL inherently has a wider 3 dB bandwidth, meaning that more power can reach
the spins for a given sweep across the bandwidth. As mentioned in the results section of the main manuscript, the
issue with the HS pulse shape is the π pulse’s inability to fully flip every spin across the bandwidth, and so a lower
value QL counteracts this. The 3 numerically designed pulse shapes show an equal robustness to a change in QL and
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are relatively optimal for QL = 200.
In the plot of B1 Field Inhomogeneity, we plot the echo amplitude versus B1 field inhomogeneity. Similar to that

of the resonator robustness plot, we find the HS is maximal for a larger B1 field. This is again because the π pulse
requires more power and a larger B1 field accomplishes this. The FS and NN pulse shapes are equally robust to B1

field inhomogeneity and the DT pulse shape is less robust at higher B1 fields.

IV. EFFECTIVE TIME EVOLUTION

In the main manuscript in Fig. 7, we plot the effective time evolution for the π/2 and π pulses for each of the
4 optimized pulse shapes. Here, in Fig. S4, we plot the difference of these two curves. This represents the time of
free evolution until the peak of the formed echo plus the free evolution period in between pulses, that being 100 ns.
From this plot we see that both the HS and NN effective evolution times are around 40 in between the designated
bandwidth of 120 MHz, which corresponds to an echo formation that is 140 ns after the end of their respective π
pulses. The DT and FS pulse sequences refocus their spins earlier and so their respective time evolution is less. From
the plot, it is also clear that there is some dephasing for the HS pulse sequence near the carrier frequency.

𝜏 𝑒
𝑓

𝑓
,𝜋

/2
 

−
𝜏 𝑒

𝑓
𝑓

,𝜋
 (

n
s)

−20

0

20

40

60

−120 1200

Offset Frequency (MHz)

Effective  Time Evolution

FIG. S4. Difference in the effective time evolution of the π/2 and π pulse calculated from Eqs.(42) and (48) plotted as a
function of offset frequency for each of the 4 optimized parameterizations.


