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Abstract

Model Selection for
Performance-Based Earthquake Engineering of Bridges

Richard Tyler Ranf

Chair of the Supervisory Committee:
Professor Marc Eberhard

Civil and Environmental Engineering

Performance Based Earthquake Engineering (PBEE) is becoming an increasingly at-

tractive alternative to traditional bridge design practice. The PBEE framework enables

engineers to predict the seismic performance of a structure at multiple levels, including:

force and deformation demands, expected level of damage, and likely repair costs. For

bridges, these performance levels can be predicted with numerically intensive nonlinear

models of the soil, foundation and structure. However, it is preferable in practice to use

simpler methods to model a bridge system.

The objectives of this dissertation were to develop a calibrated numerical model of a

reinforced concrete bridge on drilled shafts from three experiments (shake table, centrifuge,

and pseudo-static component tests), and to use this model to evaluate the accuracy of a

variety of simpler bridge modeling strategies within a performance-based framework. This

research resulted in (1) the generation of experimental data from a series of shaking table

tests, (2) the characterization of the shake-table specimen using response measurements and

system identification methodologies, (3) the development of a calibrated numerical model

of a reinforced concrete bridge on a drilled shaft foundation (prototype model), and (4) the

evaluation (within a performance-based framework) of the accuracy and precision of simpler

foundation and structural modeling strategies.

The accuracy and precision of demand and damage estimates from 12 simpler modeling





strategies were evaluated by comparing them to the prototype model using suites of 40

near-field and 30 far-field excitations. For stiff, dry sand, the two-span bridge system was

accurately and precisely modeled using inelastic column elements and fixing the columns

at the estimated depth of maximum moment within the pile (three column diameters for

this bridge system). Furthermore, the accuracy and precision of the demand and damage

estimates were insensitive to moderate changes in the depth of fixity, enabling the fixity

depth to be estimated based on empirical equations rather than by using a nonlinear soil-

foundation model.
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Chapter 1

INTRODUCTION

1.1 Project Motivation

The primary goal of current bridge seismic design is to ensure a “low probability of collapse”

(AASHTO, 2004). Although collapse prevention is important, the current design procedures

do not provide decision makers with other important predictions of seismic performance of

a bridge, such as expected levels of damage, likely repair costs, and the extent of disruption

of function.

Performance Based Earthquake Engineering (PBEE) has emerged in recent years as a

viable design alternative to traditional practice. PBEE attempts to explicitly predict per-

formance levels of structures so that issues of serviceability and life safety can be addressed

consistently. The Pacific Earthquake Engineering Research Center (PEER) was established

to develop tools for implementing PBEE within a probabilistic framework. The importance

of PBEE is reflected within the center’s mission statement.

This approach is aimed at improving decision-making about seismic risk by mak-

ing the choice of performance goals and the tradeoffs that they entail apparent

to facility owners and society at large. The approach has gained worldwide

attention in the past ten years with the realization that urban earthquakes in

developed countries - Loma Prieta, Northridge, and Kobe - impose substantial

economic and societal risks above and beyond potential loss of life and injuries.

By providing quantitative tools for characterizing and managing these risks,

performance-based earthquake engineering serves to address diverse economic

and safety needs.

- Pacific Earthquake Engineering Research Center
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To successfully implement PBEE for bridges, it is necessary to develop modeling method-

ologies that are both accurate and precise. In some cases, it may be necessary to model

the nonlinear, dynamic response of the entire soil-foundation-structure system. In practice,

simpler modeling strategies are preferable. The consequences of making various modeling

approximations on performance predictions need to be evaluated.

1.2 Experimental and Modeling Opportunities

The accuracy of models of bridge systems has been difficult to quantify because individual

experiments are typically inadequate for accurately simulating the dynamic behavior of

reinforced concrete soil-foundation-structure systems in the nonlinear range of response.

The National Science Foundation’s George E. Brown Jr. Network for Earthquake En-

gineering Simulation (NEES, 2005) provided the framework necessary for overcoming the

limitations of individual experiments, which has enabled the numerical modeling of entire

soil-foundation-structure systems. Utilizing four NEES sites, four sets of experiments were

conducted (Wood et al., 2004) that enabled the development of a calibrated numerical model

simulating a reinforced concrete bridge on drilled-shaft foundations. An illustration of the

four experimental specimens (shaking table, centrifuge, component, and field tests) is shown

in Fig. 1.1. The advantages and limitations of the four experiment types are provided in

Table 1.1 and are summarized in the following paragraphs.

Table 1.1: Advantages and limitations of various experiment types

Test Scale SFSI Dynamic Statistically System Large Structural Large Soil

Type Determinate Strains Strains

Shaking Table 1:4 No Yes No Yes Yes No

Centrifuge 1:52 Yes Yes No Yes No Yes

Component 1:4-1:2 No No Yes No Yes No

Field 1:4 Yes No Yes No Yes Yes

Shaking table tests were conducted at the University of Nevada, Reno (UNR) on a two-

span reinforced concrete bridge with fixed-column bases. The tests modeled the geometry

and material characteristics of the structure well, but neglected soil-structure interaction.
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NUMERICAL 

MODEL

University of California, Davis

CENTRIFUGE TESTS

Purdue University

COMPONENT TESTS

University of Texas, Austin

FIELD TESTS

University of Nevada, Reno

SHAKE TABLE TESTS

Figure 1.1: Illustration of the four experiments developed for the SFSI project

Because force-deformation data was not available for this large indeterminate system, it was

difficult to characterize local effects within the structure under dynamic loading.

Centrifuge tests were conducted at the University of California, Davis (UCD) on a

two-span aluminum bridge founded on drilled shafts. These tests simulated the dynamic

interaction between the structure and the soil. The main limitation of this experiment was

the small scales at which the specimens were tested, which made it necessary to model the

reinforced concrete columns with aluminum tubes.

Pseudo-static component tests were conducted at Purdue University on fixed-base col-

umn (at 1/2 scale) and bent (at 1/4 scale) specimens with nominally identical properties

as the shortest bent in the shaking table experiment. These tests provided valuable in-

formation about the cyclic force-deformation response of a column and bent, but they did

not model the rate effects, the redistribution of forces from one bent to the others, or the
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soil-structure interaction.

Field tests were conducted at the University of Texas, Austin (UT) on column bents

supported on drilled shafts. The specimens were dynamically tested at low amplitudes, and

then were subjected to static pushover tests to evaluate their nonlinear response. These tests

accurately modeled the reinforced concrete structure and the static interaction between the

structure and the soil in the nonlinear range. The limitations of these tests were that the

low-level vibration tests did not induce significant nonlinear deformations, and pushover

tests did not capture rate effects due to dynamic loading.

Individually, none of these experiments accurately simulated the soil-foundation-structure

system. However, these experiments provided the opportunity to combine numerical models

of the individual tests to accurately simulate a reinforced concrete bridge on drilled shafts.

1.3 Dissertation Objectives

The objectives of this dissertation were (1) to develop a calibrated model of a reinforced

concrete bridge on drilled shafts from three experiments (shaking table, centrifuge and

pseudo-static component tests), and (2) to use this model to evaluate the accuracy of a

variety of seismic modeling strategies within a performance-based framework. In support

of these objectives, this research resulted in:

1. the generation of experimental data from shaking table tests of an asymmetric, two-

span, reinforced concrete bridge excited by coherent and incoherent earthquake mo-

tions;

2. an evaluation of the benefits and limitations of various system identification method-

ologies to characterize the dynamic properties of the shaking table specimen, and the

use of these methodologies to assess the accuracy of the shaking table model;

3. the development of a numerical model of a reinforced concrete bridge on drilled shafts,

calibrated using data from three experiments (shaking table, centrifuge, and compo-

nent tests); and

4. the evaluation (within a performance-based framework) of the effects of foundation

and material modeling approximations on the seismic response of bridges to near-field
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and far-field ground motions.

1.4 Dissertation Scope and Organization

A chapter-by-chapter outline illustrating how the objectives of this research were completed

is presented in Table 1.2, with a summary of each chapter provided in the following para-

graphs.

Table 1.2: Dissertation Overview

Objective Chapter Contents

1. Experimental Testing 2 Specimen Development

3 Motion Development and Test Schedule

2. System Characterization 4 Specimen Response and Observed Damage

5 System Identification Algorithms

6 System Identification Results

3. Numerical Model Development 7 Shaking Table Model Development

8 Model Calibration and Assessment

9 Model Refinement

10 Prototype Model Development and Response

4. Evaluation of Seismic 11 Development of Performance-Based Framework

Modeling Strategies 12 Development and Evaluation of Modeling Strategies

A series of shaking table tests were performed by the University of Washington (UW)

and the University of Nevada, Reno (UNR) researchers at the NEES facility at UNR on

a quarter-scale, two-span fixed-base model of a bridge prototype. An illustration of the

shaking table specimen is shown in Fig. 1.2.

Chapter 2 presents the methodology for developing the shaking table specimen, including

the target geometric and material properties, test protocol, and construction procedure. All

construction and erection efforts by the contractor were overseen by UNR, with help from

researchers at UW. UW and UNR collaborated to design and install the instrumentation.

Chapter 3 outlines the ground-motion selection process. Geotechnical colleagues iden-

tified four ground motions likely to strongly excite the specimen. The final ground motion

was selected based on the estimated nonlinear response of the shaking table specimen. The

last section of Chapter 3 presents the experimental test schedule, which includes low and
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Figure 1.2: Illustration of the shaking table specimen

high-amplitude earthquake excitations, as well as the white-noise and square-wave excita-

tions.

Chapter 4 describes the bridge response, including: material properties, achieved table

accelerations, bent displacement and acceleration histories, bent displacement and accelera-

tion maxima, displacement-strain envelopes, displacement-rotation envelopes, displacement-

column elongation envelopes, and observed damage.

Chapter 5 discusses the theory of four system identification algorithms used to char-

acterize the modal properties of the shaking table specimen. In Chapter 6, the identified

modal properties of the shaking table system were compared to determine the consequences

of implementing each algorithm. These comparisons include the effects of: pre-defining

a structural model, including the input excitations, excitation type, and multi-directional

excitation.

Chapter 7 documents the development of a nonlinear model in OpenSEES (OpenSees

Development Team, 2002). This model had four main components: the distributed mass

due to the self-weight of the components as well as the external masses on top of the slab,

elastic elements for the slab, elastic elements for the cap beam, and inelastic elements for the

columns. The columns in the OpenSEES model also had four components: the concrete and

steel material properties for the column fiber section, the zero-length section at the column

joints to simulate anchorage slip, the integration points for the distributed plasticity model,

and the column cross-section discretization for the fiber section.

Chapter 8 documents the calibration and assessment of the OpenSEES model. The
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model was calibrated using local response data (Chapter 4) and the identified modal prop-

erties (Chapter 6). The numerical model was assessed using global response characteristics,

including: total system base shear, displacement response histories and maxima of the slab,

and identified periods of the specimen.

Chapter 9 compares the response of the numerical model to that from pseudo-static tests

on column and bent components that were conducted at Purdue University (Makido, 2007).

These component tests were designed to have nominally identical geometric and material

properties as the shortest bent in the shaking table tests.

Chapter 10 documents the development and assessment of the numerical model simulat-

ing a reinforced concrete bridge on drilled-shaft foundations. This model was produced by

combining the calibrated structural model from the shaking table tests and component tests

with a calibrated model of the soil and P-y springs from the centrifuge tests (Shin, 2006).

The response characteristics of the prototype model (deformation time histories, force and

deformation distributions along the columns and piles, and force and deformation maxima)

were evaluated for a suite of 40 near-field and 30 far-field earthquake motions.

Chapter 11 describes the performance-based framework that was used to evaluate the

accuracy of the seismic modeling strategies. This framework adopts a probabilistic approach

to evaluate the various models at two levels: the estimated system force and deformation

demands and the anticipated column damage.

Chapter 12 describes the seismic modeling strategies that were used to approximate the

soil-foundation-structure system, including approximations of the foundation and material

models. This chapter also evaluates the accuracy of these models within the performance-

based framework describes in Chapter 11.

Chapter 13 summarizes the thesis, and provides conclusions from this work that fulfill

the thesis objectives (Section 1.3).
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Chapter 2

SPECIMEN DEVELOPMENT

The shaking table specimen was based on an idealized prototype of a typical bridge

in the western United States. This chapter presents the development of the shaking table

specimen, from conception of the idealized prototype bridge to completion of the specimen

assembly. The development process included:

1. Selecting the geometric and material properties of the prototype bridge and shaking

table specimen (Section 2.1);

2. Constructing the shaking table specimen (Section 2.2); and

3. Designing and placing the instrumentation and data acquisition system (Section 2.3).

These procedures are explained in the following sections. Johnson et al. (2006) provides

a comprehensive outline of the specimen development.

2.1 Prototype and Scaled Model Properties

The conceptual design of the prototype bridge was performed by the entire SFSI project

group. During this phase of the design, coarse dimensions of the prototype (column height,

column diameter, span length) were designed to adhere to the proportions of the laboratory

and to coincide with the experiments being conducted at the other universities involved in

the SFSI project (UCD, UT, Purdue).

The prototype bridge for the shaking table specimen was a two-span section of a continu-

ous reinforced-concrete, box-girder bridge. The superstructure was assumed to be supported

by three two-column bents on drilled shafts. The length of each span was approximately

120 ft. Illustrations of the elevation and cross-section of the prototype bridge are provided

in Figs. 2.1 and 2.2.
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Figure 2.1: Illustration of the prototype bridge

12 in. 

(typ.)60 in. 6.5 in. 8 in. 

492 in.

Figure 2.2: Illustration of the prototype cross-section

The shaking table specimen was a quarter-scale representation of the prototype bridge.

Properties of the prototype bridge, and corresponding properties of the quarter-scale shaking

table specimen, are shown in Table 2.1.

Table 2.1: Prototype and specimen properties

Property Prototype Value Specimen Value Scaling Factor

Clear Column Heights (L1,L2,L3) (ft) 16, 24, 12 4, 6, 3 4:1

Column Diameter (in.) 48 12 4:1

Longitudinal Reinforcement (17) #11 (16) #3 –

Longitudinal Reinforcement Ratio 1.47% 1.56% 0.94:1

Axial Load 0.1f ′cAg 0.08f ′cAg 1.25:1

Span Length (ft) 120 30 4:1

Slab Width/Depth (in.× in.) 492× 60 (Box Girder) 90× 14 (Flat Slab) 5.46:1 × 4.29:1

Ixx (in4) 5.45× 106 2.13× 104 256:1

Iyy (in4) 2.25× 108 8.78× 105 256:1

The span lengths of the prototype bridge (120 ft) were governed by the distance between

the shaking tables at the University of Nevada, Reno (30 ft). Although the span length of

the prototype was fixed by the specimen, a span length of 120 ft is typical for reinforced

concrete box-girder bridges. For example, of the 726 bridges (40%) of this type in the 2000
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Washington State Bridge Inventory (WSDOT, 2000) 287 (40%) had span lengths between

120 and 140 ft.

The column diameter of the specimen (12 in.) resulted from scaling the prototype column

diameter (48 in.). The remaining specimen properties (actual column heights, longitudinal

reinforcement ratio, axial load, and slab dimensions) deviated from direct scaling of the

prototype. These deviations are explained in the following paragraphs.

Column Heights. The clear column heights of the prototype were chosen to be 16, 24 and

12 ft for bents 1, 2 and 3, respectively, to induce asymmetric behavior in the structural

response during coherent motions. The shaking table specimen was designed with 6, 8

and 5 ft columns, two column diameters longer than a quarter-scale of the prototype.

Two column diameters were added to the lengths of each column in the shaking

table specimen to approximate the assumed depth of column fixity in a drilled-shaft

foundation. This approximation was based on numerical analyses conducted by Yang

and Jeremic (Yang and Jeremic, 2002).

Longitudinal Reinforcement Ratio. The longitudinal reinforcement ratio of the speci-

men would be closest to the prototype using (15) #3 bars (ρl = 1.46%). However, (16)

#3 bars were chosen for the specimen (ρl = 1.56%) to make the column cross-section

symmetric.

Axial Load Ratio. The axial-load ratio for the shaking table specimen was kept as close

as possible to that of the prototype bridge. Because of scaling effects, external weights

were added to the top of the shaking table specimen to obtain the correct axial load

ratio. However, because of insufficient external weights, the axial load ratio of 0.08f ′cAg

was slightly below its target value of 0.10f ′cAg

Slab Dimensions. The dimensions of the solid slab on the shaking table specimen did not

directly scale to the dimensions of the superstructure of the prototype bridge. Instead,

the width and depth of the solid slab were chosen to reproduce the scaled moments

of inertia of the box girder on the prototype bridge.
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The remaining geometric properties of the shaking table specimen were designed at

the specimen scale using the NCHRP Recommended LRFD Guidelines for the Seismic

Design of Highway Bridges (ATC/MCEER, 2001). Therefore, prototype properties were

not identified. An overview of the geometric properties of the shaking table specimen is

provided in Table 2.2. The design documents for the specimen, which were developed by

the UNR team (Johnson et al., 2006), are provided in Appendix B.

Table 2.2: Geometric properties for the shaking table model

Member Property Value

Column Dimensions Gross Diameter (in.) 12

Clear Cover (in.) 0.75

Core Diameter (in.) 10.31

Column Height, Bent 1 (in.) 72

Column Height, Bent 2 (in.) 96

Column Height, Bent 3 (in.) 60

Intra-Bent Column Spacing (in.) 75

Longitudinal Column Reinforcement No. of Longitudinal Bars 16

Bar No. 3

Longitudinal Steel Ratio (%) 1.56

Transverse Column Reinforcement Spiral Bar W2.9

Spiral Spacing (in.) 1.25

Spiral Bar Diameter (in.) 0.192

Spiral Bar Area (in2) 0.029

Transverse Volumetric Steel Ratio (%) 0.90

Cap Beam Dimensions Length (in.) 98

Width (in.) Variable

Depth (in.) 15

Slab Dimensions Span Length (in.) 360

Width (in.) 90

Depth (in.) 14

The nominal material properties used for the preliminary model of the shaking table

specimen are listed in Table 2.3. The material properties measured before the beginning of

the low-amplitude tests are reported in Chapter 4.

The modulus of elasticity of the concrete (Ec) and the tensile strength of the concrete

(ft) were calculated from the unconfined compressive strength of the concrete (f ′c), using
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Table 2.3: Nominal material properties for the shaking table model

Material Property Value

Reinforced Concrete ρm (ks2/in2) 2.25E-07

Unconfined Concrete f ′c (psi) 5000

εco 0.002

Ec (ksi) 4030

fto (psi) 530

Confined Concrete f ′cc (psi) 6750

εcc 0.00549

Steel fy (ksi) 65

fsu (ksi) 90

E (ksi) 29000

εu 0.12

the equations Ec = 57000
√

f ′c and ft = 7.5
√

f ′c (ACI Committee 318, 2002). The confined

concrete properties were calculated using the Mander concrete model (Mander et al., 1988).

2.2 Specimen Construction

The construction schedule for this specimen is provided in Table 2.4. The design docu-

ments were completed in June 2004, and the project was sent out to bid. UNR contracted

the construction of the reinforcement cages for the footings, columns and cross-beams to

Northern Nevada Rebar, and contracted the construction of the concrete components to

Granite Construction. The slab was constructed at Granite Construction and delivered to

UNR prior to assembly. All other components were constructed on site.

The footing and column cages were assembled (Fig. 2.3a) in September 2004. Pieces

of #3 bar were welded to the tops of the column reinforcement to ensure complete stress

transfer from the reinforcement to the concrete (Fig. 2.3b). Once the cages were completed,

the strain gauges were placed on the longitudinal and transverse column reinforcement.

The column cages were then attached to the footing cages and the concrete for the footings

was poured in October 2004. The concrete for the columns were poured approximately one

month after the pouring of the footings. The cap beam cages were assembled (Fig. 2.3c)
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Table 2.4: Specimen construction schedule

Description 2004 2005

May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Design Documents x x

Instrumentation Plan Developed x x

Column Cage Assembly x

Footing Pour x

Column Pour x

Beam/Cantilever Assembly x

Cap Beam Pour x

Bridge Erection and Assembly x x

Low Level Testing x x

High-Level Testing x

and the concrete for the beams was poured approximately two weeks after the columns were

poured.

The specimen components were assembled on the shaking tables within the laboratory

in December 2004. Concrete spacer blocks below the footings on bents 1 and 3 were added

to maintain a level slab with various column heights. The bents were placed on top of the

spacer blocks (Fig. 2.3d) and post-tensioned to the tables using eight one-inch diameter

threaded rods.

Once the bents were assembled on the tables, the slab was placed on the bents. Trans-

verse post-tensioning was applied to provide transverse continuity across the slab beams.

Longitudinal post-tensioning was then applied to provide continuity between the slab and

the bents. After the slab was post-tensioned to the bents, external masses were added to the

top of the slab (Fig. 2.3e). The majority of the external mass was provided by three concrete

blocks placed on each span near the exterior bents. Additional crates of lead weights were

added on the interior spans near the concrete blocks and on the cantilevers of the exterior

bents. Steel frames were installed underneath the slab on each shaking table as a safety

measure in case of specimen collapse during the high-amplitude tests.

After the assembly of the specimen, the potentiometers were attached to the columns

and slab. The locations of the strain gauges and potentiometers are provided in the instru-
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mentation plans, located in Appendix C. The assembled shaking table specimen before the

low-amplitude testing is shown in Fig. 2.3f.

The low-amplitude testing commenced in late January. The last part of the low-

amplitude testing, which included subjecting the structure to excitations measured during

the centrifuge tests, was postponed for two weeks until early February. These tests were

postponed to allow time to obtain and interpret preliminary results from the centrifuge

tests. The high-amplitude testing lasted two days, immediately following the final day of

the low-amplitude testing.
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Figure 2.3: Photographs of construction sequence, including: a) column cages, b) column
welds, c) beam cages, d) bent assembly, e) external slab masses, and f) final pre-test speci-
men

2.3 Instrumentation and Data Acquisition

Forty-four tests were conducted on the shaking table specimen: 15 low-amplitude earthquake

excitations, 10 high-amplitude earthquake excitations, 12 white-noise excitations, and 7
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square-wave excitations. For each test, 313 channels of data were recorded, 307 of which

were relevant to the response of the system. The location of the gauges on the shaking

table specimen are provided in the instrumentation plans (Appendix C). The remaining

6 channels recorded information from the data acquisition system. Table 2.5 outlines the

functionality for each channel. Examples of the instrumentation are shown in Fig. 2.4, and

discussed in the following paragraphs.

Table 2.5: Data acquisition channel count and description

Recorder Type Recorded Response # Recorders Notes

Strain Gauges Longitudinal Reinforcement 104 All columns

Transverse Reinforcement 56 All columns

Potentiometers Slab Displacements 25 Transverse, Longitudinal and Vertical

Footing Slip 3 Slip between footing and table on bent 3

Column Curvature 68 All bents

Column Shear 15 Bent 3, west column

Accelerometers Slab Accelerations 14 Transverse, Longitudinal and Vertical

Support Frame Acceleration 1 Added after TEST3B

Miscelaneous Long. Table Response 9 Displacement, Velocity and Acceleration

Trans. Table Response 9 Displacement, Velocity and Acceleration

Data Acquisition 3 one channel for each table

Function Recording 3 one channel for each table

Time Recording 3 one channel for each table

Total 313
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Figure 2.4: Photographs of instrumentation, including: a) longitudinal and transverse strain
gauges, b) curvature potentiometers, and c) shear rig potentiometers.

2.3.1 Strain Gauges

A total of 160 strain gauges were installed on the reinforcement of the six columns, 104

on the longitudinal reinforcement and 56 on the transverse reinforcement (Fig. 2.4a). The

longitudinal strain gauges were placed at six locations along the length of the column: at

each column-anchorage interface, 6 inches into the column from each interface, and 6 inches

into each anchorage. Before attaching the strain gauges, the reinforcement was ground

smooth at the gauge location. The strain gauges were then glued to the bars and wrapped
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with electrical tape. The wires of the strain gauges were strung through shrink tubing and

attached to the inside of the column reinforcement.

2.3.2 Slab Displacement Potentiometers

Five potentiometers were used to measure the transverse slab displacement at each bent

and at the midpoint of each span. Four potentiometers (two on each end) recorded the

longitudinal slab displacement. The vertical slab displacements were captured using 16

potentiometers, four measurements on each bent and two measurements at the midpoint of

each span.

Base slip at bent 3 was recorded using three potentiometers. The slip between the con-

crete spacer block and the shaking table was monitored with two potentiometers. The slip

between the footing and the concrete spacer block was monitored with one potentiometer.

2.3.3 Column Deformation Potentiometers

There were a total of 68 potentiometers measuring column curvature (Fig. 2.4b). Average

column curvatures were measured over the first 12 inches of each column fixity in the trans-

verse direction. The column curvatures were measured over intervals of 5 and 7 inches using

four potentiometers at each column fixity (for a total of 48 gauges). The column curvature

in the longitudinal direction was measured over the first 5 inches using two potentiometers

at each column fixity. However, longitudinal column curvatures for the west column of bent

2 were not measured.

A shear rig was assembled using 15 potentiometers on the west column of bent 3. The

potentiometers in the shear rig were situated in rectangles with approximately 12-in. sides

(Fig. 2.4c). Each quadrant consisted of two vertical potentiometers, two horizontal poten-

tiometers, and one diagonal potentiometer.

2.3.4 Slab Accelerometers

A total of 15 accelerometers were used to measure accelerations of the slab and the support

frame near bent 2. Ten accelerometers measured the transverse and longitudinal acceler-
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ations at each bent and at the midpoint of each span. Two accelerometers measured the

vertical accelerations at the midpoint of each span, and two measured the vertical acceler-

ations at the ends of the cantilevers near bents 1 and 3.

The accelerometers on Bent 2 recorded excessive vibration during the low-amplitude

tests. To determine the source of the vibration, an accelerometer was added to the support

frame near bent 2 after Test 3B.
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Chapter 3

GROUND MOTION DEVELOPMENT

The base motion for the shaking table specimen was chosen based on maximizing the

likely structural response without exceeding the operational limits of the shake tables. This

chapter describes the selection and development of the ground motions for the shaking table

tests. This process included:

1. Choosing candidate outcrop motions (30) based on target peak ground acceleration

and epicentral distance (Section 3.1).

2. Reducing the number of candidate outcrop motions to four by inspecting the motions

in the time and frequency domains (Section 3.1).

3. Choosing the primary motion using nonlinear structural response estimates while con-

sidering shaking table limits (Section 3.2).

4. Developing an experimental test schedule from the primary test motion (Section 3.3).

3.1 Candidate Outcrop Motions

The Northridge earthquake was chosen for this research because of its broad use in previ-

ous analytical studies and its relevance to bridges on the west coast of the United States.

Approximately 30 outcrop motions from the Northridge earthquake (M = 6.7) were cho-

sen from the PEER strong motion database (PEER, 2005) based on a target peak ground

acceleration (PGA) near 0.25g and an epicentral distance near 25 km (Shin, 2006).

Four candidates were chosen from the field of 30 motions (Table 3.1) through inspection

of the motion records in the time and frequency domains. Specifically, the candidate motions

were inspected in the time domain for earthquake duration and to ensure there were no large

individual amplitude spikes. The response spectrum of the motion was inspected for narrow

bandwidth or amplitude gaps below periods of one second. These attributes in both the time



21

and frequency domain might have led to an insufficient structural response. Time histories

and elastic response spectra (5% damping) of the four unscaled candidate outcrop motions

are shown in Figs. 3.1 - 3.4. Because the geometric scale of the shaking table specimen was

1/4, the time scale of the candidate motions were condensed by 2. The computed spectral

accelerations are normalized by the peak ground acceleration of each motion.

Table 3.1: Northridge earthquake candidate outcrop motions

Motion No. 1 2 3 4

Location Century City CC

North (090)

Century City CC

North (360)

Lake Hughes

#12A

LA - University

Hospital

Abbreviation CCN090 CCN360 H12090 UNI095

PGA (g) 0.256 0.222 0.174 0.214

Dist. To Sur-

face Rupture

(km)

18.3 18.3 24.8 32.8

Duration (s) 14.38 14.12 7.75 11.85

The peak spectral acceleration (PSA) for motions 1 (Fig. 3.1) and 3 (Fig. 3.3) were

approximately four times larger than their peak ground accelerations (PGA). Both motions

had PSAs near a period of 0.1s. The PSA for motions 2 (Fig. 3.2) and 4 (Fig. 3.4) were

approximately 2 and 3.5 times their PGAs, respectively. The bandwidths of motions 1 and 2

were the largest out of the four motions. For example, the spectral accelerations for motions

1 and 2 are larger than the PGA for periods less than 0.5 and 0.75 seconds, respectively. In

contrast, the spectral accelerations for motions 3 and 4 are larger than the PGA only for

periods less than 0.25 and 0.35 seconds, respectively.
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Figure 3.1: Acceleration history and spectral acceleration for Motion 1 (CCN090)
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Figure 3.2: Acceleration history and spectral acceleration for Motion 2 (CCN360)
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Figure 3.3: Acceleration history and spectral acceleration for Motion 3 (H12090)
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Figure 3.4: Acceleration history and spectral acceleration for Motion 4 (UNI095)
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3.2 Outcrop Motion Selection

To generate bedrock motions, Shin (2006) deconvoluted the four candidate outcrop motions

to the bedrock level through rock (approximately 27 m below the surface in prototype scale).

For initial comparison, the unscaled motions were then convoluted through the soil to the

estimated location of column fixity, approximately two column diameters below the surface.

Each free-field motion (at the point of column fixity) was scaled to peak accelerations of

0.25g, 0.50g, 0.75g, 1.00g, and 1.50g. Fig. 3.5 illustrates the process of generating the

free-field motions for the shaking table model.

Outcrop Motions

Bedrock 

Motions
Bedrock Motions

Free 

Field              Motions at 

       Point of Fixity

                            Outcrop Motions                        

(PEER Strong-Motion Database)

Rock

Soil

PGA = 

0.25g

Scaling Factor

PGA = 

0.50g

PGA = 

0.75g

PGA = 

1.00g

PGA = 

1.50g

Figure 3.5: Diagram for developing the acceleration records for initial motion selection.

The motions at the point of column fixity were used to excite the preliminary numerical

model (see Chapter 2). The peak displacement responses at each bent for these motions are

reported in Table 3.2, and shown in Fig. 3.6. The largest bent drift ratio for each level of

PGA is highlighted in Table 3.2. Taking the motions scaled to 1.0g as an example, motion

2 yields the largest drift response for bent 1 (2.55%), compared to a response of 1.92% for

motion 1, and much smaller responses for motions 3 and 4 (approximately 1.0%).

For all motion intensities, the estimated drift ratios using motions 1 and 2 were larger

at each bent than those calculated using motions 3 and 4 (Fig. 3.6). For the majority of

the motions, the peak bent responses for motion 2 were larger than those for motion 1. For
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Table 3.2: Calculated transverse bent drift ratios for the four ground motions at various
levels of peak ground acceleration

Response Peak Ground Ground Motions

Characteristics Acceleration (g) Motion 1 Motion 2 Motion 3 Motion 4

Bent 1 0.25 0.65 0.63 0.29 0.34

Drift Ratio 0.50 1.08 1.34 0.53 0.53

(∆max/L) (%) 0.75 1.46 1.99 0.75 0.72

1.00 1.92 2.55 0.94 0.96

1.50 3.03 3.83 1.33 1.52

Bent 2 0.25 0.43 0.41 0.22 0.24

Drift Ratio 0.50 0.78 0.79 0.39 0.39

(∆max/L) (%) 0.75 1.08 1.25 0.55 0.56

1.00 1.41 1.68 0.69 0.75

1.50 2.17 2.51 0.98 1.10

Bent 3 0.25 0.58 0.52 0.33 0.41

Drift Ratio 0.50 1.15 0.93 0.58 0.66

(∆max/L) (%) 0.75 1.64 1.61 0.80 0.89

1.00 2.13 2.32 1.02 1.12

1.50 3.27 3.63 1.46 1.62

Peak Table 0.25 4.91 5.35 4.04 2.97

Velocity 0.50 9.81 10.69 8.09 5.93

(in./s) 0.75 14.72 16.04 12.13 8.90

(Vlim = 40in./s) 1.00 19.62 21.39 16.17 11.86

1.50 29.43 32.08 24.26 17.79

Peak Table 0.25 0.52 0.45 0.51 0.20

Displacement 0.50 1.04 0.90 1.01 0.41

(in.) 0.75 1.56 1.35 1.52 0.61

(∆lim = 12in.) 1.00 2.08 1.80 2.03 0.81

1.50 3.12 2.69 3.04 1.22

example, at a PGA of 1.5, the drift ratios of bent 3 for motions 1 and 2 were 3.27% and

3.63%, respectively. Based on these results, motions 3 and 4 were eliminated from further

consideration.

Table 3.2 also provides the peak table velocity and displacement demands for each

motion. The velocity demands were calculated by integrating the acceleration record over

the condensed time scale. The displacement demands were calculated by integrating the

acceleration record twice. These table demands were checked to verify that the estimated

table limits were not exceeded. As discussed in Appendix A, the nominal table limits were

∆lim = 12in., Vlim = 40in./s, and Alim = 1.4g. As seen in Table 3.2, none of the table
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Figure 3.6: Response comparison between the four candidate ground motions for: a) bent
1, b) bent 2, and c) bent 3

velocity or displacement demands exceeded the nominal table limits.

Although the peak drift ratios for motion 2 were generally higher than those for motion

1, the final ground motion selection was based on the amount of bent cycling at high drift

ratios. To help decide between outcrop motions 1 and 2, these motions were deconvoluted to

the bedrock level and scaled to a peak bedrock acceleration of 0.4g. The bedrock motions

at this intensity were then convoluted to the point of column fixity where free-field and

pile motions were generated. These motions were then re-scaled to a peak acceleration of

1.0g. This process resulted in four motions (two free-field and two pile motions) with peak

accelerations of 1.0g (see Fig. 3.7 for an illustration of this process). Table 3.3 provides the

maximum drift ratio at each bent for these four motions.

The bent drift ratios resulting from free-field motion 2 were generally larger than those

for motion 1. The opposite is true for the pile motions. Table 3.3 also presents two measures

cumulative high-amplitude cycling, hysteretic energy and cumulative plastic displacement

The hysteretic energy dissipated by the bents was calculated by integrating the total

bent base shear over the displacement history. Cumulative plastic displacement is the
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Figure 3.7: Diagram for developing the acceleration records for final motion selection.

Table 3.3: Calculated drift ratios for free-field and pile motions 1 and 2

Response Measurement Bent Free Field Pile

Motion Motion

1 2 1 2

Peak Bent Drift Ratio (%) 1 4.68 4.65 8.22 6.38

2 3.03 3.45 5.49 4.51

3 4.25 5.47 7.71 6.84

Eh (k-in.) 1 868 626 943 631

2 382 291 524 273

3 978 839 953 589

CPD (in.) 1 53.9 35.0 68.7 34.1

2 32.9 19.9 43.7 18.7

3 46.5 39.0 57.1 38.5

total amount of displacement beyond the yield displacement that the bent experiences.

This measure of cycling does not incorporate the column forces, but has been shown to

adequately characterize damage influenced by cycling (Ranf et al., 2005).

As seen in Table 3.3, both measures of cycling show the numerical model predicted more



28

high-level cycling when excited by motion 1 than motion 2. For example, the cumulative

plastic deformation of bent 1 resulting from free-field motion 1 was 53.9 in., 54% larger

than the cumulative plastic displacement of bent 1 from free-field motion 2 (35.0 in.). The

displacement time histories and hysteresis curves of bent 1 resulting from free-field motions

1 and 2 are shown in Fig. 3.8. There is a large pulse in the response to free-field motion

2. However, there are many more large secondary displacements resulting from free-field

motion 1.

Based on consideration of cycling, motion 1 was used as the primary motion for the

shaking table tests because it caused both large maximum bent displacements and large

amounts of cycling. However, because motion 2 (CCN360) was recorded at the same lo-

cation as motion 1 (CCN090), except at an orthogonal orientation, motion 2 was used in

combination with motion 1 for the bi-directional shaking table tests.



29

0 5 10 15 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (s)

D
rif

t (
%

)

Motion 1

0 5 10 15 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (s)

D
rif

t (
%

)

Motion 2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−40

−30

−20

−10

0

10

20

30

40

Drift (%)

B
as

e 
S

he
ar

 (
k)

Motion 1
Motion 2

Figure 3.8: Response comparisons from free-field motions 1 and 2.
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3.3 Final Test Motions at the Estimated Point of Column Fixity

The CCN090 (motion 1) acceleration history was chosen as the primary motion for the

shaking table tests. This motion was deconvoluted to the bedrock level and scaled twice to

create peak bedrock accelerations of 0.06g and 0.40g.

For the low-amplitude tests, the motion at the bedrock level was scaled to a peak bedrock

acceleration of 0.06g. The low-amplitude motion was convoluted to the point of column

fixity assuming various bedrock depths. The baseline bedrock depth (d) was assumed to

be 25.4m. The various bedrock depths used during the the low-amplitude tests included:

0d (bent attached directly to the bedrock), 1/3d, 1/2d, and 2/3d. The time histories and

response spectra for these four low-amplitude test motions are shown in Fig. 3.9.

The CCN360 (motion 2) acceleration history was used for the longitudinal excitation

of the biaxial tests. This motion was deconvoluted to bedrock, scaled so that the peak

acceleration was 0.06g, and then convoluted to the point of column fixity assuming a bedrock

depth of 1/3d. The time history and response spectra for this longitudinal motion are shown

in Fig. 3.10.

The shaking table excitations were expected to exceed 1.0g during the high-amplitude

tests. Therefore, the high-amplitude motion was scaled to a peak bedrock acceleration of

0.4g, then convoluted to the estimated point of column fixity. The time history and the

response spectrum for this motion are shown in Fig. 3.11.

The test schedule for the low and high-amplitude tests (Table 3.4) were developed using

the motions presented in Figs. 3.9 - 3.11. The low-amplitude tests were composed of co-

herent, incoherent, biaxial and centrifuge excitations, all designed to create bent responses

smaller than the estimated bent yield displacements. The high-amplitude tests were com-

posed of coherent excitations with increasing intensity. A detailed description of the tests

are provided in the following paragraphs.

• Tests 1A-1B were coherent half-scale and full-scale excitations used to create a base-

line structure response to compare with the incoherent excitations. The half-scale

excitation was used to ensure that the bent response from the full-scale excitation

would not exceed the estimated bent yield displacements.
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• Tests 2A-6 were used to investigate the effects of varying soil depth (and motion inco-

herency) on the response of the structure. Although the soil depth under individual

bents varied in these tests, the average soil depth remained constant at d/3.

• Test 7 used the same motions as Test 1B to investigate the accumulated effects of the

incoherent motion tests on the structure.

• Test 9A-9B subjected the structure to half-scale and full-scale biaxial motions. The

motion in the transverse direction came from the CCN090 outcrop motion, while the

motion in the longitudinal direction came from the CCN360 outcrop motion. Again,

a half-scale test was first conducted to ensure the bent responses from the full-scale

test would not exceed the estimated yield displacement.

• Tests 10-11 used accelerations recorded during the centrifuge tests at the University

of California, Davis (UCD). The motions from Test 10 and 11 were free-field and pile

accelerations, respectively, at two column diameters below the ground surface.

• Tests 12-20 were the high-amplitude excitations. These tests all used the same mo-

tion, generated from a bedrock acceleration scaled to a peak ground acceleration of

0.4g, then convoluted through 25.4 m of soil to the assumed point of column fixity.

This motion was then scaled from 0.08g to 1.66g to produce a gradual progression of

structural damage (the achieved table accelerations ranged from 0.07g to 2.20g). The

excitations increased in intensity until Test 20, at which point excessive damage to

bent 3 required the unloading of the external mass from bent 3.

• Tests 21-22 were high-amplitude excitations without the external mass above bent

3. These tests were used to induce further damage to bents 1 and 2 without risking

collapse of bent 3.

Twelve white-noise and 7 square-wave excitations were dispersed throughout the low

and high-amplitude excitations. During the low-amplitude tests, these were used to ensure

that the large amount of testing did not significantly change the modal properties of the

structure. During the high-amplitude tests, these excitations were used to identify the

progression of structural damage. White-noise and square-wave tests were conducted in

tandem to identify the modal properties using two types of excitation.



32

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

A
cc

el
er

at
io

n 
(g

) Bedrock Depth = 0d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Period (s)

A
cc

el
er

at
io

n 
R

es
po

ns
e 

(g
)

0d
1/3d
1/2d
2/3d

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

A
cc

el
er

at
io

n 
(g

) Bedrock Depth = 1/3d

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

A
cc

el
er

at
io

n 
(g

) Bedrock Depth = 1/2d

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

A
cc

el
er

at
io

n 
(g

)

Time (s)

Bedrock Depth = 2/3d

Figure 3.9: Time history and response spectrum for the low-level motions
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Figure 3.10: Time history and response spectrum for the low-level longitudinal motion

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

Time (s)

A
cc

el
er

at
io

n 
(g

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Period (s)

A
cc

el
er

at
io

n 
R

es
po

ns
e 

(g
)

Figure 3.11: Time history and response spectrum for the high-level motion
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Table 3.4: Experimental test schedule

Test Test Date Significance Transverse Direction Bent

Motion PBA (g) 1 2 3

WN0001 Low Level Jan. 27, 2005 White Noise

1A Coherent Motion 1 0.06 d/3 d/3 d/3

1B 1 0.06 d/3 d/3 d/3

2A Incoherent Motion 1 0.06 0 d/3 2d/3

2B 1 0.06 0 d/3 2d/3

3A 1 0.06 2d/3 d/3 0

3B 1 0.06 2d/3 d/3 0

WN0304A White Noise

WN0304B White Noise

4 Incoherent Motion 1 0.06 0 d/2 d/2

5 1 0.06 d/2 0 d/2

6 1 0.06 d/2 d/2 0

7 Coherent Motion 1 0.06 d/3 d/3 d/3

WN0709A White Noise

WN0709B Feb. 8, 2005 White Noise

SQ0709B Square Wave

9A Biaxial Motion 1 0.06 d/3 d/3 d/3

9B 1 0.06 d/3 d/3 d/3

10 Centrifuge Motion 1 0.1 d d d

11 1 0.1 d d d

WN1112A White Noise

SQ1112A Square Wave

WN1112B High Level Feb. 9, 2005 White Noise

SQ1112B Square Wave

12 Coherent Motion 1 0.4 d d d

13 1 0.4 d d d

14 1 0.4 d d d

WN1415 White Noise

SQ1415 Square Wave

15 Coherent Motion 1 0.4 d d d

16 1 0.4 d d d

17 1 0.4 d d d

WN1718 White Noise

SQ1718 Square Wave

18 Coherent Motion 1 0.4 d d d

WN1819 Feb. 10, 2005 White Noise

SQ1819 Square Wave

19 Coherent Motion 1 0.4 d d d

WN1920 White Noise

SQ1920 Square Wave

20 Coherent Motion 1 0.4 d d d

WN2021 White Noise

MASS OFF Mass Removed From Bent 3

21 Coherent Motion 1 0.4 d d d

22 1 0.4 d d d

Notes: d = the depth from the point of column fixity to bedrock, 25.4 m.
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Chapter 4

MEASURED RESPONSE

This chapter describes the response of the shaking table specimen. The instrumentation

used to capture the response of the specimen is listed in Table 2.5. The response character-

istics presented in this chapter are outlined in Table 4.1. These response characteristics were

used in subsequent analyses for calibration and assessment of a three-dimensional numerical

model. Uses of the specimen response characteristics are also shown in Table 4.1.

Table 4.1: Measured response characteristics

Response Section Use Chapter

Material Properties Section 4.1 Material Model Calibration Chapter 8

Measured Table Accelerations Section 4.2 Model Calibration Chapter 8

Model Assessment Chapter 8

Displacement/Acceleration Histories Section 4.3 System Identification Chapter 6

Displacement/Acceleration Maxima Section 4.4 Numerical Model Assessment Chapter 8

Displacement-Strain Envelopes Section 4.5 Anchorage Slip Calibration Chapter 8

Displacement-Rotation Envelopes Section 4.6 Numerical Model Assessment Chapter 8

Displacement-Column Elongation Envelopes Section 4.7 Effective Beam Width Calibration Chapter 8

4.1 Material Properties

The measured material properties that are presented in this section were used to calibrate

the material models for the OpenSEES numerical model (Chapter 8). Three batches of

concrete (footings, columns, and cross-beams) and two types of steel (longitudinal and

transverse reinforcement) were used in the shaking table specimen. Material tests were

performed at the University of Nevada, Reno.

The concrete compressive strength was determined by testing 6in. x 12in. diameter

cylinders. Three cylinders each were tested for each concrete batch at 7 (or 16) days, at 28

days, and just before the beginning of the low-amplitude tests. The average compressive

stress from the three cylinders is presented in Table 4.2. Fig. 4.1 shows the progression of
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the concrete strengths for the three bent components.

The measured strength for the column concrete at 28 days was 4810 psi, which was

close to the design 28-day strength of 5000 psi. Because each bent component was cast

at different times, the ages of the components at the beginning of the low-amplitude tests

varied for the footings (133 days), columns (103 days), and cross-beams (83 days).

Table 4.2: Measured concrete strength (psi)

Component Age (Days)

7 16 28 83 103 133

Footing — 3430 4020 — — 4780

Column 2600 — 4810 — 5910 —

Cap Beam 3430 — 5650 6990 — —
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Figure 4.1: Concrete strength progression for the two-span structure

The concrete strengths used in subsequent analyses are presented in Table 4.3. The

elastic modulus (Ec) and rupture modulus (ft) of the concrete were calculated using Eq. 4.1

(ACI Committee 318, 2002).

Ec = 57, 000
√

f ′c (4.1a)

ft = 7.5
√

f ′c (4.1b)
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Table 4.3: Concrete test properties

Component f ′c(psi) ft(psi) Ec(ksi)

Footing 4800 520 3900

Column 5900 580 4400

Cross-beam 7000 630 4800

The columns were longitudinally reinforced with (16) #3 bars and transversely reinforced

with W2.9 wire spaced at 1.25 in. Multiple coupon tests were performed at the University

of Nevada, Reno for both bar types. The measured yield stress, ultimate stress and elastic

modulus for the three longitudinal steel tests and the two transverse steel tests are presented

in Table 4.4. The experimental stress-strain relationships for the longitudinal and transverse

reinforcement are shown in Figs. 4.2 and 4.3. The elastic modulus of the steel was calculated

as the average slope of the stress-strain curve up to a bar stress of 30 ksi. The yield stress was

estimated using the 0.2% strain offset method. An ultimate strain could not be measured

because necking and bar failures did not occur within the gauge length.

Table 4.4: Measured steel properties

Bar Test
E σY σU

(ksi) (ksi) (ksi)

#3 1 30100 74.3 97.2

2 30800 68.0 97.9

3 26200 66.8 96.0

Avg. 29000 69.7 97.0

D12 1 28700 67.2 79.2

2 31700 67.0 79.2

Avg. 30200 67.1 79.2



38

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

70

80

90

100

Strain (in./in.)

S
tr

es
s 

(k
si

)

Longitudinal Bar Test 1
Longitudinal Bar Test 2
Longitudinal Bar Test 3
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4.2 Target and Achieved Table Accelerations

The target table accelerations for the shaking table specimen were developed from the

Century City North record of the Northridge earthquake (see Chapter 3). The various

ground motions were developed by convoluting the earthquake record through soil strata

of various depths. The peak target accelerations are presented in Table 4.5. Tests 1-

11 represent incoherent and biaxial low-amplitude tests. Tests 12-19 represent coherent

motions of increasing intensity. The damage to bent 3 was so severe following Test 19 that

the intensity of Test 20 was reduced. The masses over bent 3 were removed for Tests 21

and 22 in an attempt to further damage bents 1 and 2 without causing bent 3 to collapse.

Table 4.5: Target and achieved peak table accelerations

Test
Target PGA (g) Achieved PGA (g) Difference (%)

Bent 1 Bent 2 Bent 3 Bent 1 Bent 2 Bent 3 Bent 1 Bent 2 Bent 3

1A 0.08 0.08 0.08 0.13 0.23 0.13 70 203 68

1B 0.15 0.15 0.15 0.21 0.32 0.25 34 108 62

2A 0.03 0.08 0.07 0.03 0.13 0.07 0 74 1

2B 0.07 0.15 0.15 0.07 0.34 0.16 7 120 12

3A 0.07 0.08 0.03 0.08 0.13 0.05 14 65 35

3B 0.15 0.15 0.07 0.17 0.38 0.08 13 145 19

4 0.07 0.18 0.18 0.07 0.22 0.23 4 19 30

5 0.18 0.07 0.18 0.21 0.10 0.25 15 44 36

6 0.18 0.18 0.07 0.20 0.21 0.09 12 18 32

7 0.15 0.15 0.15 0.17 0.22 0.21 7 42 38

9A 0.08 0.08 0.08 0.09 0.10 0.10 14 30 31

9B 0.15 0.15 0.15 0.17 0.33 0.21 8 114 35

10 0.06 0.06 0.08 0.08 0.10 0.10 22 61 25

11 0.06 0.05 0.09 0.07 0.09 0.10 27 70 12

12 0.08 0.08 0.08 0.07 0.10 0.08 -7 29 9

13 0.15 0.15 0.15 0.18 0.18 0.17 18 19 15

14 0.25 0.25 0.25 0.35 0.31 0.28 39 25 12

15 0.50 0.50 0.50 0.67 0.65 0.72 34 29 44

16 0.75 0.75 0.75 0.98 0.94 1.25 31 25 67

17 1.00 1.00 1.00 1.20 1.50 1.09 20 50 9

18 1.33 1.33 1.33 1.56 1.81 1.59 17 36 19

19 1.66 1.66 1.66 2.00 2.13 2.20 20 28 33

20 1.00 1.00 1.00 1.26 1.30 1.44 26 30 44

21 1.00 1.00 1.00 1.22 1.21 1.34 22 21 34

22 1.33 1.33 1.33 1.61 1.50 1.71 21 12 29

The achieved table accelerations for each test are also shown in Table 4.5. Table fric-

tion and structural feedback made it difficult to achieve table accelerations similar to the
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target accelerations. Table friction had more influence during low-amplitude excitations,

in which the target motions were near the friction thresholds of the tables. During the

high-amplitude tests, structural feedback had more influence. The differences between the

target and achieved table accelerations were minimized by creating a transfer function to

adjust the input motion so that the target acceleration would be achieved. However, because

the target motion changed in shape and intensity throughout the tests, and the structure

changed significantly during the high-amplitude tests, finding the correct transfer function

for each test was difficult.

The difference between the maximum target and achieved table accelerations was gener-

ally the greatest for the table at bent 2 (200% for Test 1A). There were also large differences

in the other bents (70% at bent 1 for test 1A) during the low-amplitude tests.

For the high-amplitude tests, the differences were generally smaller. The average dif-

ference during the high-amplitude tests (Tests 13-20) was approximately 30%. Fig. 4.4

shows the achieved table accelerations versus the target accelerations. The achieved peak

accelerations were almost always larger than the target peak accelerations, the one minor

exception being Bent 1 during Test 12.
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Figure 4.4: Target and achieved peak ground accelerations for the (a) low-amplitude tests
and (b) high-amplitude tests
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Typical response spectra (5% damping) for the low and high-amplitude tests are shown

in Fig. 4.5. Fig. 4.5a shows the target and achieved response spectra for shaking table 3

during Test 12. Below a period of approximately 0.15s, the achieved spectral acceleration

exceeded the target. Above this period, the target was larger. Fig. 4.5b shows the target

and achieved response spectra during Test 18. The two response spectra were similar for

periods between 0.22 and 0.33s. Outside of this range, the achieved response spectra was

smaller than the target.
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Figure 4.5: Spectral accelerations for typical (a) low-amplitude tests (Test 12) and (b)
high-amplitude tests (Test 18)

The average periods of the first two transverse modes of the shaking table specimen

during the low-amplitude tests were 0.33s and 0.26s (Chapter 6). The spectral accelerations

at these periods are shown in Figs. 4.6 and 4.7, respectively, for all of the low and high-

amplitude tests. During the low-amplitude tests, the achieved spectral accelerations at

periods of 0.33s and 0.26s varied from approximately 30% to 250% of the targets spectral

accelerations. During the high-amplitude tests, this range was reduced to 70% to 150%.
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Figure 4.6: Target and achieved spectral acceleration at T = 0.33s for the (a) low-amplitude
and (b) high-amplitude tests
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Figure 4.7: Target and achieved spectral acceleration at T = 0.26s for the (a) low-amplitude
and (b) high-amplitude tests

4.3 Bent Displacement and Acceleration Response Histories

The displacement response of each bent was measured using five string potentiometers

located on the west face of the bent caps and at the midpoint of each span. Accelerometers
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were placed on the top of the bridge deck at the center of the bent caps and at the midpoint

of each span. Displacement and acceleration histories of typical low-amplitude and high-

amplitude tests are shown in Figs. 4.8 and 4.9.

Fig. 4.8 shows the displacement and acceleration response at each bent for Test 12. The

response of the specimen during this test lasted approximately ten seconds. As the specimen

became softer due to column damage, the transient response of the specimen extended. For

example, for the same excitation time as Test 12, the bent response from Test 18 (Fig. 4.9)

lasted for approximately 20 seconds.

Measurement noise was relatively large in both the displacement and the acceleration

data during the low-amplitude tests. The ratios of the peak noise measurements to the peak

response measurements are shown in Fig. 4.10 for both the displacement and acceleration

data. The peak measurement noise was estimated as the peak signal during the first five

seconds of each test, before the excitation in the input signal began.

The noise to peak displacement response ratios were largest for bent 3 during the low-

amplitude tests, with a mean value of 0.3. the ratios for bents 1 and 2 were almost always

below 0.05. The maximum ratio occurred during Test 9A (Fig. 4.11). The displacement

response for bent 3 during this test was fully obscured by measurement noise. Near the

end of the test, measurement noise was approximately 2.5 times larger than the maximum

displacement response of 0.04 in. During the high-amplitude tests, as the maximum noise

remained constant and the maximum response increased, this ratio decreased. The average

noise-to-signal ratio for the displacement data after Test 14 was 0.01.

The noise to peak acceleration response ratios were large for bent 2 during the low-

amplitude tests, with a mean ratio of 0.055. The ratios for bents 1 and 3 were almost always

below 0.02. Similar to the displacement data, the noise-to-signal ratio for the acceleration

data decreased during the high-amplitude tests. For example, the average noise-to-signal

ratio for the acceleration data after Test 14 was approximately 0.01.
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Figure 4.8: Displacement and acceleration histories for Test 12
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Figure 4.9: Displacement and acceleration histories for Test 18
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Figure 4.11: Displacement and acceleration histories for Test 9A
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4.4 Bent Displacement and Acceleration Response Maxima

The maximum measured bent displacements and accelerations were used to assess the ac-

curacy of the numerical model. For each test, the maximum bent displacements, drift ratios

and accelerations are listed in Table 4.6, and plotted in Figs. 4.12 and 4.13. The maximum

bent drift and bent acceleration during the low-amplitude tests were 0.32% and 0.23g, re-

spectively (Bent 3, Test 2B). The maximum bent accelerations reach a plateau near Test 15,

signifying that the force capacity of each bent was reached. Although the peak accelerations

levelled off, the maximum bent displacements continued to increase. Before the mass was

removed from bent 3 (Test 21), the maximum bent drift reached 8% (bent 3, Test 19).

Table 4.6: Maximum bent displacements and accelerations

Test
Max. Bent Disp. (in.) Max. Bent Drift (%) Max. Bent Accel. (g)

Bent 1 Bent 2 Bent 3 Bent 1 Bent 2 Bent 3 Bent 1 Bent 2 Bent 3

1A 0.09 0.08 0.05 0.13 0.09 0.08 0.09 0.08 0.08

1B 0.15 0.14 0.08 0.20 0.14 0.14 0.12 0.14 0.13

2A 0.06 0.04 0.07 0.08 0.04 0.11 0.08 0.07 0.11

2B 0.13 0.12 0.19 0.17 0.13 0.32 0.18 0.12 0.23

3A 0.07 0.05 0.05 0.10 0.05 0.08 0.08 0.06 0.04

3B 0.18 0.15 0.07 0.25 0.16 0.12 0.18 0.11 0.08

4 0.09 0.10 0.11 0.13 0.10 0.19 0.10 0.08 0.15

5 0.11 0.08 0.10 0.15 0.08 0.16 0.11 0.11 0.13

6 0.11 0.09 0.05 0.15 0.10 0.09 0.09 0.08 0.07

7 0.12 0.11 0.07 0.16 0.12 0.12 0.10 0.11 0.10

9A 0.05 0.03 0.04 0.07 0.04 0.06 0.05 0.05 0.04

9B 0.13 0.14 0.08 0.17 0.15 0.13 0.11 0.13 0.10

10 0.16 0.10 0.09 0.23 0.11 0.15 0.15 0.09 0.13

11 0.13 0.08 0.10 0.18 0.08 0.16 0.13 0.08 0.13

12 0.21 0.17 0.12 0.30 0.18 0.21 0.18 0.14 0.16

13 0.61 0.43 0.32 0.85 0.45 0.53 0.36 0.28 0.30

14 0.78 0.56 0.49 1.08 0.59 0.82 0.42 0.32 0.41

15 1.54 1.26 1.45 2.14 1.31 2.42 0.48 0.52 0.58

16 2.70 2.32 1.93 3.76 2.41 3.22 0.47 0.52 0.56

17 1.86 1.85 1.43 2.58 1.93 2.38 0.43 0.41 0.50

18 2.93 3.28 3.35 4.07 3.42 5.58 0.48 0.54 0.63

19 3.58 4.32 4.80 4.97 4.50 8.00 0.53 0.47 0.59

20 2.30 3.05 3.27 3.20 3.18 5.44 0.42 0.30 0.24

21 3.04 3.36 3.59 4.22 3.50 5.98 0.48 0.44 0.79

22 3.26 5.12 6.56 4.53 5.33 10.93 0.44 0.42 0.51

The maximum center-of-mass and twist displacement of the slab for all of the tests are

shown in Fig. 4.14. The response at the center-of-mass of the shaking table specimen was
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Figure 4.12: Measured displacement maxima
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Figure 4.13: Measured acceleration maxima

calculated by averaging the response measured at the five slab locations.

∆cm =
1
5

5∑

i=1

∆i (4.2)

The twist displacement was calculated by taking the difference in the measured displace-

ments at Bents 1 and 3.

∆twist = ∆1 −∆5 (4.3)

Fig. 4.14 also shows the twist displacement at the time of the maximum center-of-mass

displacement. Because of the stiffness of the slab, the center-of-mass displacement was

approximately equal to the bent 2 displacement.
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Fig. 4.15 shows the maximum twist displacement versus the maximum center of mass

displacement for the low and high-amplitude tests.
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Figure 4.15: Maximum twist displacement vs. maximum center of mass displacement for
(a) low-amplitude and (b) high-amplitude tests.

The circles denote tests with target incoherent motions. The asterisks denote tests with

target coherent motions. During the low-amplitude tests (Fig. 4.15a), many of which had

incoherent motions, the maximum twist displacements were almost always larger than the
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center-of-mass displacements. During the high-amplitude tests (Fig. 4.15b), which were

nominally coherent, the maximum twist displacements were similar in amplitude to the

maximum center-of-mass displacements.

The effects of ground motion variation are usually expressed in terms of the unlagged

coherency function (Lupoi et al., 2005), defined as

ψij(ω) =
real(Sij(ω))√
Sii(ω)Sjj(ω)

(4.4)

where ψij(ω) is the unlagged coherency function, which varies between -1 and 1. The terms

Sii(ω) and Sjj(ω) are the power spectral densities of the two motions, and Sij(ω) is the

cross spectral density of the two motions. The unlagged coherency accounts for differences

in frequency content and phase of the two motions. For example, for two identical motions,

this term will have a value of one. For two motions that are identical except for opposite

sign, this term will have a value of negative one. However, this formulation does not account

for differences in motion amplitude that would be expected to affect the structural response.

For the purpose of comparing the effects of spatial variation on the structural response,

the unlagged coherency was adjusted by a factor that accounts for the differences in motion

amplitude. The weighted coherency is defined as

ψij(ω) =

[
real(Sij(ω))√
Sii(ω)Sjj(ω)

][
Sai(ω)
Saj(ω)

]0.5

(4.5)

where ψij(ω) is the weighted coherency function, which also varies between -1 and 1. The

terms Sai(ω) and Saj(ω) are the acceleration response spectra (5% damping) for the two

motions. The ratio of the spectral accelerations always ranges between zero and one, which

accounts for differences in motion amplitude. For two identical motions, this term will have

a value of one. If one of the motions is identical to the other in frequency content, but has

an amplitude that is 25% of the amplitude of the other motion, this term would be equal

to 0.5.

The effects of the weighted motion incoherency on the measured center of mass and

twist displacements are shown in Fig. 4.16.

As seen in this figure, the ratio between the measured center-of-mass displacement and

the average spectral displacement was independent of motion coherency, with a correlation
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Figure 4.16: Measured center-of-mass and twist displacements as a function of the weighted
motion coherency

coefficient (R2) of 0.05. The ratios between the measured twist displacement and the center

of mass displacement are plotted in Fig. 4.16b, as a function of the weighted motion co-

herency. This figure shows that the twist displacements were inversely correlated with the

weighted coherency function (R2 = 0.73).

The measured peak center-of-mass response was compared with the calculated spectral

displacements (SD) and spectral accelerations (SA) at 5% damping. The spectral values

were averaged over the three table excitations. Fig. 4.17 compares the measured center-

of-mass displacement to the spectral displacement at a period of T =0.33s (the mean first

mode period for the low-amplitude tests).

The spectral displacements at T = 0.33s were near the measured center of mass dis-

placements for the low-amplitude tests. The mean and standard deviation of the differences

between the measured center of mass displacements and the spectral displacements for the

low-amplitude tests were 16% and 14%, respectively. The maximum difference was 51%.

Eleven of the 15 spectral displacement estimates were within 20% of the measured center-

of-mass displacements.

During the high-amplitude tests, the mean and standard deviation of the differences

between the measured center of mass displacements and the spectral displacements were



53

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Spectral Displacement (T = 0.33s) (ξ = 5%) (in.)
M

ax
im

um
 ∆

cm
 (

in
.)

Measured Data
1:1 Ratio
20% bounds

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Spectral Displacement (T = 0.33s) (ξ = 5%) (in.)

M
ax

im
um

 ∆
cm

 (
in

.)

Measured Data
1:1 Ratio
20% bounds

Figure 4.17: Measured peak displacement vs. SD (T = 0.33s) for (a) low-amplitude and
(b) high-amplitude tests.

31% and 21%, respectively. The maximum difference was 63%. Six of the 9 spectral

displacement measurements were within 20% of the measured displacement.

The same analysis was conducted for the acceleration response (Fig. 4.18). During the

low-amplitude tests, the spectral acceleration at T = 0.33s provided a good estimate of the

center of mass acceleration. The mean and standard deviation of the differences between

the measured center of mass accelerations and the spectral accelerations were 17% and 12%,

respectively. The maximum difference was 42%. Eight of the 15 tests were within 20% of the

measured acceleration. As the system became more nonlinear, the spectral accelerations

increasingly overestimated measured accelerations. By test 23, the spectral acceleration

overestimated the measured center of mass acceleration by 950%.

The modal properties of the specimen were estimated using system identification algo-

rithms for all of the tests (Chapter 6). Using the results from this analysis, the spectral

displacement was estimated using the identified fundamental period for each test. The

center-of-mass displacement is plotted vs. the spectral displacement estimates using these

test specific periods in Fig. 4.19. The mean and standard deviation of the differences be-

tween the measured center of mass accelerations and the spectral displacements using the
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Figure 4.18: Measured peak acceleration vs. SA (T = 0.33s) for (a) low-amplitude and (b)
high-amplitude tests.

identified structural periods were 13% and 10%, respectively. The maximum difference was

35%. The period T = 0.33s is the average fundamental period during the low-amplitude

tests. As a result, using the actual fundamental period for the low-amplitude tests (which

ranged from 0.31s - 0.35s) improved the results, but not significantly.

During the high-amplitude tests, using the identified period of the structure while also

using a set damping of 5% caused the spectral displacement estimates to overestimate the

measured center-of-mass displacements. By Test 20, the spectral displacement overesti-

mated the center of mass displacement by 120%.
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Figure 4.19: Measured peak displacement vs. SD (test specific identified periods) for (a)
low-amplitude and (b) high-amplitude tests.

4.5 Displacement-Strain Envelopes

A total of 160 strain gauges were placed on the longitudinal and transverse reinforcement

within each of the columns. The location of each of the strain gauges is documented in

Appendix C. Fig. 4.20 illustrates the strain-gauge nomenclature.

1 E T SL 5

Bent Number 

(1, 2, or 3)

Column 

([E]ast or [W]est)

Location 

([T]op or [B]ottom)

Gauge Type 

([S]train [L]ongitudinal or  

[S]train [H]orizontal)

Gauge Number 

(1-10)

Figure 4.20: Strain gauge nomenclature

Displacement-strain envelopes were developed at three locations along the longitudinal

reinforcement and one location on the transverse reinforcement near the column-anchorage

interface. These four locations, which are shown in Fig. 4.21, are as follows.

• Anchorage Gauges: Strain gauges (4 per column) on the longitudinal reinforcement
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within the anchorage zone, 6 in. from the column-anchorage interface.

• Interface Gauges: Strain gauges (4 per column) on the longitudinal reinforcement

at the column-anchorage interface.

• Column Gauges: Strain gauges (4 per column) on the longitudinal reinforcement

within the column, 6 in. from the column-anchorage interface.

• Transverse Gauges: Strain gauges (4 per column) on the transverse reinforcement

within the column, 4 in. from the column-anchorage interface.

COLUMN BOTTOM COLUMN TOP

INTERFACE

COLUMN

ANCHORAGE

TRANSVERSE

ANCHORAGE

COLUMN

TRANSVERSE

INTERFACE

Figure 4.21: Illustration of the strain gauge locations used in developing the displacement-
strain envelopes.

The combination of 4 strain gauges per column for each of the 4 locations, 2 columns

per bent, and 3 bents for the structure created 96 displacement-strain envelopes throughout

the structure. The envelopes for these 96 gauges are presented in Appendix D. Some strain

gauges showed zero strain or very large strains for all displacement levels, presumably

because they were damaged during construction. For example, gauge 1ETSL5 (Fig. D.1b)

shows zero strain for all displacements.

The average displacement-strain envelopes across all similar longitudinal gauge locations

(anchorage, interface, or column) are shown in Fig. 4.22 for each bent. Despite the difference

in aspect ratio, all three bents were similar. For each bent, the interface gauges recorded
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larger strains than either the column gauges or the anchorage gauges. The anchorage strains

were always the smallest. On average, the anchorage gauges recorded approximately 10%

of the strain of the other two gauge locations.

The longitudinal strain gauges were further divided into four groups, illustrated in Ta-

ble 4.7. The displacement-strain envelopes for the groupings in Table 4.7 are shown in

Figs. 4.23 - 4.25.

Table 4.7: Description of strain gauge groups

Group Number Column Location Column Action Column Face

1 Bottom Tension Exterior

2 Bottom Compression Interior

3 Top Compression Exterior

4 Top Tension Interior

Fig. 4.23 shows the displacement-strain envelopes for the average east-column and west-

column gauges. The averages for these two groupings are nearly identical. The largest

discrepancy is in the bent 2 anchorage envelopes. This observation establishes confidence

in the strain gauge measurements at all of these locations, because there is no reason to

expect a significant difference between the two columns of each bent.

The average displacement-strain envelopes for the top and the bottom gauges are shown

in Fig. 4.24. The averages of the top and bottom gauges for the interface and the column

are similar. However, for a given displacement, the anchorage strains in the gauges at the

bottom of the columns are generally larger than the anchorage strains at the top of the

columns.

The tensile-side strain gauges were defined as the gauges that were in tension when the

overturning force induced column tension. The compression gauges are those that are in

tension when the overturning force caused compression. The compression gauges generally

had larger absolute strains than the tensile gauges for a given drift ratio (Fig. 4.25). For

example, the average compression and tension envelopes for the footing gauges in bent 3

show that at a drift ratio of 2%, the average compression gauges have a strain ductility

of 0.7 while the average tensile gauges have a strain ductility of approximately 0.55. This

trend is apparent in 5 of the 9 cases when the gauge is in tension and 7 of the 9 cases when
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Figure 4.22: Displacement-strain envelopes for (a) bent 1, (b) bent 2, and (c) bent 3.
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the gauge is in compression. For the other cases, the compression and tension gauges have

approximately the same envelope. These observations are contrary to what is expected from

a moment-curvature analysis.
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Figure 4.24: Average displacement-strain envelopes for top and bottom gauges
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Figure 4.25: Average displacement-strain envelopes for compression and tension gauges
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4.6 Displacement-Average Curvature Envelopes

Column rotations were measured with potentiometer sets at two locations within each col-

umn interface, illustrated in Fig. 4.26. For all cases, the potentiometers were located at

3.5 ± 0.125 in. from the column face. The gauge lengths for potentiometer sets T-I and

B-I were 5.0 in., while the gauge lengths for potentiometer sets T-C and B-C were 7.0 in.

Fig. 4.27 illustrates the nomenclature for the rotation potentiometers.

BOTTOM-INTERFACE SET (B-I)

TOP-COLUMN SET (T-C)

TOP-INTERFACE SET (T-I)

BOTTOM-COLUMN SET (B-C)

Figure 4.26: Rotation gauge layout

1 E T R 5

Bent Number 

(1, 2, or 3)

Column 

([E]ast or [W]est)

Location 

([T]op or [B]ottom)

Gauge Type 

([R]otation)

Gauge Number 

(1-6)

Figure 4.27: Rotation gauge nomenclature

The displacement - rotation envelopes were calculated using each set of potentiometers

to bent drifts of ±4.0%. Average curvatures were computed by dividing the measured
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rotations by the gauge length of each potentiometer set. The displacement-average curvature

envelopes are shown in Fig. D.4.

The average curvatures calculated from the top and bottom interface sets (T-I and B-

I) are greater than those from the top and bottom column sets (T-C and B-C). This is

attributed to two causes. First, the column moments in sections T-I and B-I are larger

than those in sections T-C and B-C. Second, the rotations from potentiometer sets T-I

and B-I include the rotation due to the slip of the longitudinal reinforcement within the

column-anchorage interface.

The average displacement-curvature envelopes over the 12 in. interface zone are shown

in Fig. 4.28 for each bent. The average curvatures across these lengths are similar for

each column. For example, at a drift of 3% the curvature of the first 12 inches of the

column end ranged from 2.1× 10−3 rad/in to 2.4× 10−3 rad/in. The displacement-rotation

envelope can be accurately characterized using a bilinear relationship. The envelope remains

approximately linear for each bent to a drift of 1%. After this, a plastic hinge develops,

creating a new linear relationship.

Fig. 4.29 shows the displacement-average curvature envelopes for the first 12 inches of

each column end. These average curvatures were calculated by summing the measured

rotations for the interface and column potentiometer sets (T-I + B-I, T-C + B-C), and

dividing by the total gauge length of 12 in. For each bent, there are four column ends

(top and bottom for the two columns). This figure allows two comparisons: the average

curvature of the east column vs. the average curvature of the west column, and the average

curvature at the top of the columns vs. the average curvature at the bottom of the columns.

The displacement-average curvature envelopes for the east and west columns are similar

for each bent. For example, when bent 1 was at -4% drift, the average curvatures at the

top of the east and west columns were −3.3 × 10−3 rad/in. Because there should be no

difference between the two columns of each bent, this comparison shows that the curvature

measurements are consistent for each bent.

The displacement-average curvature envelopes at the top and bottom of the columns are

also similar for each bent. For example when bent 1 was at -4% drift, the average curvature

at the top and bottom of the west column was −3.3× 10−3 rad/in and −3.1× 10−3 rad/in,
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Figure 4.28: Average displacement-rotation envelopes for bents 1, 2, and 3

respectively. This similarity shows that the cross beam flexibility did not significantly affect

the measured column rotation.
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1, 2, and 3
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4.7 Displacement-Column Elongation Envelopes

The column-beam joint rotation and column elongation were not measured directly during

the shaking table tests. Instead, these quantities were calculated using a series of four

vertical displacement measurements (D1-D4) along each bent. The locations of these four

measurements are illustrated in Fig. 4.30.

9.5 in.

3 @ 31 in.

9.5 in.

D1 D2 D3 D4

TYPICAL BENT PLAN VIEW

Figure 4.30: Vertical displacement measurement locations

The process of calculating the column-beam joint rotations (θ1 and θ2) and the column

elongations (V1 and V2) from the vertical displacement measurements along the bent (D1-

D4) is as follows:

1. With elastic beam theory, the displacement anywhere along the beam can be calcu-

lated if the vertical displacements and rotations at the column joints are known. Ver-

tical displacements (D2 and D3) were measured at two locations between the columns,

approximately 21.5 in. from each column. The vertical displacements at these two

locations are calculated from the column data using Eq. 4.6, where L is the center to

center spacing of the columns (75 in.).





D2|x=21.5in

D3|x=52.5in



 =





(L−x)2(L+2x)
L3

(3L−2x)x2

L3
(L−x)2x

L2
(x−L)x2

L2

(L−x)2(L+2x)
L3

(3L−2x)x2

L3
(L−x)2x

L2
(x−L)x2

L2









V1

V2

θ1

θ2





(4.6)
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2. Vertical displacements were also measured on the exterior of the two columns (D1 and

D4), approximately 9.5 in. from the centerline of each column. These measurements

were related to the column displacements and rotations by assuming rigid displacement

of the exterior of the bent cap using the equation





D1

D4



 =


1 0 −9.5 0

0 1 0 9.5








V1

V2

θ1

θ2





(4.7)

3. Equations 4.6 and 4.7 can be combined to estimate the vertical displacements and

rotations at the tops of the columns as a function of the four vertical displacement

measurements.




V1

V2

θ1

θ2





=




1 0 −9.5 0

0.795 0.205 10.972 −4.505

0.205 0.795 4.505 −10.972

0 1 0 9.5




−1 



D1

D2

D3

D4





(4.8)

The drift-column elongation envelopes for the three bents are presented in Fig. 4.31.

The west column of each bent is under tension (or less compression than the east column)

when the drift is positive (in the east direction). The east column is the tension column

under negative drift. As shown in Fig. 4.31, for a given drift the tension column of each

bent has approximately 25% to 50% more column elongation than the compression column.

The joint rotation envelopes are shown in Fig. 4.32. For a given drift, the joint rotation

for the west column of bent 1 was slightly larger than the east column. The two joints in

bent 2 had similar responses to each other. As a result of measurement noise in the bent

3 data, and the small contribution of the column joint rotations to the recorded vertical

displacements measured along the bent, the bent drift-column joint rotation envelope for

bent 3 contained many jumps.
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Figure 4.31: Displacement-column elongation envelopes for bents 1, 2, and 3
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Figure 4.32: Displacement-joint rotation envelopes for bents 1, 2, and 3
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4.8 Observed Damage

The three bents of the shaking table specimen were inspected for damage after every test.

Aside from slight cracking around the columns in the cross beams beginning at Test 19,

all damage was confined to the columns. No column damage was observed throughout the

low-amplitude tests. The measures of column damage that were recorded during the tests

were:

• maximum crack width,

• height of spalling,

• exposure of transverse and longitudinal reinforcement,

• the extent of bar buckling,

• the extent of bar fracture (both longitudinal and transverse), and

• core degradation

Abbreviations and descriptions of the damage states are presented in Table 4.8.

The shaking table specimen was separated into 24 damage observation locations for

each test; two faces per anchorage-column interface, two interfaces per column, six columns.

Table 4.9 summarizes the maximum damage of the 8 observation locations for each bent.

As seen in Table 4.9, no damage was observed in any of the columns through Test 12.

Residual cracking began during Test 13. Significant spalling was first observed following

Test 15. After significant spalling occurred at a particular observation location, crack width

measurements at that location were stopped because the crack was almost always obscured.

Bar buckling was observed in Bent 3 after Test 18, and in bents 1 (incipient) and 2 after

Test 22. Fracture of the longitudinal and transverse reinforcement was first observed in bent

3 after Test 19. Fracture of the longitudinal or transverse reinforcement was not observed

in bents 1 or 2.
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Table 4.8: Recorded damage observation abbreviations

Damage Abbrev. Description

CR(#, size) Column residual cracking (the crack number refers to the nth crack from the

column-anchorage interface, which may be due to the spalling of previous

cracks, size = maximum crack width in mm)

FL Flaking of cover concrete

SP(height) Column spalling at the column-anchorage interface (height of spalling in mm)

TE(#) Exposure of the transverse reinforcement (number of bars)

LE(#) Exposure of the longitudinal reinforcement (number of bars)

iLB(#) Incipient buckling of the longitudinal reinforcement (This accounts for bars

that are separated from the concrete, but do not appear buckled at the end of

the test. These bars may have buckled during the tests)

LB(#) Buckling of longitudinal reinforcement (number of bars)

TF(#) Fracture of transverse reinforcement (number of bars)

LF(#) Fracture of longitudinal reinforcement (number of bars)

CD Core degradation

Table 4.9: Summary of observed bent damage for the high-amplitude tests

Test Observed Damage

Bent 1 Bent 2 Bent 3

12 — — —

13 CR(1, neg) — —

14 CR(1, 0.08) CR(1, neg) CR(1, neg)

15 CR(1, 0.25), FL CR(1, 0.08) CR(1, 0.25), SP(100)

16 CR(1, 0.50), SP(125) CR(0.17), FL CR(1, 0.33), SP(100), TE(1)

17 CR(1, 0.50), SP(150), TE(2) CR(1, 0.25), FL CR(1, 0.50), SP(100), TE(1)

18 CR(1, 0.50), SP(150), TE(2) CR(1, 0.50), SP(100),

TE(1)

CR(2, 2.00), SP(140), TE(3),

LE(2), iLB

19 CR(2, 0.75), SP(150), TE(3) CR(1, 2.00), SP(115),

TE(1)

CR(3, 2.00), SP(150), TE(6),

LE(8), LB(6), TF(2)

20 CR(2, 0.75), SP(150), TE(3),

LE(1)

CR(1, 2.00), SP(125),

TE(1)

CR(3, 2.00), SP(150), TE(6),

LE(8), LB(8), TF(2), LF(2)

21 CR(2, 0.75), SP(150), TE(3),

LE(2)

CR(1, 2.00), SP(125),

TE(1)

CR(3, 2.00), SP(150), TE(6),

LE(8), LB(8), TF(2), LF(5), CD

22 CR(2, 0.75), SP(150), TE(3),

LE(2), iLB

CR(1, 2.00), SP(200),

TE(2), LE(2), LB(1)

CR(3, 2.00), SP(150), TE(6),

LE(8), LB(8), TF(2), LF(5), CD

Fig. 4.33 shows the maximum previous bent displacement as a function of the high-

amplitude test number. The figure also shows the test after which each damage state was

observed on the three bents.

For all bents, residual cracking and spalling occurred at a drift ratio of approximately

3.5%. Exposure and incipient buckling of the longitudinal reinforcement occurred at a drift
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Figure 4.33: Vertical displacement measurement locations

ratio of approximately 5%. Bents 1 and 2 did not experience any more extensive damage.

For bent 3, longitudinal buckling and fracture of the longitudinal reinforcement, fracture of

the transverse reinforcement, and core degradation all occurred when the maximum previous

bent drift was approximately 8%.

The progression of damage for the top west face of the east column of bent 3 (B3WTE) is

shown in Fig. 4.34. Residual cracking was first observed on this face after Test 14. Buckling

of the reinforcement began during Test 19. After Test 21, four longitudinal reinforcing bars

fractured. By the end of the tests, bent 3 was badly damaged, resulting in a reduction in

the height of the bent of nearly 2 in.
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Figure 4.34: Damage progression at the east face of the top of the west column of bent 3: (a)
cracking and flaking, (b) spalling, (c) exposure of longitudinal and transverse reinforcement,
(d) buckling of longitudinal reinforcement and fracture of the transverse reinforcement, (e)
fracture of the longitudinal reinforcement, and (f) total damage after testing.
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Chapter 5

SYSTEM IDENTIFICATION ALGORITHMS

The shaking table specimen was subjected to 15 low-amplitude transverse earthquake

excitations, seven transverse white-noise (ambient-vibration) excitations, three longitudinal

white-noise excitations, and three transverse square-wave (free-vibration) excitations. The

white-noise and square-wave excitations were applied intermittently throughout the earth-

quake excitations (see Fig. 3.4 for the low-amplitude test schedule). During each of the

tests, three-dimensional displacement and acceleration data were measured at the bases of

each of the three bents, as well as at five locations along the bridge deck.

Two types of algorithms were implemented for identifying the system, parametric algo-

rithms and non-parametric algorithms. The successive linear programming (SLP) algorithm

identifies the modal properties of the system parametrically by calibrating a linear model

of the shaking table specimen, then extracting the modal data using an eigen-analysis (Sec-

tion 5.2). The autoregressive with exogenous excitation (ARX) algorithm was used to

identify the modal properties of the system non-parametrically. This algorithm uses the

input and output response data to estimate the modal parameters with no knowledge of

the structural system (Section 5.3). The modal properties identified with each of these

algorithms are presented in Section 6.1.

Stochastic (output-only) identification algorithms were used to investigate the effect of

not accounting for the frequency content within the input motion. An output-only version

of the ARX algorithm (AR) is discussed in Section 5.4. A stochastic subspace identification

(SSI) algorithm is discussed in Section 5.5.

The algorithms and data discussed in this chapter were used to compare the results of

the system identification methodologies. These comparisons include:

• the abilities to identify modes in three dimensions using one-dimensional excitations;

• parametric and non-parametric identification algorithms;
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• the effects of various excitation types;

• using acceleration data vs. displacement data; and

• using input/output vs. output-only algorithms.

The effects of implementing each of these methodologies on the identification of the system

properties for the low-amplitude tests are presented in Chapter 6.

In addition to making comparisons between various system identification methodologies,

the modal damping ratios identified in Section 6.1 were used to calibrate the damping terms

of a three-dimensional numerical model (Chapter 8). Softening in the test specimen and

numerical model was compared through the progression of the modal properties of the two

systems (Chapter 8).

5.1 Background

System identification is an important part of monitoring the health of a system and iden-

tifying critical response frequencies. The appropriate level of complexity of the system

identification approach depends on the complexity of the system, the properties that need

to be identified, and the importance of the accuracy of the results. For single degree-of-

freedom systems, the system can be described using a single-input/single-output (SISO)

algorithm, such as a frequency response function. A more complex system will be better

described using multiple-input/multiple-output (MIMO) algorithms.

Identification algorithms of varying complexities and for various systems are addressed

in Ljung (1999), Allemang (1999), and Juang (1994). To help select among the numer-

ous algorithms, researchers have compared algorithms under various conditions. Petsounis

and Fassois (2001) compared time-domain methods for identifying the modal properties of

structural systems subjected to noise-corrupted random excitations. They found that each

of the investigated algorithms could accurately identify the characteristics of the system

when noise is negligible and when the structural system is simple (lightly damped with

separated modes), as is the case with the shaking table specimen. Peeters and De Roeck

(2001) performed similar comparisons for frequency-domain methods.
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5.1.1 Stochastic Algorithms

Stochastic (output-only) system identification methods assume that the input can be char-

acterized as white noise. If the excitation has dominant frequencies, output-only algorithms

cannot distinguish these frequencies from structural frequencies. Due to the frequent am-

bient excitation of bridges (e.g., traffic, wind), most research on system identification of

bridges has focused on output-only methods, assuming that the input excitation is white-

noise. Ren et al. (2004) conducted an output-only modal analysis on a six-span steel-girder

bridge using ambient vibrations. The modal data from these tests were used to calibrate a

numerical model that was then used to estimate the seismic response of the bridge. Similarly,

Pridham and Wilson (2005) used ambient-vibration data to identify the modal properties of

the Quincy Bayview cable-stayed bridge. Peeters and Ventura (2003) compared the abilities

of various identification algorithms for a three-span bridge. They found that the estimated

frequencies of the bridge were easily identifiable with all complexities of identification al-

gorithms. However, the damping ratios and mode shapes were best modeled using the

more complex identification algorithms, such as the stochastic subspace identification (SSI)

algorithm.

5.1.2 Input/Output Algorithms

Research has also been conducted on bridges using input-output algorithms, which ac-

count for the frequency content of the excitation. Arici and Mosalam (2003) used Multi-

input/Single-output (MISO) methods for determining the modal properties of seven Cali-

fornia bridge systems subjected to low-amplitude earthquake excitations. They found that

the autoregressive with exogenous excitation (ARX) algorithm provided an excellent fit of

the recorded motions from the seven bridges. Smyth et al. (2003) used a multi-input/multi-

output algorithm, along with an assumed structural model, to identify the mass, damping,

and stiffness matrices of the Vincent Thomas suspension bridge during seismic excitation.

From these matrices, they identified the modal properties of the bridge.

Each of these studies used a single form of excitation. Huang and Lin (2001) investigated

the influence of three excitation types on the identification of the modal properties of two
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types of structures. An impulse response (free-vibration) excitation was applied to a three-

span bridge, while the ambient-vibration tests and seismic response tests were applied to

a five-story steel frame. Using these structures, Huang and Lin were able to adequately

estimate the modal properties of the structures subjected to all three types of excitations.

5.1.3 Algorithm Implementation

The tests on the shaking table specimen provide a unique opportunity to investigate the

accuracy of the various algorithms for the three excitation types (earthquake excitation,

ambient-vibration, and free-vibration). The modal properties using each of these excitation

types were identified using stochastic (output-only) and input/output parametric and non-

parametric algorithms, which were chosen based on the frequency of their use in previous

research.

Four algorithms were implemented using the same data set. These algorithms are listed

in Table 5.1.

Table 5.1: Identification algorithms used on shaking table data

Abbreviation Data Use Algorithm Type Algorithm Name Section

SLP Input/Output Parametric Successive Linear Programming Section 5.2

ARX Input/Output Non-Parametric Autoregressive with Exogenous Excitation Section 5.3

AR Output-Only Non-Parametric Autoregressive Section 5.4

SSI Output-Only Non-Parametric Stochastic Subspace Identification Section 5.5

The modal parameters identified with the input/output SLP and ARX algorithms are

presented in Section 6.1. The modal properties identified with the AR and ERA algo-

rithms are presented in Section 6.7 to investigate the effect of not accounting for the input

excitation. These algorithms are presented in the following sections.

5.2 Successive Linear Programming Algorithm

The dynamic properties of the bridge were determined parametrically by creating a numer-

ical model of the shaking table specimen and calibrating the parameters of that model with

a successive linear programming (SLP) algorithm in the time domain. Beck and Jennings
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(1980) performed a similar methodology for a 42-story steel-frame building that experienced

minor damage during the 1971 San Fernando earthquake. The SLP algorithm performs a

series of one-dimensional optimizations to determine the parameters of the numerical model

that minimize the error between the estimated and measured output accelerations. Similar

algorithms were used in the frequency domain for identifying the properties of a 10-story

frame building (McVerry, 1980), and for an 8-story frame building (Zhao et al., 1995). The

model for the shaking table specimen, and the SLP algorithm used to calibrate the model,

are described in the following sections.

5.2.1 Numerical Model

A two-dimensional, 13-degree-of-freedom (13-DOF) linear model of the shaking table spec-

imen was used for the SLP algorithm, and is illustrated in Fig. 5.1. Although this method-

ology can be applied to a three-dimensional structure, the number of modes in the opti-

mization process greatly influences the numerical performance. Because almost all of the

structural excitation was in the transverse bridge direction, only the transverse linear model

was developed.
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Figure 5.1: Plan view of the 13-DOF linear shaking table model.

In Fig. 5.1, the three springs represent the transverse stiffnesses of the bents, and the

beam represents the transverse slab stiffness. Five translational and five rotational degrees

of freedom (one at each accelerometer location) were used to model the bridge superstruc-

ture. Additionally, one translational degree of freedom was used at the base of each bent
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to represent the locations of the input excitations. The system mass and damping were

assumed to be lumped at degrees of freedom 1-5. The equation of motion for the numerical

model is shown in Eq. 5.1. In this equation, M, C, and K are the mass, damping, and

stiffness matrices for the 13-DOF system. Vector u is the displacement, with the dots above

the u denoting derivatives of the displacement with respect to time.

MT ü(t) + CT u̇(t) + KT u(t) = P (t) (5.1)

where

KT =




k1
b + ks1 −ks1 0 0 0 −k1

b 0 0 −ks2 −ks2 0 0 0

−ks1 2ks1 −ks1 0 0 0 0 0 ks2 0 −ks2 0 0

0 −ks1 k2
b + 2ks1 −ks1 0 0 −k2

b 0 0 ks2 0 −ks2 0

0 0 −ks1 2ks1 −ks1 0 0 0 0 0 ks2 0 −ks2

0 0 0 −ks1 k3
b + ks1 0 0 −k3

b 0 0 0 ks2 ks2

−k1
b 0 0 0 0 k1

b 0 0 0 0 0 0 0

0 0 −k2
b 0 0 0 k2

b 0 0 0 0 0 0

0 0 0 0 −k3
b 0 0 k3

b 0 0 0 0 0

−ks2 ks2 0 0 0 0 0 0 ks3 ks4 0 0 0

−ks2 0 ks2 0 0 0 0 0 ks4 2ks3 ks4 0 0

0 −ks2 0 ks2 0 0 0 0 0 ks4 2ks3 ks4 0

0 0 −ks2 0 ks2 0 0 0 0 0 ks4 2ks3 ks4

0 0 0 −ks2 ks2 0 0 0 0 0 0 ks4 ks3




where kα
b is the transverse stiffness for bent α, and ks1, ks2, ks3, ks4 are the various slab

stiffnesses, defined as

ks1 =
12EsIs

(Ls)3
, ks2 =

6EsIs

(Ls)2
, ks3 =

4EsIs

Ls
, ks4 =

2EsIs

Ls

Eq. 5.1 was partitioned into the translational degrees of freedom (subscript t) and the

rotational degrees of freedom (subscript r). The partitioned equation of motion is displayed

in Eq. 5.2

 mtt 0

0 0








üt

ür



 +


 ctt 0

0 0








u̇t

u̇r



 +


 ktt ktr

krt krr








ut

ur



 =





pt(t)

0



 (5.2)

Because mass was lumped at the translational degrees of freedom, the rotational degrees

of freedom were condensed out of the system, giving the condensed 8-degree-of-freedom

equation of motion and stiffness matrix in Eq. 5.3.

mttüt + cttu̇t + k̂ttut = pt(t) (5.3a)

k̂tt = ktt − kT
rtk

−1
rr krt (5.3b)
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The 8-DOF system was further partitioned between the slab degrees of freedom and the

support degrees of freedom (subscript g), shown in Eq. 5.4.


 m mg

mT
g mgg








üt

üg



 +


 c cg

cT
g cgg








u̇t

u̇g



 +


 k̂ k̂g

k̂T
g k̂gg








ut

ug



 =





0

pg(t)



 (5.4)

The system was further simplified to a five-degree-of-freedom system by assuming that

the damping terms are very small compared to the inertial terms and that the ground

degrees of freedom do not have mass. The validity of these assumptions are discussed in

Chopra (1995). The equation of motion for the 5DOF system is shown in Eq. 5.5.

mü + cu̇ + k̂u = peff (t) (5.5a)

peff (t) = −miüg(t) (5.5b)

i = −k̂−1k̂g (5.5c)

k̂ =




k1
b 0 0 0 0

0 0 0 0 0

0 0 k2
b 0 0

0 0 0 0 0

0 0 0 0 k3
b




+
EsIs

28L3
s




45 −102 72 −18 3

−102 276 −264 108 −18

72 −264 384 −264 72

−18 108 −264 276 −102

3 −18 72 −102 45




(5.5d)

5.2.2 SLP Algorithm Implementation

The seven unknowns in the numerical model were assumed to be the three bent stiffnesses

(k1
b , k2

b , k3
b ), the slab modulus of rigidity (EsIs), and the three modal damping ratios (ξ1,

ξ2, ξ3). These parameters were optimized to minimize the following objective function.

J(k1
b , k

2
b , k

3
b , EIs, ξ1, ξ2, ξ3) =

√√√√NDOF∑

i=1

[ ∫ tf
ti

(a− a0)2dt

(tf − ti)(max|a0|)2
]2

(5.6)

where ti and tf are the initial and final times over which the measured and calculated

accelerations (a0 and a) are compared. Eq. 5.6 was minimized through a series of one-

dimensional optimization processes. For example, the first process involved varying k1
b
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while keeping the other six parameters constant to minimize the objective function. Once

k1
b was found, the next process used the optimized k1

b as a constant, then varied k2
b to further

reduce the objective function. After all seven parameters were optimized, this procedure was

replicated five more times (for a total of six cycles) to identify all seven optimal parameters.

Because the objective function in Eq. 5.6 contains many local minima, each one-dimensional

process involved a search of the entire reasonable domain of the variable in question. For

example, while k1
b was being optimized, the search domain spanned 5% - 100% of the gross

bent stiffness. To further refine the parameter estimates, the domain was reduced to ±50%

of the optimized parameters from the previous cycle for the last two cycles.

Once the objective function was minimized and the entire stiffness matrix estimated,

the modal frequencies and mode shapes were calculated using an eigenanalysis.

KΦ = ΛMΦ (5.7)

where Φ is a matrix of the system mode shapes, and the system periods are related to the

diagonal of the eigenvalue matrix.

T =
2π√

diag(Λ)
(5.8)

5.3 Autoregressive with Exogenous Excitation Algorithm

The autoregressive with exogenous excitation (ARX) algorithm uses a series of polynomials

to define a current output state from previous output and input states (Petsounis and

Fassois, 2001). The MIMO ARX algorithm is mathematically described by the equation

y(t) =
p∑

i=1

Aiy(t− i∆t) +
p∑

j=1

Bjx(t− j∆t) + w(t) (5.9)

where y(t) is a vector of the m current state output signals, y(t − i∆t) is a vector of the

m output signals at previous state i, and x(t − j∆t) is a vector of the n input signals at

previous state j. The integer p in Eq. 5.9 specifies the number of previous output and input

states to be related to the current output state (referred to as the model order). Increasing

the model order increases the fit of the numerical model to the data. However, this also

increases the number of extraneous (non-structural) modes that are identified and increases
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the computational demands. An appropriate model order was estimated using Akaike’s

Final Prediction Error (FPE) (Akaike, 1971), defined in Eq. 5.10. In Eq. 5.10, V is the

determinant of the covariance matrix of the white noise, w(t).

FPE = V
1 + p/m

1− p/m
(5.10)

For an identified model order, p, matrices Ai (dimension m × m) and Bj (dimension

m×n) are time-invariant relationships between the current and past states. The term w(t)

is included to account for the existence of white-noise in the system. The matrices Ai, Bj

and w were estimated using a least squares algorithm and QR factorization. The matrices

will be denoted as best-fit estimates using a tilde (Ãi, B̃j , and w̃). The best-fit coefficient

matrix Ã is defined as

Ãmp×mp =




Ã1 Ã2 · · · Ãm−1 Ãm

I 0 · · · 0 0

0 I · · · 0 0

0 0
. . . 0 0

0 0 · · · I 0




= SΛS−1 (5.11)

where Ãmp×mp is a square matrix that is composed of smaller matrices Ãi,m×m, where

integer m is the number of output measurements. The terms I and 0 in Eq. 5.11 denote

identity and zero square matrices of size m×m. The modal parameters of the system are

determined through the eigen-decomposition of state matrix (Ã), also shown in Eq. 5.11,

into a matrix of eigenvectors Smp×mp and a diagonal matrix of eigenvalues Λmp×mp. Each

eigenvector is composed of real and imaginary parts. The phase of these parts was adjusted

so that the imaginary part of the eigenvector was orthogonal to the real part (Neumaier and

Schneider, 2001). The mode shapes of the system, Sk, are components of the eigenvectors

of the assembled coefficient matrix.

Sk = S((p−1)m+1:mp,k) (5.12)

The frequencies and damping ratios of the structure are obtained from the complex
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eigenvalues.

ln(λk)
∆t

,
ln(λ∗k)

∆t
= −ξkωk ± jωk

√
1− ξ2

k (5.13)

where λ∗k is the complex conjugate of eigenvalue λk. Solving for the frequencies and damping

ratios

fk =
1

2π∆t

√√√√
(

ln (λk · λ∗k)
2

)2

+

(
cos−1

(
λk + λ∗k

2
√

λk · λ∗k

))2

(5.14)

ζk =

√√√√√√√

(ln (λk · λ∗k))2

(
ln

(
λk · λ∗k

))2 + 4

(
cos−1

(
λk + λ∗k

2
√

λk · λ∗k

))2 (5.15)

where dt is the time step of the recorded motion, k is the mode, and λ∗ is the complex

conjugate of the eigenvalue λ, which are the diagonal terms from the eigenvalue matrix Λ.

Eigendecomposition results in m ∗ p modes. Of the m ∗ p calculated modes, only a few

are structurally significant. A strategy to separate the physical modes from the numerical

modes was adopted from Neumaier and Schneider (2001).

The modes can be initially screened by determining those that are known to be purely

numerical. The sampling time for the data acquisition system was 0.01 seconds. Therefore,

the algorithm cannot identify physical modes with frequencies greater than 1/(2dt), or 50

Hz. All identified modes with frequencies greater than this are numerical modes.

The structural modes were determined from the remaining modes by combining two

methods. Researchers in the past have identified the structural modes as those with the

least amount of damping. The reasoning behind this was that if all modes are equally

excited, those with the least damping will dominate the system. However, this method is

problematic when there are large amounts of noise in the data. Another theory estimates

the structural modes by how much each mode was excited during the tests (Neumaier and

Schneider, 2001). This relationship is defined in Eq. 5.16, where C ′ = S−1CS−1T and the

subscript k refers to the mode in question. The matrix C is the variance of the estimated

noise ŵ(t).

σk =
C ′

kk

1− |λk|2 (5.16)
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This method of identifying the structural modes may misidentify the modes if they were

not adequately excited during the test. Therefore, this research used a combination of

both methods, defining the structural modes as those with the highest ratio between the

excitation (σk) and the damping ratio (ζk).

5.4 Stochastic Autoregressive Algorithm

The stochastic (output-only) autoregressive (AR) algorithm was introduced by Akaike

(1969). The AR algorithm is a simplified form of the ARX algorithm that is commonly

used in situations when only the output response of the structure is known. The AR model

is described by Eq. 5.17.

y(t) =
p∑

i=1

Aiy(t− i∆t) + w(t) (5.17)

The algorithm in Eq. 5.17 is derived from Eq. 5.9 without the input term. The rest of

the process for determining the modal parameters from the time-invariant matrices Âi is

the same as the ARX algorithm. Results from the AR algorithm are used in Section 6.7 to

investigate the effects of not accounting for the frequency content within the input excitation.

5.5 Subspace Identification Algorithms

Subspace identification algorithms can be used to identify the modal properties of the shak-

ing table specimen by transforming the equation of motion (Eq. 5.18) into a set of control-

lability and observability equations (Eq. 5.19).

MÜ(t) + C2U̇(t) + KU(t) = F (t) = B2u(t) (5.18)

ẋ(t) = Acx(t) + Bcu(t)

y(t) = Cx(t) + Du(t)
(5.19)

where M , C2, and K are the mass, damping and stiffness matrices. The term U is a vector

of the output displacements, and F is the vector of input forces. B2 is an influence matrix on

the input excitations u(t). The transformation from the equation of motion to the subspace

system of equations is described in the following sections.
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5.5.1 Continuous Subspace Formulation

Starting with a trivial equation and rearranging the equation of motion, the set of equations

becomes

U̇(t) = U̇(t)

Ü(t) = −M−1KU(t)−M−1CU̇(t) + M−1B2u(t)
(5.20)

Arranging this equation into matrix format, the system becomes




U̇(t)

Ü(t)



 =


 0 In

−M−1K −M−1C2








U(t)

U̇(t)



 +





0

M−1B2



u(t) (5.21)

The final controllability system of equations is expressed as follows

ẋ(t) = Acx(t) + Bcu(t) (5.22)

where

x(t) =





U(t)

U̇(t)



 Ac =


 0 In

−M−1K −M−1C2


 Bc =





0

M−1B2





and subscript c indicates that the system is continuous in time.

Assuming that the response of the structure was measured by m output quantities y(t),

one can write the observability equation as

y(t) = CaÜ(t) + CvU̇(t) + CdU(t) (5.23)

The state matrices Ca, Cv, and Cd are influence matrices for the recorded (observed) accel-

eration (Ü), velocity (U̇) and displacement (U) vectors. Because these matrices tie in the

three types of measurements into the measurement vector y(t), they contain the necessary

conversion factors between the differing units. The magnitude of these influence matrices

depends on the types of observations being made. For example, if only the accelerations

were measured, then Cv and Cd would be zero.

Substituting Eq. 5.20 into Eq. 5.23, the observability equation becomes

y(t) = CaM
−1

[
B2u(t)− C2U̇(t)−KU(t)

]
+ CvU̇(t) + CdU(t) (5.24)
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Rearranging like terms, the equation can be written as

y(t) =
[
Cd − CaM

−1K Cv − CaM
−1C2

]




U(t)

U̇(t)



 + CaM

−1B2u(t) (5.25)

The observability equation can be written as

y(t) = Cx(t) + Du(t) (5.26)

where

C =
[
Cd − CaM

−1K Cv − CaM
−1C2

]
, D = CaM

−1B2

The state space model is described by the controllability and observability equations

ẋ(t) = Acx(t) + Bcu(t) (controllability)

y(t) = Cx(t) + Du(t) (observability)
(5.27)

5.5.2 Discrete Subspace Formulation

Because measurements are made at discrete time intervals, the continuous controlabil-

ity/observability state space model (defined by Eq. 5.27) needs to be transformed into

a discrete state space model. By making the approximation that

ẋ =
xk+1 − xk

∆t

where k denotes the discrete step and ∆t is the time step, the controllability equation of

Eq. 5.27 becomes

ẋ =
xk+1 − xk

∆t
= Acxk + Bcuk (5.28)

Solving for the state at the k + 1 time step

xk+1 = (I + Ac∆t)xk + (I∆t)Bcuk (5.29)

This equation can be rewritten as

xk+1 = Axk + Buk (5.30)
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where

A = I + Ac∆t, B = (I∆t)Bc

When more terms of the Taylor series expansion of ẋ are used, the discrete subspace matrices

A and B are defined as

A = I + Ac∆t +
1
2!

(Ac∆t)2 + . . . = eAc∆t

B =
[
I∆t +

1
2!

Ac(∆t)2 + . . .

]
Bc = [A− I] A−1

c Bc

(5.31)

Because there are no derivatives in the observability equation, the discrete form of the

equation is the same as the continuous form. The discrete subspace system is

xk+1 = Axk + Buk

yk+1 = Cxk + Duk

(5.32)

Vectors wk and vk are added to account for measurement noise in both the controllability

and observability equations

xk+1 = Axk + Buk + wk

yk+1 = Cxk + Duk + vk

(5.33)

5.5.3 Stochastic Subspace System

For a stochastic (output-only) system (uk = 0), the subspace system in Eq. 5.33 becomes

xk+1 = Axk + wk

yk+1 = Cxk + vk

(5.34)

where wk and vk account for the noise in the controllability and observability equations.

5.5.4 Subspace Identification

Subspace matrices A and C were identified using the stochastic subspace identification

algorithm, developed by Van Overschee and De Moor (1996). This algorithm was modified

by Peeters and De Roeck (1999) to increase the stability at lower model orders and to

decrease the computational demands.
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The system matrices, A and C, are estimated from the block Hankel matrix, shown in

Eq. 5.35.

H =
1√
j




Y (1 : m, 1) Y (1 : m, 2) · · · Y (1 : m, j)

Y (1 : m, 2) Y (1 : m, 3) · · · Y (1 : m, j + 1)

.

..
.
..

. . .
.
..

Y (1 : m, i) Y (1 : m, i + 1) · · · Y (1 : m, j + i− 1)

Y (1 : m, i + 1) Y (1 : m, i + 2) · · · Y (1 : m, j + i)

Y (1 : m, i + 2) Y (1 : m, i + 3) · · · Y (1 : m, j + i + 1)

..

.
..
.

. . .
..
.

Y (1 : m, 2i) Y (1 : m, 2i + 1) · · · Y (1 : m, j + 2i− 1)




(5.35)

where Y ∈ Rm×N is the matrix of m output vectors of length N . The terms Y (1 : m, k)

denote the output measurements for observations 1 through m at time step k. The size of

the block Hankel matrix is H ∈ R2i×j , where j = N −2i+1, which accounts for the shifting

in the data in the matrix. Integer i is the order of the model.

The past (Yp) and the future (Yf ) parts of the Hankel matrix are defined in Eq. 5.36 .

These components are used to formulate the current step X̂i.
(

Yp

Yf

)
=

(
H(1 : m(i), :)

H(m(i) + 1 : m(2i), :)

)
(5.36)

The Hankel matrix is then subdivided into three parts to represent the shifted past and

future components, and the current state (Eq. 5.37). These divisions are used to formulate

the future step X̂i+1.



Yp+

Yi|i

Yf−


 =




H(1 : m(i + 1), :)

H(m(i) + 1 : m(i + 1), :)

H(m(i + 1) + 1 : m(2i), :)


 (5.37)

The projection of the future outputs (Yf ) onto the reference past outputs (Yp) is defined

as

Pi = YfY t
p (YpY

t
p )†Yp (5.38)

where † represents the pseudo-inverse of the matrix. Similar operations can be performed

on the shifted matrices.

Pi+1 = Yf−Y t
p+(Yp+Y t

p+)†Yp+ (5.39)
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The state sequence (X̂i) is obtained from a singular value decomposition (SVD) of the

projection matrix (Pi)

SV D(Pi) = UiSiV
T
i

Oi = UiS
1/2
i

X̂i = O†
i Pi

(5.40)

The shifted state sequence (X̂i+1) is developed through the state sequence by the relation-

ship

Oi+1 = Oi(1 : m(i− 1))

X̂i+1 = O†
i+1Pi+1

(5.41)

The state matrices (A and C) are then calculated from a least-squares fit of the overde-

termined set of equations shown in Eq. 5.42

X̂i+1

Hi|i


 =


Ã

C̃


 X̂i (5.42)

where Ã and C̃ are the best fit estimates of the state matrices A and C. The residual from

the best-fit are the noise matrices wk and vk.

5.5.5 Modal Identification

The modal properties of the structural system are identified from state matrices Ã and

C̃ (Peeters and De Roeck, 1999). The periods and damping ratios of the discrete system

are identified by an eigen-decomposition of the state matrix Ã. The mode shapes also use

information from the estimated state matrix C̃ to produce physical mode shapes from the

eigenvectors of Ã.

A = ΨΛΨ−1 (5.43)

where Λ is a diagonal matrix of the eigenvalues of the discrete system (λ) and Ψ is the matrix

of eigenvectors of the discrete system. With the relationship in Eq. 5.31, the eigenvectors

and eigenvalues for the continuous system are

λc =
ln(λ)
∆t

Ψc = Ψ
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The modal frequencies, damping ratios and mode shapes are determined from the continuous

eigenvalues and eigenvectors

λc, λ
∗
c = −ξcωc ± jωc

√
1− ξ2

c (5.44)

Φc = CΨc (5.45)

where λ∗c is the complex conjugate of the continuous eigenvalue λc. Solving for ωc and ξc in

terms of the eigenvalue pairs

fc =
1

2π∆t

√(
ln (λ · λ∗)

2

)2

+
(

cos−1

(
λ + λ∗

2
√

λ · λ∗
))2

(5.46)

ζc =

√√√√√√
(ln (λ · λ∗))2

(ln (λ · λ∗))2 + 4
(

cos−1

(
λ + λ∗

2
√

λ · λ∗
))2 (5.47)
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Chapter 6

SYSTEM IDENTIFICATION RESULTS FOR LOW-AMPLITUDE
EXCITATIONS

This chapter presents the modal properties (periods, damping ratios and mode shapes)

of the shaking table specimen identified using system identification techniques. Section 6.1

presents the modal properties identified using two input/output algorithms (ARX and SLP).

Because the SLP algorithm was only configured to identify the transverse modal properties

of the system, this section only compares the transverse properties identified with the two

algorithms. The sensitivity of the objective function used to identify the modal properties

for the SLP algorithm to the parameters of the shaking table specimen is presented in

Section 6.2. The three-dimensional modal properties identified with the ARX algorithm are

presented in Section 6.3 using both the transverse and the longitudinal excitations. The

modal properties identified using various methodologies were compared to investigate the

effects of those methodologies on the property estimates. The comparisons in this chapter

include:

1. A comparison of the three-dimensional modal properties identified with the ARX

algorithm using excitations in both the transverse and longitudinal bridge directions

(Section 6.3);

2. A comparison of the modal properties identified using a parametric input/output al-

gorithm (SLP) and a non-parametric input/output algorithm (ARX) to determine the

influence of the numerical algorithm on the identified modal properties (Sections 6.4);

3. A comparison of the modal properties identified using three types of ground excitations

(earthquake, ambient vibration, and free vibration) to investigate the influence of

input type on the identified parameters (Section 6.5);

4. A comparison of the modal properties identified using acceleration data with those
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identified using displacement data to investigate the influence of frequency and noise

content (Section 6.6); and

5. A comparison of the identified modal properties using input/output algorithms with

those using stochastic (output-only) algorithms to investigate the influence of fre-

quency content within the input motions on the identified properties (Section 6.7).

6.1 Identified Modal Properties

The modal properties (periods, damping ratios and mode shapes) of the shaking table

specimen were identified using two input/output algorithms (SLP and ARX) for three types

of excitations (earthquake, white-noise, and square-wave).

The identified periods of the structure are presented for the earthquake excitations (Ta-

ble 6.1 and Fig. 6.1a), white-noise excitations (Table 6.2 and Fig. 6.1b), and square-wave

excitations (Table 6.3 and Fig. 6.1c). All of these tables and figures show that the first three

modes had periods of approximately 0.33s, 0.26s, and 0.078s.

Table 6.1 and Fig. 6.1 show that the periods of the first two modes gradually increase

throughout the shaking table tests. Taking the ARX results as an example, Table 6.1 shows

that at the beginning of the low-amplitude earthquake excitations (TEST 1A) the period

for mode 1 was 0.317s. By the end of the low-amplitude earthquake excitations (TEST 12),

the mode 1 period increased by 12% to 0.354s. The increase in the periods of the first two

modes during these tests is attributed to the propagation of cracking within the columns

and anchorage slip. The third mode is primarily a function of the slab stiffness. Because

the slab was post-tensioned longitudinally and transversely, little damage occurred in the

slab, so the mode 3 period remained approximately constant.

Theoretically, more than three modes could be identified in the structural system. How-

ever, only modes 1-3 could be identified using the ARX algorithm for any of the excitations.

The SLP algorithm uses a calibrated 5-DOF numerical model to identify the modal prop-

erties of the structure. Therefore, this algorithm could identify the modal properties for

modes 4 and 5 from the calibrated mass and stiffness matrices. The periods identified with

the SLP algorithm for modes 4 and 5 were approximately 0.03s and 0.01s, respectively. In
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comparison, the sampling rate of the data was 0.01s, and the lowest period that can be iden-

tified from the data is 2∆t, or 0.02s. Based on this comparison, it is not possible to identify

the mod 5 period using non-parametric algorithms. Although it is theoretically possible to

identify the mode 4 properties, the participation of mode 4 in the overall structural response

was small, and this mode could not be identified either.

The identified modal damping ratios using the two input/output algorithms are shown in

Tables 6.4 - 6.6 and plotted in Fig. 6.2. The damping ratios identified with either algorithm

ranged from 1 to 4% for nearly every test and mode. The damping ratios did not vary with

the number of tests.
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Table 6.1: Identified periods for earthquake excitations

Test
Mode 1 Mode 2 Mode 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

1A 0.317 0.317 1.001 0.240 0.237 1.011 0.078 0.077 1.007

1B 0.323 0.324 0.998 0.247 0.246 1.004 0.079 0.078 1.014

2A 0.320 0.323 0.994 0.247 0.244 1.012 0.078 0.077 1.012

2B 0.329 0.327 1.007 0.260 0.261 0.994 0.079 0.078 1.013

3A 0.324 0.323 1.003 0.245 0.252 0.970 0.079 0.078 1.010

3B 0.335 0.334 1.003 0.253 0.251 1.008 0.079 0.078 1.007

4 0.334 0.330 1.013 0.258 0.262 0.984 0.079 0.079 1.006

5 0.333 0.332 1.003 0.259 0.260 0.996 0.079 0.078 1.013

6 0.335 0.332 1.011 0.253 0.253 1.000 0.079 0.078 1.007

7 0.335 0.333 1.006 0.260 0.259 1.004 0.079 0.079 1.008

9A 0.332 0.330 1.007 0.256 0.255 1.004 0.079 0.078 1.008

9B 0.345 0.340 1.014 0.267 0.265 1.007 0.080 0.078 1.014

10 0.345 0.345 1.000 0.265 0.268 0.990 0.080 0.079 1.005

11 0.345 0.347 0.996 0.269 0.268 1.003 0.080 0.079 1.008

12 0.354 0.353 1.005 0.271 0.271 1.001 0.080 0.078 1.017

µ 0.334 0.332 1.004 0.257 0.257 0.999 0.079 0.078 1.010

σ 0.010 0.010 0.006 0.009 0.010 0.011 0.001 0.001 0.004

δ 0.031 0.030 0.006 0.036 0.037 0.011 0.007 0.007 0.004

Table 6.2: Identified periods for white-noise excitations

Test
Mode 1 Mode 2 Mode 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

WN0001T 0.314 0.313 1.005 0.236 0.234 1.007 0.078 0.077 1.011

WN0304TA 0.319 0.319 1.000 0.243 0.242 1.004 0.078 0.077 1.007

WN0304TB 0.332 0.332 1.001 0.254 0.252 1.009 0.079 0.078 1.010

WN0709TA 0.333 0.333 1.000 0.254 0.252 1.009 0.079 0.078 1.011

WN0709TB 0.335 0.335 1.000 0.256 0.254 1.010 0.078 0.078 1.008

WN1112TA 0.341 0.341 1.002 0.259 0.256 1.012 0.079 0.078 1.010

WN1112TB 0.342 0.341 1.002 0.260 0.258 1.009 0.079 0.078 1.011

µ 0.331 0.330 1.001 0.252 0.250 1.009 0.078 0.078 1.010

σ 0.011 0.011 0.002 0.009 0.008 0.002 0.001 0.001 0.002

δ 0.032 0.033 0.002 0.035 0.034 0.002 0.007 0.006 0.002

Table 6.3: Identified periods for square-wave excitations

Test
Mode 1 Mode 2 Mode 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

SQ0709 0.329 0.332 0.992 0.256 0.255 1.005 0.078 0.077 1.010

SQ1112A 0.336 0.339 0.992 0.257 0.258 0.996 0.079 0.078 1.012

SQ1112B 0.336 0.338 0.994 0.259 0.257 1.006 0.079 0.078 1.013

µ 0.334 0.336 0.993 0.257 0.257 1.002 0.079 0.078 1.012

σ 0.004 0.004 0.001 0.001 0.002 0.006 0.001 0.001 0.002

δ 0.013 0.012 0.001 0.006 0.006 0.006 0.008 0.007 0.002
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Figure 6.1: Identified periods using acceleration data for (a) low-amplitude, (b) white noise,
and (c) square wave excitations
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Table 6.4: Identified damping ratios for earthquake excitations

Test
Mode 1 Mode 2 Mode 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

1A 1.16 1.56 0.743 3.28 2.00 1.636 1.84 1.60 1.144

1B 1.90 2.13 0.891 2.25 2.86 0.786 1.99 1.85 1.072

2A 1.49 1.95 0.765 2.96 2.43 1.217 2.17 1.95 1.116

2B 1.45 1.02 1.424 2.84 5.05 0.563 1.94 2.49 0.777

3A 1.92 2.19 0.876 3.60 7.25 0.496 1.71 1.85 0.925

3B 2.12 2.13 0.992 3.62 7.71 0.469 1.55 2.43 0.637

4 1.82 1.27 1.431 3.11 3.93 0.792 1.72 2.16 0.796

5 1.41 2.75 0.514 3.42 2.58 1.323 1.99 2.35 0.847

6 2.11 2.50 0.843 1.83 2.04 0.896 1.61 1.46 1.102

7 1.90 1.95 0.974 2.05 2.93 0.700 1.52 1.26 1.213

9A 2.10 2.04 1.029 2.97 3.51 0.846 1.70 1.44 1.178

9B 2.30 2.62 0.879 1.91 1.65 1.155 1.99 1.51 1.316

10 1.50 1.98 0.759 2.13 1.86 1.147 1.70 1.82 0.931

11 2.28 2.96 0.771 1.99 1.28 1.558 2.27 2.24 1.017

12 2.69 1.73 1.552 1.67 2.53 0.661 1.92 2.04 0.938

µ 1.88 2.05 0.963 2.64 3.31 0.950 1.84 1.90 1.001

σ 0.41 0.53 0.291 0.69 1.94 0.371 0.22 0.39 0.187

δ 0.22 0.26 0.302 0.26 0.59 0.391 0.12 0.20 0.187

Table 6.5: Identified damping ratios for white-noise excitations

Test
Mode 1 Mode 2 Mode 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

WN0001T 2.01 1.56 1.288 3.50 2.10 1.666 2.10 2.13 0.984

WN0304TA 3.08 2.51 1.229 2.76 2.82 0.980 1.94 1.60 1.207

WN0304TB 1.90 2.22 0.852 2.62 2.16 1.209 1.75 1.95 0.899

WN0709TA 1.76 2.10 0.839 2.61 2.54 1.028 1.98 1.98 1.002

WN0709TB 1.95 1.98 0.984 2.66 3.28 0.810 1.98 1.74 1.134

WN1112TA 1.96 2.10 0.935 2.57 2.74 0.938 2.01 1.85 1.083

WN1112TB 1.93 1.98 0.978 2.52 2.82 0.893 1.94 1.92 1.010

µ 2.08 2.06 1.015 2.75 2.64 1.075 1.96 1.88 1.046

σ 0.45 0.29 0.177 0.34 0.41 0.289 0.11 0.17 0.103

δ 0.21 0.14 0.174 0.12 0.16 0.269 0.05 0.09 0.099

Table 6.6: Identified damping ratios for square-wave excitations

Test
Mode 1 Mode 2 Mode 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

SQ0709 1.97 2.27 0.865 3.55 2.19 1.619 1.94 2.39 0.811

SQ1112A 2.28 2.01 1.134 3.47 1.23 2.813 1.68 2.39 0.703

SQ1112B 1.72 1.98 0.872 4.85 1.84 2.642 1.94 2.31 0.837

µ 1.99 2.09 0.957 3.96 1.75 2.358 1.85 2.36 0.784

σ 0.28 0.16 0.153 0.78 0.49 0.646 0.15 0.04 0.071

δ 0.14 0.08 0.160 0.20 0.28 0.274 0.08 0.02 0.091
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Figure 6.2: Identified damping ratios using acceleration data for (a) low-amplitude, (b)
white noise, and (c) square wave excitations
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The mode shapes for the first three modes of the shaking table specimen were also iden-

tified using the ARX and SLP algorithms. The mode shapes were described by orthonormal

basis vectors (sj , where integer j is the number of the basis vector), which are shown in

Table 6.7 and Fig. 6.3. The first three orthonormal basis vectors represent pure translation,

pure twisting, and beam bending, respectively. Basis vectors 4 and 5 represent asymmetric

and double symmetric bending of the slab.

Table 6.7: Basis vector ordinates

Measurement Location
Basis Vector

s1 s2 s3 s4 s5

Bent 1 0.44721 0.63246 -0.52943 -0.31623 0.14035

1 - 2 0.44721 0.31623 0.24834 0.63246 -0.48819

Bent 2 0.44721 0 0.56218 0 0.69567

2 - 3 0.44721 -0.31623 0.24834 -0.63246 -0.48819

Bent 3 0.44721 -0.63246 -0.52943 0.31623 0.14035
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Figure 6.3: Orthonormal basis vectors for a 5-output system

Tables 6.8 - 6.10 provide the projection of mode 1 onto the three basis vectors for the

three types of excitations and the two input/output identification algorithms. The tabulated

values are the projection of the mode shape onto the orthonormal basis vectors (φT
i sj).
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Because both the modes and the basis vectors are unit length, and the basis vectors are

orthogonal, the square of the projection of the mode onto a basis vector, (φT
i sj)2, represents

the percentage of the mode that is defined by that basis vector. The percentages of each

mode that is described by the first three basis vectors is tabulated for both the SLP and

ARX algorithms. The projections of the modes onto basis vectors 4 and 5 were computed,

but were not tabulated because of their small contribution to the first three modes.

Fig. 6.4 shows the envelopes created by the identified mode 1 shapes using all tests

for each excitation type. It is apparent that both algorithms identify basis vector 1 as the

predominant component of mode 1 for any of the three excitation types. For example, using

the ARX algorithm for the earthquake excitations, basis vector 1 averaged 87% (0.9352) of

mode 1. Basis vector 2 averaged 12% (0.3462) of mode 1. The first three basis vectors made

up 99.9% of mode 1.

The same procedure was followed for describing the mode shapes for mode 2. The

projection of mode 2 onto the first three basis vectors are presented in Tables 6.11 - 6.13 for

the three excitations. The envelopes of the mode 2 mode shapes are displayed in Fig. 6.5.

Mode 2 was primarily composed of basis vector 2 (slab twisting) for all types of excitations,

with some contribution from basis vector 1 (slab translation). Basis vector 3 (beam bending)

had small influence on mode 2. For example, using the ARX algorithm for the earthquake

excitations, basis vector 2 averaged 76% (0.8712) of mode 2, while basis vector 1 averaged

24% (−0.4882). The first three basis vectors made up 99.9% of mode 2.

Mode 3 results are displayed in Tables 6.14 - 6.16. The envelopes of the mode shapes

are shown in Fig. 6.6. Mode 3 was composed mainly of basis vector 3 (slab bending). For

example, using the ARX algorithm for the earthquake excitations, basis vector 3 averaged

92% (0.9602) of mode 3. The first three basis vectors made up 98.9% of mode 3.
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Table 6.8: Mode 1 basis vector components for earthquake excitations

Test
basis vector 1 basis vector 2 basis vector 3 Total % of mode

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio ARX SLP

1A 0.932 0.895 1.041 0.361 0.446 0.811 -0.030 -0.024 1.257 99.928 99.999

1B 0.918 0.911 1.008 0.394 0.412 0.956 -0.033 -0.028 1.175 99.943 99.999

2A 0.914 0.907 1.008 0.404 0.420 0.961 -0.029 -0.027 1.091 99.917 99.999

2B 0.957 0.873 1.097 0.286 0.488 0.585 -0.031 -0.011 2.952 99.923 99.999

3A 0.916 0.905 1.012 0.400 0.425 0.941 -0.039 -0.023 1.727 99.988 99.999

3B 0.907 0.881 1.029 0.419 0.473 0.887 -0.030 -0.017 1.777 99.945 99.999

4 0.959 0.900 1.066 0.278 0.435 0.639 -0.035 -0.019 1.904 99.870 99.999

5 0.956 0.924 1.034 0.289 0.381 0.758 -0.033 -0.027 1.201 99.803 100.000

6 0.927 0.914 1.014 0.373 0.405 0.922 -0.037 -0.027 1.355 99.950 100.000

7 0.946 0.923 1.025 0.318 0.383 0.830 -0.028 -0.028 0.995 99.780 100.000

9A 0.949 0.920 1.033 0.309 0.392 0.789 -0.009 -0.028 0.336 99.709 100.000

9B 0.926 0.929 0.997 0.374 0.368 1.018 -0.018 -0.028 0.622 99.848 100.000

10 0.966 0.927 1.041 0.254 0.373 0.682 -0.026 -0.028 0.913 99.783 100.000

11 0.935 0.941 0.994 0.352 0.337 1.045 -0.038 -0.033 1.138 99.973 100.000

12 0.923 0.907 1.018 0.382 0.421 0.908 -0.029 -0.021 1.376 99.985 100.000

µ 0.935 0.910 1.028 0.346 0.411 0.849 -0.030 -0.025 1.321 99.890 100.000

σ 0.019 0.018 0.027 0.053 0.040 0.138 0.008 0.006 0.612 0.086 0.000

δ 0.020 0.020 0.026 0.153 0.098 0.162 0.260 0.232 0.463 0.001 0.000

Table 6.9: Mode 1 basis vector components for white-noise excitations

Test
basis vector 1 basis vector 2 basis vector 3 Total % of mode

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio ARX SLP

WN0001T 0.922 0.902 1.022 0.384 0.430 0.892 -0.034 -0.027 1.253 99.914 99.999

WN0304TA 0.935 0.932 1.003 0.353 0.361 0.977 -0.033 -0.037 0.896 99.941 100.000

WN0304TB 0.940 0.918 1.024 0.335 0.395 0.849 -0.035 -0.029 1.201 99.811 100.000

WN0709TA 0.925 0.920 1.006 0.377 0.391 0.964 -0.033 -0.030 1.086 99.946 100.000

WN0709TB 0.922 0.901 1.024 0.385 0.433 0.888 -0.031 -0.023 1.344 99.946 100.000

WN1112TA 0.924 0.912 1.013 0.381 0.409 0.932 -0.029 -0.027 1.052 99.945 100.000

WN1112TB 0.923 0.915 1.009 0.383 0.403 0.951 -0.030 -0.027 1.091 99.951 100.000

µ 0.927 0.914 1.014 0.371 0.403 0.922 -0.032 -0.029 1.132 99.922 100.000

σ 0.007 0.011 0.009 0.019 0.025 0.047 0.002 0.004 0.147 0.051 0.000

δ 0.008 0.012 0.009 0.052 0.061 0.051 0.077 0.147 0.130 0.001 0.000

Table 6.10: Mode 1 basis vector components for square-wave excitations

Test
basis vector 1 basis vector 2 basis vector 3 Total % of mode

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio ARX SLP

SQ0709 0.944 0.923 1.023 0.324 0.385 0.843 -0.038 -0.029 1.333 99.774 100.000

SQ1112A 0.954 0.924 1.032 0.295 0.380 0.777 -0.025 -0.030 0.821 99.755 100.000

SQ1112B 0.947 0.923 1.026 0.313 0.384 0.815 -0.059 -0.030 1.985 99.810 100.000

µ 0.948 0.923 1.027 0.311 0.383 0.812 -0.041 -0.030 1.380 99.780 100.000

σ 0.005 0.001 0.004 0.015 0.002 0.033 0.017 0.001 0.583 0.028 0.000

δ 0.005 0.001 0.004 0.047 0.006 0.041 0.419 0.029 0.423 0.000 0.000
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Figure 6.4: Identified mode shape envelopes using acceleration data for mode 1 using the
low-amplitude (a) earthquake, (b) white noise, and (c) square wave excitations
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Table 6.11: Mode 2 basis vector components for earthquake excitations

Test
basis vector 1 basis vector 2 basis vector 3 Total % of mode

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio ARX SLP

1A -0.513 -0.533 0.963 0.856 0.845 1.014 0.056 0.044 1.288 99.993 99.995

1B -0.488 -0.497 0.980 0.871 0.867 1.006 0.051 0.040 1.268 99.980 99.995

2A -0.492 -0.506 0.972 0.869 0.861 1.009 0.042 0.041 1.038 99.946 99.995

2B -0.470 -0.574 0.819 0.882 0.818 1.077 0.010 0.028 0.360 99.878 99.996

3A -0.538 -0.509 1.056 0.841 0.860 0.978 0.044 0.035 1.277 99.894 99.996

3B -0.552 -0.560 0.985 0.833 0.828 1.006 0.020 0.038 0.521 99.817 99.996

4 -0.461 -0.520 0.887 0.887 0.854 1.038 0.038 0.031 1.223 99.970 99.996

5 -0.488 -0.462 1.056 0.872 0.886 0.983 0.045 0.032 1.407 99.952 99.996

6 -0.508 -0.489 1.039 0.860 0.872 0.987 0.042 0.037 1.125 99.904 99.996

7 -0.450 -0.465 0.968 0.892 0.885 1.008 0.037 0.034 1.095 99.954 99.996

9A -0.474 -0.475 0.997 0.879 0.879 0.999 0.054 0.035 1.541 99.905 99.996

9B -0.440 -0.447 0.983 0.897 0.894 1.003 0.047 0.032 1.503 99.967 99.996

10 -0.497 -0.453 1.095 0.867 0.891 0.973 0.043 0.032 1.358 99.988 99.996

11 -0.489 -0.414 1.182 0.872 0.910 0.958 0.012 0.032 0.386 99.908 99.996

12 -0.459 -0.505 0.909 0.888 0.863 1.029 0.028 0.032 0.896 99.973 99.997

µ -0.488 -0.494 0.993 0.871 0.867 1.005 0.038 0.035 1.086 99.935 99.996

σ 0.031 0.043 0.087 0.018 0.025 0.029 0.014 0.004 0.384 0.049 0.001

δ 0.064 0.087 0.088 0.021 0.029 0.029 0.376 0.124 0.354 0.000 0.000

Table 6.12: Mode 2 basis vector components for white-noise excitations

Test
basis vector 1 basis vector 2 basis vector 3 Total % of mode

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio ARX SLP

WN0001T -0.503 -0.517 0.973 0.863 0.855 1.010 0.027 0.045 0.597 99.854 99.995

WN0304TA -0.459 -0.443 1.037 0.887 0.896 0.991 0.009 0.040 0.217 99.829 99.995

WN0304TB -0.492 -0.478 1.028 0.869 0.877 0.991 0.045 0.038 1.178 99.972 99.996

WN0709TA -0.503 -0.474 1.059 0.863 0.879 0.982 0.023 0.038 0.612 99.873 99.996

WN0709TB -0.503 -0.519 0.968 0.863 0.854 1.011 0.017 0.037 0.456 99.839 99.996

WN1112TA -0.508 -0.494 1.028 0.861 0.869 0.991 0.021 0.038 0.551 99.893 99.996

WN1112TB -0.504 -0.487 1.036 0.863 0.873 0.988 0.024 0.037 0.643 99.907 99.996

µ -0.496 -0.487 1.019 0.867 0.872 0.995 0.024 0.039 0.608 99.881 99.995

σ 0.017 0.026 0.034 0.009 0.015 0.011 0.011 0.003 0.290 0.049 0.001

δ 0.034 0.054 0.034 0.011 0.017 0.011 0.470 0.068 0.477 0.000 0.000

Table 6.13: Mode 2 basis vector components for square-wave excitations

Test
basis vector 1 basis vector 2 basis vector 3 Total % of mode

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio ARX SLP

SQ0709 -0.471 -0.467 1.010 0.881 0.884 0.997 0.026 0.035 0.744 99.951 99.996

SQ1112A -0.439 -0.462 0.949 0.896 0.886 1.011 0.055 0.036 1.529 99.758 99.996

SQ1112B -0.437 -0.466 0.937 0.898 0.884 1.016 0.048 0.036 1.326 99.974 99.996

µ -0.449 -0.465 0.966 0.892 0.885 1.008 0.043 0.036 1.200 99.894 99.996

σ 0.019 0.003 0.039 0.009 0.001 0.010 0.015 0.001 0.408 0.119 0.000

δ 0.043 0.006 0.040 0.010 0.001 0.010 0.354 0.019 0.340 0.001 0.000
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Figure 6.5: Identified mode shape envelopes using acceleration data for mode 2 using the
low-amplitude (a) earthquake, (b) white noise, and (c) square wave excitations
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Table 6.14: Mode 3 basis vector components for earthquake excitations

Test
basis vector 1 basis vector 2 basis vector 3 Total % of mode

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio ARX SLP

1A -0.255 -0.241 1.058 0.005 -0.019 -0.247 0.964 0.970 0.994 99.522 99.998

1B -0.269 -0.241 1.115 0.008 -0.016 -0.507 0.960 0.970 0.989 99.335 99.999

2A -0.259 -0.241 1.073 0.006 -0.017 -0.339 0.960 0.970 0.989 98.846 99.999

2B -0.272 -0.255 1.064 0.007 -0.013 -0.497 0.959 0.967 0.992 99.311 99.998

3A -0.274 -0.246 1.115 -0.000 -0.014 0.019 0.957 0.969 0.988 99.146 99.998

3B -0.266 -0.248 1.074 0.005 -0.017 -0.296 0.959 0.969 0.990 99.044 99.998

4 -0.238 -0.250 0.951 0.002 -0.013 -0.141 0.964 0.968 0.996 98.672 99.998

5 -0.247 -0.244 1.009 -0.005 -0.012 0.420 0.963 0.970 0.993 98.783 99.999

6 -0.256 -0.242 1.056 0.010 -0.015 -0.701 0.964 0.970 0.994 99.461 99.999

7 -0.243 -0.243 1.000 -0.005 -0.013 0.414 0.960 0.970 0.990 98.170 99.999

9A -0.241 -0.243 0.993 -0.001 -0.014 0.076 0.962 0.970 0.992 98.419 99.999

9B -0.239 -0.244 0.978 -0.005 -0.012 0.422 0.964 0.970 0.994 98.601 99.999

10 -0.250 -0.244 1.025 0.013 -0.012 -1.043 0.960 0.970 0.991 98.526 99.999

11 -0.288 -0.241 1.197 0.006 -0.011 -0.491 0.952 0.970 0.981 98.897 99.999

12 -0.275 -0.248 1.108 0.009 -0.013 -0.688 0.959 0.969 0.990 99.460 99.999

µ -0.258 -0.245 1.055 0.003 -0.014 -0.240 0.960 0.969 0.991 98.946 99.999

σ 0.015 0.004 0.064 0.006 0.002 0.443 0.003 0.001 0.004 0.421 0.000

δ 0.060 0.017 0.061 1.652 0.156 1.847 0.004 0.001 0.004 0.004 0.000

Table 6.15: Mode 3 basis vector components for white-noise excitations

Test
basis vector 1 basis vector 2 basis vector 3 Total % of mode

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio ARX SLP

WN0001T -0.245 -0.239 1.025 -0.010 -0.019 0.529 0.965 0.971 0.994 99.163 99.998

WN0304TA -0.262 -0.235 1.113 -0.007 -0.015 0.481 0.962 0.972 0.989 99.326 99.999

WN0304TB -0.247 -0.241 1.027 -0.014 -0.015 0.966 0.962 0.970 0.991 98.626 99.999

WN0709TA -0.256 -0.240 1.067 -0.009 -0.015 0.591 0.962 0.971 0.992 99.193 99.999

WN0709TB -0.252 -0.245 1.028 -0.008 -0.015 0.547 0.964 0.969 0.994 99.229 99.999

WN1112TA -0.252 -0.242 1.041 -0.008 -0.015 0.526 0.964 0.970 0.994 99.281 99.999

WN1112TB -0.254 -0.243 1.047 -0.005 -0.014 0.315 0.963 0.970 0.993 99.218 99.999

µ -0.253 -0.241 1.050 -0.009 -0.016 0.565 0.963 0.970 0.992 99.148 99.999

σ 0.006 0.003 0.032 0.003 0.001 0.198 0.001 0.001 0.002 0.237 0.000

δ 0.022 0.013 0.030 0.342 0.089 0.350 0.001 0.001 0.002 0.002 0.000

Table 6.16: Mode 3 basis vector components for square-wave excitations

Test
basis vector 1 basis vector 2 basis vector 3 Total % of mode

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio ARX SLP

SQ0709 -0.251 -0.243 1.035 -0.070 -0.013 5.211 0.960 0.970 0.990 98.986 99.999

SQ1112A -0.253 -0.241 1.049 -0.030 -0.014 2.194 0.961 0.970 0.991 98.900 99.999

SQ1112B -0.275 -0.242 1.139 -0.018 -0.014 1.280 0.959 0.970 0.988 99.507 99.999

µ -0.260 -0.242 1.074 -0.039 -0.014 2.895 0.960 0.970 0.990 99.131 99.999

σ 0.013 0.001 0.056 0.027 0.000 2.057 0.001 0.000 0.001 0.329 0.000

δ 0.052 0.003 0.052 0.693 0.018 0.710 0.001 0.000 0.001 0.003 0.000
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Figure 6.6: Identified mode shape envelopes using acceleration data for mode 3 using the
low-amplitude (a) earthquake, (b) white noise, and (c) square wave excitations
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6.2 Parameter Sensitivity Study using SLP Algorithm

The successive linear programming (SLP) algorithm was used to investigate the sensitivity

of the objective function (Eq. 5.6) to the seven calibration parameters of the numerical

model. The sensitivity of the objective function was evaluated for incremental changes in

each parameter in both the negative and positive directions. The sensitivity of the objective

function to the specimen properties was quantified by computing the increase from the value

of the optimal objective function and the value of the objective function using non-optimal

parameters, given by the equation

%Increase =
J − Jmin

Jmin
× 100 (6.1)

where J is the value of the objective function for any combination of parameters, and Jmin

is the minimum value of the objective function for the optimal parameters.

The results of this study are presented in Fig. 6.7. In this figure, the effect of each para-

meter on the objective function was averaged for all of the tests within each excitation type.

For example, the effect of the bent 1 stiffness on the objective function during the earth-

quake excitations (Fig. 6.7a) was quantified as the mean for all 15 tests. Tables 6.17 - 6.19

show the percent change of the objective function due to a ±5% change in each parameter.

The objective function is the most sensitive to changes in the bent 1 and 3 stiffness

parameters (k1
b and k2

b ), while still sensitive to the bent 2 and slab stiffnesses (k3
b and EIs).

The objective function was much less sensitive to the damping ratios (ξ1, ξ2, and ξ3) for

all excitation types. Because mode 3 had the smallest influence on the structural response,

varying the damping ratio for this mode had small effects on the response. For example,

during the earthquake excitations, a positive change of 5% in the stiffness of bents 1 or 3

caused an average increase of the objective function by approximately 101% and 264%. In

contrast, a positive change of 5% of any of the damping ratios caused an average increase of

the objective function by no more than 0.5%. The small influence of the damping ratios on

the objective function could account for the large amount of scatter in the identified damping

ratios in Section 6.1. Fig. 6.7 also shows that the objective function is more sensitive to

negative deviations in each of the three modal damping ratios than positive deviations.
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Table 6.17: Sensitivity Study for earthquake excitations

Test
k1

b k2
b k3

b ξ1 ξ2 ξ3 EIs

-5% +5% -5% +5% -5% +5% -5% +5% -5% +5% -5% +5% -5% +5%

1A 268.1 93.3 7.7 4.9 294.5 197.4 0.0 0.1 0.2 0.1 0.1 0.1 77.4 30.7

1B 152.6 64.6 3.0 3.2 116.4 152.2 0.1 0.1 0.3 0.5 0.1 0.1 31.9 17.5

2A 78.5 25.3 3.9 1.9 895.7 1421.5 0.0 0.0 1.2 1.4 0.1 0.0 34.3 15.4

2B 5.5 13.8 1.9 2.0 125.7 337.9 0.0 0.0 1.2 1.2 0.0 0.0 0.7 4.8

3A 185.6 158.7 6.7 11.9 5.3 2.4 0.3 0.2 0.1 0.0 0.1 0.2 110.8 64.0

3B 510.6 281.6 14.4 11.1 13.8 10.3 0.6 0.4 0.3 0.4 0.1 0.1 51.2 44.8

4 34.8 30.4 1.9 3.3 168.1 426.1 0.0 0.0 1.6 0.8 0.0 0.0 11.2 7.5

5 36.5 43.0 1.8 1.0 346.8 315.0 0.1 0.0 0.5 0.8 0.2 0.2 104.2 146.2

6 118.8 71.9 4.4 6.0 100.1 46.4 0.2 0.2 0.1 0.1 0.1 0.1 218.0 72.0

7 174.0 100.0 3.1 4.7 189.9 123.8 0.1 0.1 0.4 0.3 0.1 0.0 141.8 56.6

9A 61.3 119.7 2.3 4.3 42.0 94.3 0.1 0.1 0.3 0.2 0.1 0.1 160.1 24.9

9B 136.0 71.2 3.5 3.8 466.0 157.3 0.2 0.2 0.2 0.2 0.0 0.0 35.8 23.3

10 369.3 119.3 2.6 1.2 459.1 204.1 0.2 0.1 0.4 0.6 0.0 0.0 2.5 0.7

11 150.9 118.1 1.2 0.6 1291.7 290.4 0.1 0.1 0.5 0.3 0.0 0.0 4.1 1.2

12 255.2 198.2 3.2 2.6 141.9 175.3 0.1 0.1 0.5 0.7 0.0 0.0 6.0 2.9

µ 169.2 100.6 4.1 4.2 310.5 263.6 0.1 0.1 0.5 0.5 0.1 0.1 66.0 34.2

σ 136.5 71.3 3.4 3.4 357.1 342.6 0.2 0.1 0.4 0.4 0.1 0.1 67.3 38.8

δ 0.8 0.7 0.8 0.8 1.2 1.3 1.1 0.9 0.9 0.8 0.9 1.0 1.0 1.1

Table 6.18: Sensitivity Study for white-noise excitations

Test
k1

b k2
b k3

b ξ1 ξ2 ξ3 EIs

-5% +5% -5% +5% -5% +5% -5% +5% -5% +5% -5% +5% -5% +5%

WN0001T 462.7 352.9 7.9 8.7 217.9 188.8 0.2 0.1 0.2 0.3 0.1 0.1 58.3 31.5

WN0304TA 155.1 87.0 3.2 2.8 38.4 30.1 0.5 0.3 0.1 0.1 0.1 0.1 85.8 42.3

WN0304TB 808.2 254.4 7.6 14.5 191.8 63.5 0.7 0.6 0.2 0.1 0.1 0.1 91.3 26.2

WN0709TA 1022.2 326.5 12.6 10.3 140.3 78.5 0.8 0.5 0.2 0.3 0.1 0.1 101.6 43.8

WN0709TB 1063.9 288.9 10.9 16.4 120.1 56.8 0.4 0.6 0.3 0.2 0.2 0.1 183.8 59.7

WN1112TA 887.3 386.7 7.5 14.1 111.7 85.5 0.5 0.5 0.3 0.1 0.2 0.1 168.4 63.0

WN1112TB 964.8 362.6 9.1 13.9 60.8 129.8 0.4 0.4 0.3 0.2 0.2 0.1 128.5 56.4

µ 766.3 294.1 8.4 11.5 125.9 90.4 0.5 0.4 0.2 0.2 0.1 0.1 116.8 46.1

σ 335.6 101.9 3.0 4.6 64.7 53.1 0.2 0.2 0.1 0.1 0.1 0.0 45.7 14.2

δ 0.4 0.3 0.4 0.4 0.5 0.6 0.4 0.4 0.3 0.4 0.4 0.3 0.4 0.3

Table 6.19: Sensitivity Study for square-wave excitations

Test
k1

b k2
b k3

b ξ1 ξ2 ξ3 EIs

-5% +5% -5% +5% -5% +5% -5% +5% -5% +5% -5% +5% -5% +5%

SQ0709 270.7 169.1 9.5 6.0 46.4 26.7 0.6 0.3 0.0 0.0 0.1 0.1 40.1 28.9

SQ1112A 458.7 324.0 11.6 10.4 110.0 52.6 0.6 0.6 0.0 0.0 0.1 0.1 68.7 24.9

SQ1112B 380.7 269.9 7.6 16.7 58.5 50.5 0.8 0.4 0.1 0.0 0.1 0.1 61.2 35.3

µ 370.0 254.3 9.6 11.0 71.7 43.2 0.7 0.4 0.0 0.0 0.1 0.1 56.7 29.7

σ 94.5 78.6 2.0 5.4 33.8 14.4 0.1 0.1 0.0 0.0 0.0 0.0 14.8 5.2

δ 0.3 0.3 0.2 0.5 0.5 0.3 0.2 0.3 0.5 0.4 0.2 0.2 0.3 0.2
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Figure 6.7: Identified objective function sensitivity to the structural parameters for low-
amplitude (a) earthquake, (b) white noise, and (c) square wave excitations
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6.3 Three-Dimensional System Identification using ARX Algorithm

The modal properties of the shaking table system were identified in three dimensions

(transverse, vertical, and longitudinal) using the ARX algorithm. To identify the three-

dimensional modal properties, both the transverse and longitudinal shaking table motions

were used as the input excitations, and the slab response in all three directions was used as

the output response. Transverse and longitudinal accelerations were measured at five loca-

tions along the slab: one at each bent and one at each mid-span. The vertical accelerations

were measured at four locations along the slab: one at each mid-span, and one at the ends

of each cantilever section.

In addition to the series of transverse excitations that were reported in Section 6.1, three

longitudinal white-noise motions were used to excite the structure. Using the 14 response

measurements and the six excitation measurements, a total of 6 modes were identified for

the shaking table specimen: three transverse modes (reported previously in Section 6.1),

two vertical modes (asymmetric and symmetric slab bending), and one longitudinal mode

(rigid slab translation). The identified periods for each of the low-amplitude excitations are

listed in Table 6.20.

The longitudinal mode was only identifiable for five excitations, the three longitudinal

excitations and the two biaxial excitations. The longitudinal mode was never identifiable

for the strictly transverse excitations. Similarly, the transverse modes were unidentifiable

for the strictly longitudinal excitations.

Because of the mass and stiffness of the slab, the vertical accelerations on the slab were

substantial for both the transverse and the longitudinal excitations. Therefore, the two

vertical modes were easily identified for all excitations. Furthermore, the periods of the

vertical modes identified with the longitudinal excitations were within 2% of the periods for

the same modes identified with the transverse excitations. For example, the second vertical

mode identified with the longitudinal white noise test WN1112LA was 0.157s, 1.9% lower

than that same mode identified with the transverse white noise test WN1112TA (0.160s).

This suggests that the identified vertical modes are independent of the type or direction of

the excitation.
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Table 6.20: Identified periods in three dimensions using ARX

Excitation Type Test Mode

T1 T2 T3 V1 V2 L1

EQ 1A 0.317 0.240 0.078 0.197 0.156 *

1B 0.323 0.247 0.079 0.199 0.158 *

2A 0.320 0.247 0.078 0.196 0.157 *

2B 0.329 0.260 0.079 0.193 0.158 *

3A 0.324 0.245 0.079 0.191 0.154 *

3B 0.335 0.253 0.079 0.197 0.157 *

4 0.334 0.258 0.079 0.192 0.156 *

5 0.333 0.259 0.079 0.195 0.156 *

6 0.335 0.253 0.079 0.197 0.158 *

7 0.335 0.260 0.079 0.197 0.158 *

9A 0.332 0.256 0.079 0.212 0.162 0.334

9B 0.345 0.267 0.080 0.211 0.164 0.346

10 0.345 0.265 0.080 0.186 0.157 *

11 0.345 0.269 0.080 0.189 0.154 *

12 0.354 0.271 0.080 0.200 0.161 *

WN, Tran WN0001T 0.314 0.236 0.078 0.197 0.157 *

WN0304TA 0.319 0.243 0.078 0.196 0.159 *

WN0304TB 0.332 0.254 0.079 0.194 0.160 *

WN0709TA 0.333 0.254 0.079 0.194 0.160 *

WN0709TB 0.335 0.256 0.078 0.193 0.159 *

WN1112TA 0.341 0.259 0.079 0.198 0.160 *

WN1112TB 0.342 0.260 0.079 0.196 0.160 *

WN, Long WN0709LB * * * 0.198 0.158 0.325

WN1112LA * * * 0.199 0.157 0.329

WN1112LB * * * 0.199 0.158 0.329

SQ SQ0709 0.329 0.256 0.078 0.201 0.158 *

SQ1112A 0.336 0.257 0.079 0.202 0.160 *

SQ1112B 0.336 0.259 0.079 0.202 0.160 *

6.4 Influence of Input/Output Algorithm Type

The two input/output algorithms identify the modal properties of the structure using two

approaches. The ARX algorithm identifies the modes non-parametrically, using the input

and output measurements without any prior knowledge of the structure. The SLP algorithm

identifies the modes parametrically by first calibrating a numerical model of the structure

using the input and output data. The modes are then extracted from the calibrated mass

and stiffness matrices of the numerical model. The influence of the algorithm type on the

identified modal parameters was investigated using the data presented in Section 6.1.

The periods for the three modes identified with the two algorithms (Tables 6.1 - 6.3)

were similar for all excitation types. These tables also show the ratios between the periods
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identified with the ARX algorithm to those identified with the SLP algorithm. These

ratios ranged from 0.96 (Test 3A, mode 2) to 1.02 (Test 12, mode 3). The mean ratio of

the identified periods for all three modes and all three excitation types was 1.00, with a

standard deviation of 0.01.

The damping ratios identified with the two algorithms were less similar than the identi-

fied periods for all excitation types. For the earthquake excitations, the ratio of the mode 1

damping ratio identified with the ARX algorithm to that identified with the SLP algorithm

ranged between 0.45 (Test 3A, mode 2) to 1.64 (Test 1A, mode 2). This large range was

attributed to the insensitivity of the response of the shaking table specimen to small changes

in the modal damping ratios (Section 6.2). Although the range of these ratios was large, the

mean ratios were near 1.0. For example, the mean ratio for mode 1 using the earthquake

excitations is 0.95.

The ARX algorithm more consistently identified the modal damping ratios than the SLP

algorithm for the earthquake excitations. For example, the coefficients of variation of the

mode 2 damping ratios during the earthquake excitations were 0.24 (ARX) and 0.59 (SLP).

The high coefficient of variation using the SLP method is partially due to the large mode

2 damping estimates for Tests 2B-3B. For the other types of excitations (white-noise and

square-wave), this difference was not as pronounced.

The ratio of the basis vector components using the ARX algorithm to those using the

SLP algorithm are presented in Tables 6.8 - 6.10 for mode 1. These ratios for the three

types of excitations ranged between 0.82 (Test 2B, basis vector 2) and 1.18 (Test 11, basis

vector 2). Most of the scatter was due to the contribution of basis vector 2 to mode 1

during the earthquake excitations. For example, under earthquake excitation the coefficient

of variation of the ratios for the basis vector 2 during earthquake excitations was 9%. The

coefficient of variation for basis vector 1 was only 3%.

The ratios between the two input/output algorithms for basis vector 2 ranged from 0.96

to 1.08, with a mean value of 1.01. The scatter was much larger for basis vectors 1 and 3

due to their smaller influence on mode 2. For example, the ratio from basis vector 3 during

the earthquake excitations ranged from -1.04 to 0.42. This range was large because the

projection of mode 2 onto basis vector 3 was small. For example, during Test 10 the ARX
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algorithm identified the basis vector 2 component of mode 2 as 0.867, while the basis vector

3 component was 0.013.

The estimation of the basis vector 3 component was insensitive to the algorithm type.

For example, using the earthquake excitations, the ratio for basis vector 3 ranged from 0.98

to 1.00. This ratio had more scatter for basis vectors 1 and 2, which was attributed to the

small contributions of basis vectors 1 and 2 on mode 3. For example, during the earthquake

excitations, the mean and coefficient of variation for the basis vector 1 ratio was estimated

as 1.31 and 46%, respectively.

The comparison between the identified modal properties using the two input/output

algorithms show that the values of the periods were insensitive to the algorithm type. The

damping ratios for modes 1 and 3 were also similar for the two algorithms, while there were

larger dissimilarities for the mode 2 damping ratio. This was attributed to a few tests with

large damping ratio deviations. While the primary basis vector component of each mode

shape was also similar between the two algorithms, the secondary components had large

variations. These variations were attributed to the small influence of the secondary basis

vectors on the mode shapes.

6.5 Influence of Excitation Type

Three types of excitations (earthquake, white-noise and square-wave) were used to identify

the modal properties of the structure. The influence of each of these excitation types on

the identified modal properties was investigated using the data presented in Section 6.1.

Tables 6.1 - 6.3 show the influence of the excitation type on the estimation of the struc-

tural periods. Because the input/output identification algorithms account for the frequency

content of the input motions, there is very little difference between the identified periods

for each excitation type. For example, using the ARX algorithm, the periods for the three

modes identified from the Test 7 earthquake excitation were 0.335s, 0.260s, and 0.079s.

The periods from the white noise test conducted directly after Test 7 (WN0709TA) were

identified as 0.333s, 0.254s, and 0.079s. The periods from the square wave test conducted

directly after Test 7 (SQ0709) were identified as 0.329s, 0.256s, and 0.078s.

The identified modal damping ratios (Tables 6.4 - 6.6) were similar for the three exci-
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tation types. For example, using the ARX algorithm, the mean damping ratio of mode 1

was identified as 1.85% (earthquake excitation), 2.08% (white-noise excitation), and 1.99%

(square-wave excitation). Using the SLP algorithm, the mean mode 1 damping ratios were

identified as 2.05%, 2.06%, and 2.09% for the three excitation types.

The influence of each basis vector on mode 1 is similar for all excitation types, showing

that the identified mode shape for mode 1 is insensitive to the type of excitation. For

example, using the ARX algorithm the mean value of the projection of mode 1 onto basis

vector 1 was identified as 0.935 (earthquake excitation), 0.927 (white-noise excitation), and

0.948 (square-wave excitation).

The basis vector components of mode 2 were similar for all three excitation types. For ex-

ample, using the ARX algorithm the projection of mode 2 onto basis vector 2 was estimated

as 0.872 (earthquake excitation), 0.867 (white-noise excitation), and 0.892 (square-wave ex-

citation). Because the contribution of basis vector 3 to mode 2 was small, the projection

onto basis vector 3 was less consistent for the three excitation types.

The basis vector components of mode 3 were also similar for the three excitation types.

For example, using the ARX algorithm the mean projection of mode 3 onto basis vector

3 was identified as 0.960 (earthquake excitation), 0.963 (white-noise excitation), and 0.960

(square-wave excitation).

Comparison of the modal parameters (periods, damping ratios and mode shapes) iden-

tified with the three excitation types showed that the identified periods were insensitive to

the excitation type. The mode 1 and 3 damping ratios were less sensitive to the excitation

type than the mode 2 damping ratio. Larger variations in the mode 2 damping ratio were

attributed to the insensitivity of the structural response to slight changes in this parameter.

These results are consistent with the sensitivity study in Section 6.2. This insensitivity to

the damping ratios is illustrated in Figs. 6.8 - 6.10 for earthquake excitation Test 7, and the

white-noise and square-wave tests immediately following Test 7 (WN0709TA and SQ0709).

The identified primary basis vector component for each mode shape (e.g. basis vector 1 for

mode 1, basis vector 2 for mode 2) was insensitive to the excitation type. Although the

secondary basis vectors were also consistent for each excitation type, they varied more than

the primary basis vector because of their small influence on the mode.
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Figure 6.9: Sensitivity study for WN1112B
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6.6 Influence of using Acceleration and Displacement Data

Displacement data were recorded during the shaking table tests at the same locations as

the recorded acceleration data, which provided an opportunity to compare the system iden-

tification results using the two sets of data. The identified modal properties of the shaking

table specimen using displacement data are provided in Appendix F.

Fig. 6.11 shows the periods identified with the ARX algorithm using acceleration and

displacement data. As seen in Fig. 6.11, the mode 1 period identified with displacement

data is slightly higher than that identified with acceleration data for all excitation types.

There were also small differences in the mode 2 period, most notably during the square

wave tests.

The mode 3 period was the most difficult to identify using the displacement data for

both the earthquake excitations and the square-wave excitations. This was attributed to the

small contribution of mode 3 to the overall response of the system and the high noise to peak

signal ratio in the bent 3 displacement data (see Section 4.4). For example, during the low-

amplitude earthquake excitations, the average noise in the bent 3 data was approximately

30% of the peak displacement response. The maximum noise/peak ratio occurred during

Tests 3B and 9A, where the ratio increased to approximately 55%. Noise in the acceleration

data was much less prevalent. The maximum noise/peak ratio occurred in bent 2, with an

average value of 5%.

Using displacement data the ARX and SLP algorithms overestimated the mode 2 and

3 damping ratios for all excitation types. Taking the ARX algorithm as an example, the

mean damping ratio during the white-noise tests identified with acceleration data was 2.75%.

Using displacement data, the average mode 2 damping ratio was estimated as 17.5%, 540%

higher. As discussed in the previous paragraph, mode 3 was misidentified using the ARX

algorithm, so the damping ratios are expected to be different.

The difficulty in identifying the modes of the shaking table specimen using displacement

data was also evident in the identified mode shapes. The complete set of identified modal

parameters (periods, damping ratios, and mode shapes) using displacement data for both

the SLP algorithm and the ARX algorithm are presented in Appendix F.
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Figure 6.11: Identified periods using acceleration and displacement data for (a) low-
amplitude, (b) white-noise, and (c) square-wave excitations
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6.7 Influence of using Input/Output and Stochastic Algorithms

This section compares the modal periods identified with the non-parametric input/output

algorithm (ARX) with those identified using two stochastic (output-only) algorithms (AR

and SSI). Fig. 6.12 shows the results for these three algorithms. The mean values for the

periods identified with the two stochastic algorithms was slightly larger than the mean

values using the ARX algorithm. For example, the mean identified periods for mode 1

during the earthquake excitations is 0.33s (ARX), 0.37s (AR), and 0.39 (SSI). Also, the

identified mode 1 period fluctuated from test to test by up to 0.04s using the AR algorithm

(from Test 3A to Test 3B) and by up to 0.08s using the SSI algorithm (from Test 3A to

Test 3B). The fluctuation using the ARX method is less than 0.01 seconds.

There were also large differences between the identified damping ratios using the in-

put/output algorithm (ARX) with those using the stochastic algorithms (AR and SSI).

Fig. 6.13 shows the damping ratios identified with the three algorithms for the three types

of excitations. The damping ratios identified with the stochastic algorithms are closest to

those identified using the ARX algorithm for the white-noise excitations. In contrast, there

were large differences between the damping ratios for the earthquake and square-wave exci-

tations. For example, using the ARX algorithm, the average mode 1 damping ratio during

the earthquake excitations was 1.88%. Using the stochastic AR and SSI algorithms, the

estimated damping ratios for this mode were 6.98% and 11.15%. The ranges of the esti-

mated damping ratios were much larger while using the stochastic algorithms as well. For

example, under earthquake excitation, the mode 1 damping ratio identified with the SSI

algorithm varied from 5.63% to 16.78%.

Differences between the input/output algorithms and the stochastic algorithms are ex-

pected when the input excitation has non-random frequency content (such as the earthquake

excitations). Nonetheless, a difference in the identified periods of the structure was also

found when the target input of the system was white-noise, where there are no predominant

frequencies. This is likely due to a difference in the target and achieved white-noise excita-

tions. The frequency content of the excitations at the three bents for Test WN1112TB is

shown in Fig. 6.14.



121

The target white noise excitation had an unbiased frequency content from 0 to 30 Hz.

As seen in Fig. 6.14, the content of the input excitations was larger at multiple periods,

most notably at a period near 0.4s. This peak is near the first mode of the shaking table

specimen. Because the frequency of the excitation is indistinguishable from the frequency

content of the structure using output-only identification algorithms, this raised the identified

periods of the structure for modes 1 and 2.
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Figure 6.12: Identified periods using output-only and input/output algorithms for (a) low-
amplitude, (b) white-noise, and (c) square-wave excitations
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Figure 6.13: Identified damping ratios using output-only and input/output algorithms for
(a) low-amplitude, (b) white-noise, and (c) square-wave excitations
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Figure 6.14: Frequency content of base accelerations for WN1112TB

6.8 Summary and Conclusions

Shaking table tests were performed in the NEES site at the University of Nevada, Reno on

a two-span quarter-scale reinforced concrete bridge. Tests conducted on the bridge were

separated into low-amplitude and high-amplitude tests. The low-amplitude tests included

earthquake excitations (15 tests), white-noise excitations (7 tests) and square-wave exci-

tations (3 tests). Data from these low-amplitude tests provided a unique opportunity to

evaluate the ability of various algorithms and excitation types to accurately identify the

modal properties of the structure. The effectiveness of each of the methodologies for iden-

tifying the system was assessed by comparing the identified modal properties. A summary

of the findings of this research is listed in Table 6.21. Each of the components to this table

are discussed in the following sections.

Table 6.21: Conclusions from the comparison of modal identification strategies

Algorithm Data Response User Comput. Ident. Total

Use Expertise Demand Consistency Ident.

SLP Input/Output Acceleration Low High High Yes

ARX Input/Output Acceleration Medium Medium High Yes

SLP Input/Output Displacement Low High Medium No

ARX Input/Output Displacement Medium Medium Medium No

AR Output-Only Acceleration Medium Medium Low Yes

SSI Output-Only Acceleration High Low Low Yes
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6.8.1 Modal Property Identification

Two input/output identification algorithms (ARX and SLP) were used to identify the modal

properties of the shaking table specimen for three excitation types (earthquake, white-

noise, and square-wave). For both algorithms and all excitation types, the average periods

for the first three modes were identified as 0.33s, 0.26s, and 0.078s. Modes higher than

mode three were not identified from the algorithms due to their small participation in the

dynamic response of the system, measurement noise, and the sampling frequency of the

data acquisition system.

The identified damping ratios of the first three modes ranged from 1% to 4% for almost

all excitations using both algorithms. The few identified damping ratios that were outside

of this range occurred with mode 2. The large range for the identified damping ratios was

due to the small influence of deviations in the values of the damping ratios on the structural

response.

The first three mode shapes of the shaking table specimen involved combinations of

translation, in-plane twisting, and bending. For the earthquake excitations, mode 1 was

composed of slab translation (87%) and slab twisting (12%). Mode 2 was composed of slab

twisting (76%) and slab translation (24%). Mode 3 was composed of slab bending (92%)

and slab translation (7%). with a smaller component of slab twisting.

6.8.2 Sensitivity Analysis

The SLP algorithm estimates the modal properties of the structure by first calibrating the

structural parameters of the bridge (bent stiffnesses, deck stiffness, and modal damping

ratios). This allowed a study to be conducted to investigate the sensitivity of the structure

to the individual structural parameters.

The sensitivity study using the SLP algorithm found that the structure was most sensi-

tive to deviations in the bent stiffnesses and the slab modulus of rigidity. For all excitation

types, the objective function was less sensitive to the three damping ratios. The mode 3

damping ratio was the least influential parameter. This was attributed to the small influ-

ence of mode 3 on the dynamics of the system. Because the mode 3 contribution is already
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small, a slight change in the mode 3 contribution would have little effect on the system.

The insensitivity of the objective function to the damping ratios is responsible for the large

scatter in the identified damping using both the ARX and SLP algorithms.

6.8.3 Influence of Input/Output Algorithm Type

Two input/output identification algorithms were used to estimate the modal properties of

the structure. The autoregressive with exogenous excitation (ARX) algorithm was used to

estimate the properties of the structure non-parametrically from the base and bent accelera-

tions (Multi-Input/Multi-Output). This algorithm does not use any prior knowledge of the

structural parameters to make the estimations (non-parametric). The successive linear pro-

gramming (SLP) algorithm determined the modal parameters parametrically by performing

an eigen-analysis on a calibrated model of the specimen. This model was calibrated based

on a best-fit of the measured acceleration response at five locations along the bridge deck.

Both the non-parametric (ARX) and the parametric (SLP) input/output algorithms

gave similar results for the estimations of the periods, damping ratios, and predominant

components of the mode shapes of the first three modes of the shaking table specimen

for all excitation types. For example, the ratios of the periods estimated with the ARX

algorithm to those estimated with the SLP algorithm ranged from 0.96 to 1.02.

The ratios of the damping ratios estimated with the ARX algorithm to those estimated

with the SLP algorithm ranged from 0.45 to 1.64. This larger range was attributed to the

insensitivity of the structural response to small changes in the damping ratios.

The value of the basis vector component of each mode shape was similar for the two

algorithms. Taking the average results from the earthquake excitations as an example, the

ARX algorithm estimated that basis vector 1 made up 87% of mode 1. Using the SLP

algorithm, this value was 83%.

6.8.4 Influence of Excitation Type

Three types of motions (earthquake, white-noise and square-wave) were used to excite the

shaking table specimen during the low-amplitude tests. Because the ARX and the SLP
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algorithm both account for the frequency content of the excitation, there was very little

difference between the periods identified with the two algorithms. Using the ARX algorithm

as an example, the mode 1 period identified during Test 7 was 0.335s. The periods identified

with the white-noise and square-wave tests directly after Test 7 (WN0709TA and SQ0709)

were 0.333s and 0.329s.

The mode 3 damping ratios were also similar for each excitation type. Using the ARX

algorithm as an example, the mean damping ratio of mode 1 was identified as 1.85% (earth-

quake excitation), 2.08% (white-noise excitation), and 1.99% (square-wave excitation).

The mode shapes identified with each algorithm were also insensitive to the excitation

type. For example, using the ARX algorithm the mean percentage of mode 1 described

by basis vector 1 was 87.4% (earthquake excitation), 85.9% (white-noise excitation), and

89.9% (square-wave excitation).

6.8.5 Influence of Data Measurement Type

Accelerations and displacements were measured along the bridge deck at the same locations.

The ARX and SLP algorithms were used to identify the modal properties of the specimen

for both the displacement and the acceleration data sets. With the results, the influence of

frequency content and noise content within the measured data was investigated.

Modal estimates were not as consistent using displacement data as those using accel-

eration data. The mode 1 and 2 periods identified using displacement data were slightly

larger than those using acceleration data for all excitation types. Also, mode 3 was difficult

to capture using displacement data for earthquake and square-wave excitations. This was

attributed to the high level of noise in the bent 3 data, which reached 55% of the peak dis-

placement response. Noise in the acceleration data only reached 5% of the peak acceleration

response.

6.8.6 Influence of input/output and stochastic algorithms

A common practice for in-situ structural identification of bridges is to use only the output

response of the structure to identify the modal properties using stochastic (output-only)
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algorithms. These algorithms give the correct modal properties of the structure if the input

excitation is white-noise. However, without the input data, the frequency content of the

ground motion are indistinguishable from the modal properties of the bridge. This research

investigates the influence of frequency content within the input motion on the identified

modal properties by using both input/output and output-only algorithms.

The modal properties using the stochastic (output-only) identification algorithms (AR

and SSI) deviated much more than those using the ARX algorithm. During the earthquake

excitations, the identified periods for modes 1 and 2 deviated from test to test by as much

as 0.04s using the AR algorithms and up to 0.08s using the SSI algorithm. The deviation

of the periods using the ARX algorithm was less than 0.01s. The mean mode 1 and 2

periods estimated with the stochastic algorithms were slightly larger than those using the

ARX algorithm for all excitation types. For example, the mean mode 1 period for the

low-amplitude earthquake excitations was identified as 0.33s (ARX), 0.37s (AR) and 0.39s

(SSI).
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Chapter 7

MODEL DEVELOPMENT
(SHAKE-TABLE TESTS)

A three-dimensional numerical model was developed in OpenSees (OpenSees Develop-

ment Team, 2002) to simulate the dynamic response of the 2-span, quarter-scale shaking

table specimen. The initial model was developed prior to the shaking table tests to aid

in developing the ground motion protocol. Fig. 7.1 illustrates the OpenSees model of the

shaking table specimen. Each of the components in this illustration are discussed in the

following sections. The development of the components of the numerical model (Table 7.1)

is discussed within this chapter.

Table 7.1: Components of the OpenSees model

Model Component Section

Column Modeling 7.1

Cross-Beam Modeling 7.2

Slab Modeling 7.3

Mass Distribution 7.4

Numerical Procedures 7.5

Figure 7.1: Illustration of the OpenSees model

The model calibration procedure, performed following the shaking table tests, is docu-

mented in Chapter 8. Chapter 8 also evaluates the analytical model.
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7.1 Column Modeling

The columns of the shaking table specimen were modeled in OpenSees with distributed-

plasticity forced-based elements (nonlinearBeamColumn). Distributed plasticity elements

were used to capture the local strain response at the column-anchorage interfaces. A dis-

tributed plasticity model also provides a consistent transition between a fixed-base model

(the shaking table specimen) and a model with drilled shaft foundations (the centrifuge

specimen). This consistent transition was necessary for investigating the effects of soil-

foundation-structure interaction.

Using a distributed plasticity model allows the flexibility due to the column and the

flexibility due to the anchorage slip to be modeled separately. The components of the

column elements are presented in Table 7.2 and illustrated in Fig. 7.2.

Table 7.2: Column components in the OpenSees model

Column Components Section

Nonlinear Material Models 7.1.1

Elastic Response Components 7.1.2

Column Cross-Section Discretization Scheme 7.1.3

Integration Scheme 7.1.4

Anchorage Slip 7.1.5

As displayed in Fig. 7.2, the columns were composed of four main components. The

inelastic flexural response of the columns were modeled using nonlinear elements (nonlin-

earBeamColumn), which required a cross-section to be defined at each of the integration

points. The elastic shear and torsional flexibilities of the specimen were added to the ele-

ment. Additionally, the flexibility due to anchorage slip was modeled in OpenSees with a

zeroLengthSection element. Each of the column components are discussed in the following

sections.

7.1.1 Nonlinear Material Models

The flexural response of the nonlinearBeamColumn elements was developed using the mea-

sured concrete and steel properties from the shaking table tests. The compressive strength
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Integration Points

Element Nodes

nonlinearBeamColumn 

Element

zeroLengthSection  

Element

+ AG + GJ 

Fixed-Fixed Column OpenSees Model

(Elastic Shear and  

Torsion Response)

Cross-Section Discretization

(Column & Slip Section)

Figure 7.2: Elements of the numerical column model

of the concrete was determined from cylinder tests near the day of testing (Table 4.3). The

concrete was modeled in OpenSees using the Popovics curve with parameters determined

from the Mander confinement model (Mander et al., 1988). The amount of column con-

finement was determined from the reinforcement detailing (Appendix B). The properties

of the unconfined and confined concrete parameters used in the numerical model are shown

in Table 7.3. The Popovics curves for the unconfined and confined concrete are shown in

Fig. 7.3. The concrete was modeled in OpenSees using the Concrete04 constitutive model.

Table 7.3: Concrete test properties

Concrete f ′c(psi) εco εcu Ec(ksi)

Cover 5900 0.002 0.004 4400

Core 7800 0.005 0.017 4400
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Figure 7.3: Confined and unconfined concrete models.

Three coupon tests of the longitudinal reinforcement were conducted at the University

of Nevada, Reno. The measured stress-strain relationships from these three tests are shown

in Fig. 7.4. The elastic modulus of the steel was estimated as the average of the three

computed elastic moduli from the coupon tests (29050 ksi). The remainder of the stress-

strain curve was fit using a Giuffre-Menegotto-Pinto curve (Taucer et al., 1991) up to a strain

of 0.10 in/in. The parameters for the calibrated steel model are presented in Table 7.4. The

estimated stress-strain response using these parameters is shown in Fig. 7.4. The steel was

modeled in OpenSees using the Steel02 constitutive relationship with the parameters in

Table 7.4.

Table 7.4: Estimated steel properties

Property Es (ksi) Esh (ksi) R σ0 (ksi)

Reinforcement 29050 191 2.32 81.5

7.1.2 Elastic Response Components

The nonlinearBeamColumn element provides nonlinear flexural response. Elastic shear

and torsional flexibilities were estimated based on gross-section properties of the column.

These elastic components of the column response were aggregated into the inelastic flexural



133

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

Strain (in./in.)

S
tr

es
s 

(k
si

)

Material Test 1
Material Test 2
Material Test 3
Menegotto−Pinto Estimation

Figure 7.4: Three steel coupon tests and calibrated Giufre-Menegotto-Pinto steel model.

response of the column element. The shear modulus of the concrete (1800 ksi) was calculated

using a Poisson’s ratio of 0.2 and the measured concrete compressive strength reported in

Chapter 8 (5900 psi).

7.1.3 Column Cross-Section Discretization Scheme

The nonlinearBeamColumn element requires a cross-section to be defined at each of the

integration points. The cross-section was modeled in OpenSees with a series of fiber ele-

ments, each fiber having an independent constitutive relationship. An accurate estimation

of the column behavior requires accurate modeling of the column cross-section. Increasing

the discretization of the cross-section reduces mesh sensitivity but increases computational

demands. A balance between convergence and computational efficiency was determined by

Berry (2006).

In this study, Berry compared the moment-curvature relationships for various column

discretization schemes to those from a fully discretized section for 75 circular spirally-

reinforced flexure-critical concrete columns from the UW-PEER column database (Berry

et al., 2004). The convergence study found that the discretization scheme presented in Ta-
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ble 7.5 (Fig. 7.5), which uses a constant discretization scheme for the entire core, adequately

modeled the moment-curvature behavior while maintaining computational efficiency. Be-

cause the columns had circular sections, the fibers were defined by radial and tangential

discretizations.

Table 7.5: Cross-section discretization

Section Disc. Dir. Disc. #

cover tangential 20

radial 1

core tangential 20

radial 10

Section Disc. Dir. Disc. #

cover tangential 20

radial 1

inner core tangential 10

radial 2

outer core tangential 20

radial 5

Figure 7.5: Column cross-section discretization

Berry found that computational demands could be reduced significantly without sacrific-

ing convergence if the core was non-uniformly discretized. A moment-curvature analysis of

the column section of the shaking table specimen determined that the depth of the neutral

axis at first yield of the longitudinal reinforcement was approximately 29% of the column

diameter. Since the inner half of the concrete core does not extend into the neutral axis,

this part of the core could have less discretization without significantly affecting the results.

In his convergence study, Berry found that the best balance between accuracy and efficiency
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using a coarser inner core discretization scheme was obtained using the specifications shown

in Table 7.5 (Fig. 7.5).

7.1.4 Integration Scheme

The nonlinearBeamColumn element in OpenSees uses the Gauss-Labotto integration scheme.

This integration scheme includes integration points at the ends of the member to capture

plasticity near the joints. Using this integration scheme, the location of the plasticity of

these elements is largely controlled by the extent of hardening in the system and the number

of integration points in the element. Berry (2006) investigated the number of integration

points needed to best estimate the force-displacement relationship and measured strains for

eight ductile columns under double curvature and various hardenings: hardening columns,

neutral columns, and softening columns. Based on his findings, Berry suggested using six

integration points.

7.1.5 Anchorage Slip

The anchorage rotation due to bond slip was modeled in OpenSees using zero-length fiber

sections (zeroLengthSection). This strategy makes it possible to model three-dimensional

column response. The zero-length fiber section used the same section discretization as the

column elements. To obtain a moment-rotation response from a zero-length section, the fiber

properties needed to be stress-displacement relationships. The stress displacement relation-

ship of the steel was modeled as the stress-slip relationship for the anchorage zone, which

was calibrated using strain gauge data, and is presented in Chapter 8. The stress-strain re-

lationship of the anchorage concrete was assembled by using the stress-strain relationship of

the column core concrete up to fco. Because of the amount of confinement provided by the

steel and surrounding concrete within the anchorage zone, the concrete was assumed to not

degrade following the peak concrete strength. The stress-displacement relationship for the

anchorage concrete was assumed to be this assembled stress-strain relationship, multiplied

by an effective concrete depth over which an assumed constant stress acts.

This effective concrete depth was calibrated by Berry (2006) using eight test columns
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from the UW-PEER column database (Berry et al., 2004). He found that the bond-slip

rotation was adequately modeled when the effective concrete depth was estimated as the

depth to the neutral axis (d) at the first yield of the longitudinal yield (εy). From a moment-

curvature analysis of the shaking table columns, the neutral axis depth at first yield of the

longitudinal reinforcement was determined to be approximately 29% of the column diameter

(D) (Fig. 7.6). As seen in Fig. 7.6, the neutral axis depth levelled off after the initial yield

of the longitudinal reinforcement. The stress-displacement relationship for the anchorage

concrete is shown in Fig. 7.7.
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Figure 7.6: Depth of neutral axis as a function of the strain in the longitudinal reinforcement.
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Figure 7.7: Stress-displacement relationship for the anchorage concrete

7.2 Cross-Beam Modeling

The bent cross-beams were modeled in OpenSees using elastic elements (elasticBeamCol-

umn) to represent the cracked effective stiffness of the cross-beam and slab. The appropri-

ateness of this elastic modeling strategy was determined by comparing the yield moment

of the cross-beams with the plastic moment capacity of the columns. For example, if the

effective width of the cross-beam was approximated as the diameter of the column (12 in.)

plus the depth of the slab (15 in.), the yield moment for the cross-beams on bents 1 and 3

is approximately 2000 k-in. This is more than twice the calculated plastic capacity of the

columns (750 k-in.). Therefore, the cross-beams in the structure would remain elastic well

beyond the plastic moment capacity of the columns, allowing the cross-beam elements to be

modeled elastically. The effective width of the cross-beam elements used in the OpenSees

model is calibrated in Chapter 8.

7.3 Slab Modeling

The slab was modeled three ways: (1) as a rigid diaphragm directly connecting the tops

of the columns, (2) as a beam element (with the same moments of inertia as the slab),

connecting to the center of each bent, and (3) as a flat slab using quadrilateral shell elements
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(ShellMITC4). An illustration of the three models is shown in Fig. 7.8.

Figure 7.8: Slab types tested in analysis: (a) rigid diaphragm, (b) beam, and (c) flat slab

The rigid diaphragm (Fig. 7.8a) was created by connecting the top of the columns

with elastic elements that possessed very stiff properties. ”Rigid” elements were not used

in OpenSees because of numerical instabilities that occurred during modeling. Because the

diaphragm was essentially rigid, all masses and loads were added to the tops of the columns.
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Beam elements with the same dimensions of the slab were used to approximate the slab

while maintaining the same moments of inertia (Fig. 7.8b). Using this element, the slab

self-weight and self-mass were distributed along the length of the beam. Additionally, the

external slab weights were modeled as point loads along nodes in the beams, raised to the

elevation of the center of gravity of the masses.

The flat slab (Fig. 7.8c) was modeled using quadrilateral shell elements. A slab thickness

of 14 in. was used for the interior spans, while a slab thickness of 15 in. was used for the

exterior cantilever spans. The masses and loads due to the weight of the slab and the

external weight on top of the slab were distributed over the nodes of the slab. The loads

due to the vertical curvature of the longitudinal post-tensioning were distributed along the

slab. Longitudinal loads and moments were also applied to the nodes at the ends of the

slab to simulate the forces at the post-tensioning anchorages.

Preliminary analyses showed that the computational demand using the quadrilateral

shell elements was large compared with the other two modeling strategies. The computa-

tional demands were much smaller using the rigid diaphragm. Although the response of the

rigid diaphragm system was similar to that of the shell element system, the rigid diaphragm

system was only able to estimate the first two transverse modes (rigid body translation and

rigid body rotation of the slab). It was unable to reproduce the third transverse mode,

which was beam bending of the slab.

The computational demands decreased significantly without sacrificing the dynamic

properties of the response by using beam elements to model the slab. Therefore, a beam

element with the same stiffness properties as the flat slab was used in the OpenSees model.

7.4 Mass Distribution

The mass in the system came from two sources: the self weight of the components of the

structure, and the external weights added to the top of the slab to achieve a column axial

load ratio of approximately 0.08Agf
′
c.

The masses due to the self-weight of the bridge components were modeled as point

masses. Therefore, to distribute the masses along the slab, the slab was discretized into

multiple elements, and the masses were lumped at each node based on tributary area. The
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cross-beams were assumed to be massless because this mass was already accounted for in

the slab calculations. The mass due to half of the column weight was lumped at the top of

each column.

The masses due to the external weights on top of the slab were lumped at nodes above

the slab elements at the location of the center of gravity of the external weights. These

nodes were connected to slab nodes directly beneath them with rigid links.

Masses were only modeled in the transverse and longitudinal directions due to numerical

problems when vertical masses were applied. The vertical loads in the system were assumed

to be the system mass multiplied by the acceleration of gravity. The vertical system loads

were placed at the same locations as the masses.

7.5 Numerical Procedures

The Newton-Raphson algorithm was the default method for advancing to the next time step

in the OpenSees analysis. If this method failed to converge within a tolerance of 1E-8 after

1000 iterations, the algorithm was temporarily switched to the modified Newton-Raphson

algorithm. To reduce computational demand, this algorithm was switched back to the

Newton-Raphson algorithm once convergence was obtained.

The Newmark average acceleration method (Newmark, 1959) was used as the integration

algorithm in OpenSees. The suggested values of γ = 0.5 and β = 0.25 were used to create

an unconditionally stable integration algorithm and to minimize errors associated with

numerical damping.
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Chapter 8

MODEL CALIBRATION AND ASSESSMENT
(SHAKE-TABLE TESTS)

Following the shaking table tests, the numerical model was refined by calibrating para-

meters specific to the shaking table specimen (e.g., bond stress, damping ratios) through

comparisons with measured data. The calibrated parameters are presented in Table 8.1.

Table 8.1 also shows the measurements that were used to calibrate each parameter. The

calibration procedure for each of the parameters is discussed within the first three sections

of this chapter.

Table 8.1: Calibration Parameters

Parameter Calibration Source section

Average Bond Stress Strain Gauge Comparisons 8.1

Effective Beam Width Drift - Joint Rotation Envelopes 8.2

Modal damping ratios System Identification 8.3

Each of the specimen specific parameters was independently calibrated using measured

data. The last four sections in this chapter evaluate the ability of the numerical model

to simulate the global response of the shaking table specimen. For this evaluation, the 23

earthquake excitations (up through Test 20) were applied to the OpenSees model in series to

include the accumulation of structural damage. The response quantities that are evaluated

for this model are outlined in Table 8.2.

Table 8.2: Assessment Parameters

Parameter Assessment Source section

Total Base Shear Accelerometer Data 8.4

Displacement Maxima Potentiometer Data 8.5

Modal Properties Accelerometer Data and System I.D. 8.6

Displacement Histories Potentiometer Data 8.7
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8.1 Anchorage Slip Calibration

The stress-slip displacement relationship of the column anchorages was based on a two-

component bond stress model (Lehman, 1998). The model was modified to account for

development of bond stress at low bar strains. An illustration of the model is presented in

Fig. 8.1.

τ(σ)

σ

τe(σ)

τi(σ)

τd(σ)

σ σd y

Figure 8.1: Bond model illustration

In Fig. 8.1, σ is the axial stress in the longitudinal reinforcement, σd is the axial stress

in the reinforcements in which the bond stress is fully developed, and σy is the yield stress

of the reinforcement. τd(σ) is the developing bond stress, linearly related to the axial stress

in the reinforcement below σd. τe(σ) is the elastic bond stress, which is considered to

be constant between σd and σy. τi(σ) is the bond stress between the concrete and the

reinforcement after the bars have yielded (inelastic bond stress). The components of the

model are described in Eq. 8.1,

τ(σ) =

{ τe
σ

σd
= a

σ

σd

√
f ′c σ ≤ σd

τe = a
√

f ′c σd ≤ σ ≤ σy

τi = b
√

f ′c σy ≤ σ

(8.1)

where a and b are the elastic and inelastic bond stress coefficients respectively. Using the

bond stress defined in Eq. 8.1, the change in strain (change in stress) along the length of
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the reinforcement is described by the differential equation presented in Eq. 8.2.

dF

dx
=

πd2
b

4
dσ

dx
= τ(σ)πdb

dσ

dx
=

4τ(σ)
db

(8.2)

The three parameters of the bond model (σd, a, and b) were calibrated by comparing

the strains measured in the columns at the anchorage-column interface with the strains

measured six inches within the anchorage at 24 locations within the shaking table structure.

An illustration of the strain gauge layout for each column is shown in Fig. 8.2. Of the 24

possible strain gauge sets, measurements from both of the strain gauges were reliable up to

an interface strain of 0.015 in/in for 14 sets. The envelopes of the interface gauge strains

versus the anchorage gauge strains for the 14 strain gauge sets are shown in Fig. 8.3.

GAUGE A

GAUGE B

GAUGE A

GAUGE B

COLUMN BOTTOM COLUMN TOP

Figure 8.2: Strain gauges used for anchorage slip calibration

The best fit of the envelopes from the 14 strain gauge sets shown in Fig. 8.3 was realized

using elastic and inelastic bond stress coefficients of a = 8 and b = 4, and a development

stress of σd = 0.25σy. Using these parameters, the stress-slip relationship for the reinforce-

ment was determined by integrating the strain across the bar for a given interface bar stress

(Fig. 8.4). A bilinear hysteretic material was used in OpenSees to model this stress-slip

behavior. The bilinear approximation is shown in Fig. 8.4. The parameters for the bilinear

model are shown in Table 8.3.
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Table 8.3: Properties for the stress-slip model in OpenSees

Property E (ksi) Esh (ksi) σ0 (ksi)

Reinforcement 5000 150 81.5
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Figure 8.3: Strain gauge envelopes with best fit using the 2-component bond stress model.
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Figure 8.4: Estimated stress-slip relationship using modified 2-component bond stress model
and bilinear approximation
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8.2 Effective Beam Width Calibration

The effective beam width for the bent caps was calibrated by comparing the column drift-

column joint rotation envelopes from a pushover analysis in OpenSees to the envelopes

calculated from the measured shaking table data.

The column-beam joint rotation was not measured directly during the shaking table

tests. Instead, these rotations were calculated from a series of four vertical displacement

measurements along each bent. The process of calculating the column-beam joint rotations

is documented in Section 4.7.

As a result of measurement noise in the bent 3 data, and the small contribution of the

column joint rotations to the recorded vertical displacements measured along the bent, the

bent drift-column joint rotation envelope for bent 3 could not be determined accurately. The

envelopes for bents 1 and 2 are shown in Fig. 8.5. The best fit of the measured envelopes

for bents 1 and 2 was obtained using a beam width of 25 in (Fig. 8.5). This width is

approximately equal to the column diameter plus the slab depth.

Along with the beam-column joint rotation envelopes, the vertical displacement of the

beam-column joint were also calculated. These envelopes are also shown in Fig. 8.5. In

Fig. 8.5, the west column experiences more tension than the east column during positive

drift. Similarly, the west column is in more compression during negative drift. Although for

this level of beam width, the column elongation was insensitive to changes in beam width,

the envelopes of the column elongation vs. bent drift give confidence to the calculation for

the joint rotation. For example, both the simulated data and the measured data show that

the west column (tension column during positive drift) elongates more than the east column

during positive drift. The simulated envelopes are similar for bents 1 and 2.

Given the reinforcement detailing specified in the design documents for the cross-beams

(App. B), the cracked modulus of elasticity of a 27-in. wide beam is 2100 in4. Because the

slab beams were post-tensioned transversely prior to longitudinally post-tensioning them to

the cross-beams, it was assumed that the cross beams could crack. Also, the yield moment

of the beams was much larger than the plastic moment capacity of the columns. Therefore,

the beams would remain in a cracked elastic state throughout the tests. For computational
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efficiency, the beam was modeled in OpenSees as an elastic element with the same moment

of inertia as the cracked moment of inertia of the inelastic element. This translates into an

effective beam width of approximately 9 in.
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Figure 8.5: Column drift - column rotation relationship



147

8.3 Modal Damping Ratio Calibration

The modal damping ratios were estimated using system identification techniques and the

base and bent accelerations. The results from these methods during the low-amplitude

tests are documented in Chapter 5. The estimated modal damping ratios for all of the

low-amplitude earthquake excitations are shown in Tables 6.4 - 6.6. Viscous damping in

OpenSees is controlled using Rayleigh damping, and was approximated as the average damp-

ing for the first three transverse modes throughout the low amplitude tests (ξ1,m = 1.9%,

ξ2,m = 2.6%, ξ3,m = 1.8%), leading to a target damping ratio of 2.1% for the numerical

model.

8.4 Total Base Shear Assessment

Because of the indeterminacy of the system, the force distribution among the bents is

unknown. However, the total base shear in the shaking table system can be approximated

as the sum of the bent accelerations multiplied by the tributary masses. The envelope of

the total base shear as a function of the center of mass displacement was developed from

the 23 earthquake excitations, and is shown in Fig. 8.6.
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Figure 8.6: Envelope of total base shear vs. the displacement of the center of mass for the
21 earthquake excitations.
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As seen in Fig. 8.6, the total base shear estimated from the OpenSees model (initial

slope of 760 k/in) is similar to the measured total base shear (initial slope of 730 k/in) for

center of mass displacements under 1 in. Also, the estimated ultimate base shear in the

positive direction is 1.3% larger than the measured (386k measured vs. 391k estimated),

while the estimated ultimate base shear in the negative direction is 2.7% larger than the

measured (-366k measured vs. -376k estimated).

8.5 Peak Displacement Assessment

The transverse stiffness of the slab is large relative to that of the bents. As a result, the

majority of the response of the shaking table specimen was attributed to either rigid-body

translation or rigid-body rotation of the slab. The rigid-body translation of the shaking

table specimen was assumed to be the displacement of the center of mass, which through

mass symmetry is the displacement of bent 2. The maximum and minimum center of mass

displacements for the measured and estimated responses during each of the 23 earthquake

excitations is presented in Fig. 8.7. The relative displacement was also monitored (Fig. 8.8).

The relative displacement was defined as the difference in the displacements between bents

1 and 3.

The estimated center of mass displacement is similar to the measured for all of the tests,

particularly the low-amplitude tests. For the last five tests (Tests 16-20), the estimated peak

center of mass displacement was slightly smaller than the measured for both the positive

and negative directions. A similar trend is also visible with the relative displacements. As

shown in Fig. 8.8, the estimated relative displacement compares well with the measured

during the low-amplitude tests. However, Tests 18-20 show much larger deviations from the

measured data.
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Figure 8.7: Maximum and minimum center of mass displacements for the measured and
estimated responses during (a) low-amplitude tests and (b) all tests.
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Figure 8.8: Maximum and minimum relative displacements for the measured and estimated
responses during (a) low-amplitude tests and (b) all tests.

8.6 Modal Period Progression Assessment

Linear system identification techniques (Chapter 5) were employed to determine the effective

modal properties for the first three modes of the structure from the measured and the
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estimated response. The periods of the first three modes for each of the tests are shown in

Fig. 8.9 for the estimated and measured data.
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Figure 8.9: Comparison of estimated periods for the measured and simulated data.

Fig. 8.9 shows that the first three periods estimated from the OpenSees data are close

to the periods estimated from the measured data at the beginning of the low-amplitude

tests. The results begin to diverge slightly during the low amplitude tests. By the end of

the low-amplitude tests (Test 12) the estimated mode 1 period from the OpenSees data

(0.336 s) is 5% lower than the mode 1 period from the measured data (0.354 s). Because

the slab is post-tensioned in both the transverse and longitudinal directions, an increase

in the periods of the structure can be directly related to a decrease in the bent stiffness.

Therefore, Fig. 8.9 suggests that the OpenSees model does not capture the extent of column

softening during the low-amplitude tests.

The OpenSees model captures the period elongation during the high-amplitude tests,
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although the extent of period elongation is not as large as the measured response. For

example, the mode 1 period of the estimated model (0.561s) is 21% less than the mode 1

period of the measured data (0.707s). This trend can also be seen from the displacement

histories in the time and frequency domains, which are presented in the following section.

8.7 Displacement History Assessment

A more demanding measure of the ability of the OpenSees model to accurately estimate

the dynamic response is a comparison of the bent displacement histories in the time and

frequency domains. The bent displacement histories for significant tests are presented in

Figs. 8.10 to 8.15. The significance and key dynamic properties of these tests are shown in

Table 8.4.

Table 8.4: Damage levels and properties of significant tests

Test Test Significance
Max. Bent Drift (%) Max. Table Acc. (g)

Bent 1 Bent 2 Bent 3 Bent 1 Bent 2 Bent 3

1B First full-scale low-amplitude test 0.20 0.14 0.14 0.21 0.32 0.25

12 Last low-amplitude test 0.30 0.18 0.21 0.07 0.10 0.08

15 First observed spalling 2.14 1.31 2.42 0.67 0.65 0.72

16 First visible transverse reinforcement 3.76 2.41 3.22 0.98 0.94 1.25

18 Incipient buckling 4.07 3.42 5.58 1.56 1.81 1.59

20 Fracture of Longitudinal Reinforcement 3.20 3.18 5.44 1.26 1.30 1.44

Tests 1B and 12 were chosen to show how well the OpenSees model captures the accu-

mulation of column damage due to long-term low-amplitude cycling. The other four tests

(Tests 15, 16, 18, and 20) were chosen because of their significance in the progression of

column damage.

As seen in Fig. 8.10, the OpenSees model accurately estimates both the amplitude and

periodicity of the measured displacement histories for all three bents during Test 1B. As

discussed previously, bent 3 had a lot of measurement noise within the system. As a result,

the high-frequency component of bent 3 was not well reproduced.

Although the maximum bent displacements during Test 12 (Fig. 8.11) are similar for the

three bents (maximum measured and estimated center of mass drifts of 0.16% and 0.18%,

respectively) the periodicity of the estimated displacement history has already begun to
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diverge from the measured data. This divergence was attributed to the accumulation of

cracks within the columns of the experimental specimen throughout the experiments, which

the numerical model did not simulate.

Test 15 (Fig. 8.12) marked the onset of spalling. The OpenSees model performed well

in matching both the amplitude and periodicity of the measured data until the post-peak

displacement response. For example, the maximum center of mass drifts for the measured

and estimated data are 1.15% and 1.19%, respectively. After the peak displacement re-

sponse, the OpenSees model does not match the amplitude of the subsequent cycles well.

This trend is also visible for the remaining five tests.

Although the estimated peak displacements continue to be similar to the measured data

for Tests 16 and 18 (Figs. 8.13 - 8.14), the periodicity and post-peak amplitudes of the

response begin to diverge from the measured displacement data.

The measured and estimated peak displacements are also similar for Test 20 (Fig. 8.15).

However, the OpenSees model poorly estimates the measured displacement histories at this

level of damage. This was attributed to the current inability of the model to capture bar

buckling and bar fracture in OpenSees.
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Figure 8.10: TEST1B displacement histories for the three bents in the time and frequency
domain.
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Figure 8.11: TEST12 displacement histories for the three bents in the time and frequency
domain.
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Figure 8.12: TEST15 displacement histories for the three bents in the time and frequency
domain.
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Figure 8.13: TEST16 displacement histories for the three bents in the time and frequency
domain.
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Figure 8.14: TEST18 displacement histories for the three bents in the time and frequency
domain.
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Figure 8.15: TEST20 displacement histories for the three bents in the time and frequency
domain.
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Chapter 9

MODELING OF STATIC COMPONENT TESTS

Pseudo-static component tests were conducted by Ramirez and Makido (2006) at Purdue

University to evaluate the effects of reinforcement detailing, scale, and span-to-depth ratio

on the cyclic response of columns and bents. Two of the specimens that were tested at

Purdue had properties nominally identical to those of the columns in the shortest bent in

the shaking table tests, which made it possible to compare the results from these tests with

the calculated response from the OpenSEES model.

This chapter describes the specimens tested at Purdue University (Section 9.1), the

instrumentation used during the tests (Section 9.2), and the development of the target dis-

placement history (Section 9.3). This chapter also compares key force and deformation mea-

surements between the numerical model simulations and the measured experimental data

(Section 9.4), and compares the estimated and observed damage progression (Section 9.5).

9.1 Specimen Description

A set of five column and bent specimens were tested at Purdue University. The key features

of each specimen are listed in Table 9.1.

Table 9.1: Component specimens tested at Purdue University (Makido, 2007)

Component Bent Scale Height Span-to-Depth Transverse

Type Name (in.) Ratio Reinforcement Ratio

Bent B-1 1:4 60 5 0.93

B-2 1:4 60 5 0.47

Column C-1 1:2 120 5 0.85

C-2 1:2 72 3 0.85

C-3 1:2 72 3 0.43

Two of the five specimens tested at Purdue University had nominally identical properties
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to the columns in bent 3 of the shaking table tests, including a quarter-scale bent (Specimen

B-1) and a half-scale column (Specimen C-1). Because the shaking table specimen was an

indeterminate system, a primary objective of these component tests was to provide insight

into the force-deformation response of the shortest bent of the shaking table specimen, and

to assess the accuracy of the numerical model.

The other columns tested at Purdue made it possible to observe the effects of: transverse

reinforcement ratio (Specimens B-1 vs. B-2, and Specimens C-2 vs. C-3), scale (Specimens

B-2 vs. C-1), and span-to-depth ratio (Specimens C-1 vs. C-2). This chapter focuses on the

response of Specimens B-1 and C-1 (illustrated in Fig. 9.1) for comparison with the shaking

table tests. Photographs of the two specimens are shown in Fig. 9.2.

Courtesy of Makido (2007)

Figure 9.1: Illustration of Purdue specimens B-1 and C-1

The key geometric and material properties for the two specimens are listed in Tables 9.2

and 9.3, respectively. The target concrete strength for these specimens was 5000 psi. The

measured concrete strengths for Specimens B-1 and C-1 on the day of testing was 4200

psi and 5500 psi, 16% lower and 10% higher, respectively, than the target strength. The

measured concrete strength of the columns in the shaking table specimen was 5900 psi. The

steel properties were obtained through three coupon tests for each specimen.
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Courtesy of Makido (2007) Courtesy of Makido (2007)

Figure 9.2: Test setup for (a) specimen B-1 and (b) specimen C-1

Table 9.2: Geometric properties of the Purdue specimens (Makido, 2007)

Member Property Specimen B-1 Specimen C-1 Ratio

Column Dimensions Diameter (in.) 12 24 1:2

Clear Cover (in.) 0.75 1.50 1:2

Core Diameter (in.) 10.31 20.62 1:2

Column Height (in.) 60 120 1:2

Column Spacing (in.) 72 NA NA

Column Reinforcement No. of Longitudinal Bars 16 16 1:1

Bar Size #3 #6 1:2

Longitudinal Steel Ratio (%) 1.56 1.56 1:1

Spiral Bar W2.9 3 NA

Spiral Spacing (in.) 1.25 2.5 1:2

Spiral Bar Diameter (in.) 0.192 0.375 1:1.95

Spiral Bar Area (in.2) 0.029 0.11 1:3.79

Transverse Volumetric Steel Ratio (%) 0.93 0.85 1:0.91

Beam Dimensions Width (in.) 32 NA NA

Depth (in.) 18 NA NA

Table 9.3: Measured material properties for the Purdue specimens (Makido, 2007)

Material Property Shake Table Specimen B-1 Specimen C-1

Concrete f ′c (ksi) 5.9 4.2 5.5

Steel fy (ksi) 70 68 63

fsu (ksi) 97 95 93

E (ksi) 29000 28000 27000

εu 0.12 0.10 0.14

9.2 Instrumentation

Load cells, potentiometers, and strain gauges were used to measure the response of all of

the specimens. The instrumentation for Specimens B-1 and C-1 are listed in Table 9.4.
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Table 9.4: Instrumentation for Specimens B-1 and C-1 (Makido, 2007)

Instrument Type Measurement Instrument Quantity

Specimen B-1 Specimen C-1

Load Cells Lateral Force 1 1

Vertical Force 2 2

Potentiometers In-Plane Column Displacement 2 2

Out-of-Plane Column Displacement 2 2

Vertical Column Displacement 2 2

Column Rotation 16 16

Strain Gauges Longitudinal Steel Strains 106 27

Transverse Steel Strains 12 0

Totals 143 52

Displacements at the tops of the columns in the transverse, longitudinal, and vertical

directions were measured using two string potentiometers each. For Specimen B-1, the

vertical potentiometers were placed on the outside of each column. For Specimen C-1,

the vertical potentiometers were placed on both sides of the column. Column rotations

and shear deformations were measured at four locations for each specimen (illustrated in

Fig. 9.3) using four sets of four gauges: vertical (2), horizontal (1), and diagonal (1).

Strains were measured on the longitudinal reinforcement for both specimens, and on

the transverse reinforcement for Specimen B-1, as illustrated in Fig. 9.4. The longitudinal

strain gauges were located on six bars at each cross-section, with five cross-sections at each

column joint. The first cross-section was located at the column-anchorage interface. Two

cross-sections were located within the anchorages and the columns. Strain gauges were

placed on the transverse reinforcement at two locations within three cross-sections at each

joint.
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9.3 Target Displacement History

Specimens B-1 and C-1 were tested to gain insight into the response of the shortest bent

within the shaking table specimen. For lightly confined columns, Ranf et al. (2005) found

that for some critical damage levels (bar buckling, loss of lateral load capacity, loss of axial

load capacity), large amounts of plastic displacement reduced the maximum displacement

before damage. To account for this effect, the target displacement history for the Purdue

tests was chosen to simulate the amount of cumulative plastic displacement that bent 3 had

experienced during the shaking table tests. Fig. 9.5 shows the target displacement history

for the Purdue specimens. The amplitudes of each displacement cycle are listed in Table 9.5.

The target displacement history for the component tests resembles a standard cyclic

test. The amplitudes of the drift at each set were determined by a rainflow analysis of

the displacement history of bent 3 during the shaking table tests. To better match the

cumulative plastic deformation in the shake-table tests, only two cycles were used in sets

with larger displacements. Fig. 9.6 plots the maximum displacement versus the cumulative

plastic deformation for the component specimens and for bent 3 of the shaking table tests.

As seen in this figure, the target displacement history for Specimens B-1 and C-1 reproduces

the amount of cumulative plastic deformation in the shaking table specimen throughout the

test history.

Table 9.5: Target drift ratios for Specimens B-1 and C-1

Set Cycle Drift (%)

1 1-3 0.08

2 4-6 0.25

3 7-9 0.50

4 10-12 0.80

5 13-15 1.20

6 16-18 2.40

7 19-21 3.20

8 22-23 3.80

9 24-25 4.40

10 26-27 5.00

11 28-29 5.40
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9.4 Response Comparisons

To model the column and bent tests, the numerical model of the shaking table specimen

was adjusted to incorporate small differences in the material properties (measured concrete
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and steel properties) and geometric properties (effective cross beam). The differences in the

material properties between these specimens and the shaking table specimen are listed in

Table 9.3.

The dimensions of the cross beam in Specimen B-1 (32 in. wide by 18 in. deep) also

varied from the effective cross beam in the shake-table tests (9 in. wide by 14 in. deep).

From an inelastic moment-curvature analysis, the ultimate moment capacity of the columns

in Specimen B-1 was estimated to be 750 k-in., which was approximately 25% smaller than

the cracking moment of the cross beam. Therefore, the cross beam was modeled elastically,

using the gross section stiffness.

This section compares key characteristics of the measured and simulated responses of

Specimens B-1 and C-1, including: force-displacement response, column elongation re-

sponse, and displacement-rotation response.

9.4.1 Force-Displacement Response

The measured and simulated force-displacement responses for Specimens B-1 and C-1 are

plotted in Fig. 9.7. The envelopes of these force-displacement responses are compared in

Fig. 9.8. The simulated response was generated by subjecting the numerical models to the

measured displacement histories. In Table 9.6, the simulated responses are compared with

the measured in terms of: maximum base shear, reduction of shear capacity, and dissipation

of hysteretic energy. The force response from the numerical models of the two specimens

is very similar to the measured force response. For example, the maximum simulated base

shear for Specimen B-1 was 48k, only 4% below the maximum measured base shear (50k).

For specimen C-1, the maximum simulated base shear was 96k, the same as the maximum

measured base shear.

Table 9.6: Force-displacement comparison statistics
Quantity Dir. Specimen B-1 Specimen C-1

Measured Simulated ratio Measured Simulated ratio

Maximum Base Shear (k) P. 50 48 0.96 96 96 1.00

N. -46 -48 1.04 -96 -96 1.00

Lateral Capacity Reduction (%) P. 56 40 0.71 40 43 1.07

N. 57 52 0.91 41 48 1.20

Hysteretic Energy (k-in.) 1700 2500 1.48 7600 10900 1.39
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Figure 9.7: Force-displacement comparison between measured data and numerical simula-
tion for (a) Specimen B-1 and (b) Specimen C-1.
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Figure 9.8: Force-displacement envelopes for the measured and numerical data for (a) Spec-
imen B-1 and (b) Specimen C-1.

The numerical model also simulated well the force degradation within the specimens. As

seen in Fig. 9.7, both the measured data and the model simulations lost between 40% and

60% of their strength by the end of the tests. In the numerical models, all of the degradation
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was deformation based. However, from the measured response, it is apparent that some of

the degradation also came from cycling. For example, during testing of specimen C-1, the

peak strength for the first cycle at a drift of 5% was 80k. This strength was reduced to 69k

during the second cycle to that same drift level.

The measured and simulated responses were also compared in terms of hysteretic energy,

defined as

Eh =
∫ t=tf

t=0
f(t)dx(t) (9.1)

As seen in Table 9.6, the numerical model overestimated the total amount of hysteretic

energy for both specimens. For example, the total hysteretic energy dissipated by the

numerical model of Specimen B-1 was 2500 k-in. 48% higher than the hysteretic energy

dissipated by Specimen B-1 (1700 k-in.). The majority of the differences between the mea-

sured and the computed hysteretic energies were attributed to the inability of the numerical

model to adequately capture the degree of pinching that was observed in the experiments.

Possible reasons for the differences in the pinching include the degree of pinching in the

anchorage slip model (Section 8.1), and the inability of the numerical model to simulate

buckling of the longitudinal reinforcement.

9.4.2 Column Elongation Response

Column elongation was measured on the specimens with vertical string potentiometers.

For Specimen B-1, the vertical potentiometers were placed on the outside of each column,

approximately 12 in. from the column face. These displacements were compared directly

with vertical measurements at the same locations in the numerical model, and are shown

in Fig. 9.9. A positive column drift creates tension in the left column and compression in

the right column. This overturning effect is visible within the displacement measurements

presented in Fig. 9.9. For example, the left column elongates more during positive drifts

than during negative drifts. The opposite is true for the right column. For both columns,

the main difference between the experimental and simulated column elongation is that

the experimental specimen retained larger residual elongations than the numerical model

predicted.



169

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Column Drift (%)

C
ol

um
n 

E
lo

ng
at

io
n 

(%
)

Measured
Simulated

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Column Drift (%)

C
ol

um
n 

E
lo

ng
at

io
n 

(%
)

Measured
Simulated

Figure 9.9: Displacement-elongation comparison between measured data and numerical
simulation for Specimen B-1 for a) left column and b) right column.

For Specimen C-1, the vertical potentiometers were placed on the outer edges of the cross-

beam. The column elongation was approximated as the average of these two measurements.

Fig. 9.10 shows the calculated column elongation from the experiment and the numerical

model.

For both the experimental specimen and the numerical model, the column elongations

are approximately equal for both positive and negative drift. This symmetry was expected

because there are no overturning forces on the single-column specimen. Fig. 9.10 also

shows that Specimen C-1 had residual elongations (at low drifts) that were larger than the

numerical model simulated, which resulted in overall elongations that were also larger than

the elongation measurements from the numerical model. As the damage accumulated in

the numerical model, the column stopped elongating during negative drifts. This trend was

not visible in the experiments.



170

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Column Drift (%)

C
ol

um
n 

E
lo

ng
at

io
n 

(%
)

Measured
Simulated

Figure 9.10: Displacement-elongation comparison between measured data and numerical
simulation for Specimen C-1

9.4.3 Displacement-Rotation Response

The rotations at the ends of each column were measured over lengths of 11 in. and 21 in.

for Specimens B-1 and C-1, respectively (Makido, 2007). Rotations across this same length

were calculated for the numerical model using rotations from anchorage slip and column

flexure, defined as

θtot = θcol + θslip (9.2)

where θtot is the total column rotation over the measurement gauge length. The terms

θcol and θslip are the column rotations attributed to column flexure and anchorage slip,

respectively. The column rotations due to column flexure are calculated by summing the

elastic rotation (θcol,e) and the plastic rotation (θcol,p) components of the column flexure.

θcol = θcol,e + θcol,p (9.3)

Distributed plasticity column elements (Section 7.1) were used for the numerical model,

allowing the computation of curvature data at discrete locations along the length of the

columns. Using this data and assuming the columns undergo double curvature, the elastic
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component of the rotation can be calculated from the curvature at the first integration point

(φ1).

θcol,e = φ1Lg

[
1− Lg

Lcol

]
φ1 ≤ φy (9.4)

where Lg and Lcol are the gauge length of the measurement device and the height of the

columns respectively. The rotation that comes from the plastic flexure of the column was ap-

proximated using plastic curvatures from the first two integration points within the column,

defined as

θcol,p =
φp1wip1L

2
col (1− wip1) + φp2wip2L

2
col (1− 2wip1 − wip2)

(Lcol − Lp)
(9.5)

φpj = φj − φy ≥ 0 (9.6)

where φpj and wipj are the plastic curvatures and weighting factors associated with integra-

tion point j, and Lp is the plastic hinge length of the columns, defined in Eq. 9.7 (Berry,

2006).

Lp = 0.05Lcol + 0.1
fydb

f ′c
≤ Lcol

4
(9.7)

where fy and db are the yield strength and diameter of the longitudinal reinforcement, and

f ′c is the compressive strength of the concrete.

The average displacement-rotation histories for both specimens are shown in Fig. 9.11.

For Specimen B-1, the average displacement-rotation history was computed by averaging the

displacement-rotation relationship at all four column joints within the bent. For Specimen

C-1, this measurement was averaged over the two column joints. The displacement-rotation

histories for the measured and numerical data are similar for both specimens, and are

approximately linear. This signifies that throughout testing, the proportion of column

deformation due to the measured rotation zone was constant. The force-rotation response for

both specimens are shown in Fig. 9.12. Because there is approximately a linear relationship

between the rotation and the displacement, the force-rotation plots resemble the force-

displacement plots presented in Section 9.4.1. These rotation comparisons show that the

source of the column deformation in the numerical model simulates well the source of the

deformation in Specimens B-1 and C-1.



172

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
−6

−4

−2

0

2

4

6

C
ol

um
n 

D
rif

t (
%

)

Column Rotation (rad)

Measured
Simulated

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
−6

−4

−2

0

2

4

6

C
ol

um
n 

D
rif

t (
%

)

Column Rotation (rad)

Measured
Simulated

Figure 9.11: Displacement-rotation comparison between measured data and numerical sim-
ulation for (a) Specimen B-1 and (b) Specimen C-1
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Figure 9.12: Force-rotation comparison between measured data and numerical simulation
for (a) Specimen B-1 and (b) Specimen C-1

9.5 Damage Progression

Five damage states were tracked during the tests of Specimens B-1 and C-1: yielding of the

longitudinal reinforcement, concrete spalling, buckling of the longitudinal reinforcement,
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fracture of the transverse reinforcement, and fracture of the longitudinal reinforcement

(Makido, 2007). Three of these five damage states were simulated in the numerical model:

longitudinal bar yielding, concrete spalling, and longitudinal bar fracture.

The strain at bar yielding was calculated from the measured yield stress and the elastic

modulus during coupon tests of the reinforcement. The strains at concrete spalling and

longitudinal bar fracture are more difficult to characterize because they are dependent on

the properties and loading history of the individual specimen. Therefore, these limit states

were calibrated in the material models so that the column drifts at which these states

occurred matched with what was observed in the experiments. The optimal strains at

which this damage occurred are listed in Table 9.7.

Table 9.7: Comparison of strains at key damage states
Specimen Bar Yielding Concrete Spalling Bar Fracture

εs εc εs

B-1 0.0024 0.006 0.12

C-1 0.0023 0.008 0.12

The calibrated strains for concrete spalling and bar fracture are close to what has been

observed in other studies. For example, Berry (2006) found that the mean concrete strain

at spalling for circular, well-confined columns was 0.008, with a coefficient of variation of

49%.

The resulting column displacements at these damage states are listed in Table 9.8. The

numerical models of Specimens B-1 and C-1 simulates well the drift ratios at bar yielding,

concrete spalling, and bar fracture. These comparisons provide more confidence in the

numerical model of the shaking table specimen.

Table 9.8: Comparison of column drift ratios at key damage states
Specimen Damage State Measured Simulated

B-1 Bar Yielding 0.50 0.50

Concrete Spalling 1.2 1.2

Bar Fracture 5.0 5.2

C-1 Bar Yielding 0.67 0.42

Concrete Spalling 1.2 1.2

Bar Fracture 5.0 4.9
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Chapter 10

SIMULATION OF THE PROTOTYPE

This chapter describes the assembly of the prototype model from the calibrated shaking

table and centrifuge models (Section 10.1), introduces the suite of near-field and far-field

ground motions that were used to excite the numerical models (Section 10.2), and docu-

ments the seismic response of the prototype model (Section 10.3). Key observations of the

calculated system response are summarized in Section 10.4.

10.1 Prototype Model Development

A model was assembled to simulate the full-scale reinforced concrete bridge on drilled shafts.

This model was developed by combining the structural properties from a calibrated model

of the shaking table tests (Chapter 8) with the soil properties from a calibrated model of

the centrifuge tests (Shin, 2006). The geometric and material properties of the piles were

extrapolated from the columns from the shake-table tests. The assembly of the prototype

model is illustrated in Fig. 10.1.

Columns and Superstructure
Shaking Table Tests

Piles
Shaking Table Tests 
(Extrapolated from Columns)

Soil and P-y Curves
Centrifuge Tests

Figure 10.1: Illustration of prototype assembly

The geometric properties of the structural components of the prototype specimen re-
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sulted from scaling of the shaking table model from quarter-scale to full-scale. With the

exception of the concrete strength (5000 psi), all of the material properties of the structure

were kept the same as the shaking table specimen. The piles were modeled with the same

material and geometric properties as the columns.

The bridge superstructure was modeled as a flat slab with the same moduli of inertia as

a box girder. A consequence of this approximation was that the cross-sectional area of the

flat slab exceeded that of the box girder. To compensate for this effect, the concrete density

of the slab in the numerical model was reduced by 49%, so that the column axial-load ratio

would remain at its target value of 8%.

The geometric properties of the soil were scaled from the 1/52-scale centrifuge tests to

the full-scale prototype. Because the centrifuge tests were conducted under a gravitational

acceleration of 52g, the soil weight in the centrifuge tests, and therefore the stresses within

the soil, did not change as a result of geometric scaling.

The mode shapes and periods of vibration of the prototype model are shown in Fig. 10.2

for the first six structural modes: three transverse modes, two vertical modes, and one

longitudinal mode. The first three modes are dominated by rigid translation of the slab.

The next three modes are dominated by either vertical or transverse slab bending.

(a) T1,long = 0.705s (b) T1,tran = 0.612s (c) T2,tran = 0.491s

(d) T1,vert = 0.378s (e) T2,vert = 0.271s (f) T3,tran = 0.198s

Figure 10.2: Prototype mode shapes
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10.2 Ground Motion Development by Shin (2006)

To excite the prototype model, Shin (2006) developed two suites of 40 near-field and 30

far-field earthquake motions at a variety of intensity levels. The near-field suite of motions

came from the PEER I-880 testbed project. The far-field suite of motions came from the

PEER Van Nuys testbed project. For convenience, the prototype bridge developed in this

research was located at each of these sites to make the motions relevant to this research.

Both suites are described in the following sections.

10.2.1 Near-Field Excitations

Somerville and Collins (2002a) generated hazard spectra at the I-880 site for near-field

outcrop motions at three hazard levels: 50%, 10% and 2% in 50 years. The peak ground

accelerations at these three hazard levels are 0.45g, 0.87g, and 1.23g, respectively. Based on

the deaggragation described by Somerville and Collins (2002a), the modal magnitudes of

these three hazard levels were 6.6, 6.8, and 7.0. The characteristics of each hazard spectra

are listed in Table 10.1.

Table 10.1: Comparison of I-880 near-field hazard spectra characteristics (Shin, 2006)

Hazard PGA (g) Mw MSF PGA/MSF (g)

50% in 50 years 0.45 6.6 1.52 0.30

10% in 50 years 0.87 6.8 1.34 0.65

2% in 50 years 1.23 7.0 1.23 1.00

Shin (2006) added a fourth hazard level, 97% in 50 years, to the suite of motions to

investigate the response of the model during low-intensity excitations.

For a separate PEER project, Shin (2006) classified the hazard levels based on the

ratio between the peak ground acceleration and the magnitude scaling factor (MSF), two

characteristics of the ground motions that are often used in analyses involving liquefiable

soils. These hazard classifications were used in this research for convenience, and do not

significantly affect the results of this research because the response of the structure due to
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a particular hazard level is not investigated. The MSF is defined as

MSF =





(
7.5
Mw

)2.95

Mw ≤ 7.5
(

7.5
Mw

)2.56

Mw > 7.5
(10.1)

Based on the hazard analysis conducted by Somerville and Collins (2002a), the ratios of

the peak ground acceleration to the magnitude scaling factor (MSF) for the 50%, 10% and

2% in 50 year ground motions were 0.30g, 0.65g, and 1.00g.

Somerville and Collins (2002a) chose 10 near-field outcrop motions at each of these

hazard levels, which are listed in Table 10.2. Shin (2006) scaled these 40 near-field motions

so that the ratio of the peak ground acceleration to the magnitude scaling factor equalled

the target ratios listed in Table 10.1. The scaled peak ground accelerations for each of these

outcrop motions are listed in Table 10.2.

To obtain the excitations for the prototype model, Shin (2006) deconvolved the 40 scaled

outcrop motions to bedrock underneath the prototype. The peak ground acceleration of the

resulting bedrock motions are listed in Table 10.2. The acceleration response spectra (2%

damping) for the 40 bedrock motions that were used to excite the structure are presented

in Appendix G.



178

Table 10.2: Characteristics of the near-field earthquake ground motions

Hazard Level ID Earthquake Mw MSF PGAM Station PGA

(g) bedrock (g)

97% / 50yr D01 Coyote Lake 5.7 2.247 0.202 Coyote Lake Dam abut. 0.168

D02 Gilroy #6 0.167

D03 Parkfield 6.0 1.931 0.188 Temblor 0.156

D04 Array #5 0.137

D05 Array #8 0.119

D06 Livermore 5.5 2.497 0.226 Fagundes Ranch 0.189

D07 Morgan Territory Park 0.147

D08 Morgan Hill 6.2 1.753 0.147 Coyote Lake Dam abut. 0.122

D09 Anderson Dam DS 0.126

D10 Halls Valley 0.124

50% / 50yr A01 Coyote Lake 5.7 2.247 0.672 Coyote Lake Dam abut. 0.574

A02 Gilroy #6 0.609

A03 Parkfield 6.0 1.931 0.578 Temblor 0.469

A04 Array #5 0.470

A05 Array #8 0.393

A06 Livermore 5.5 2.497 0.747 Fagundes Ranch 0.605

A07 Morgan Territory Park 0.483

A08 Morgan Hill 6.2 1.753 0.524 Coyote Lake Dam abut. 0.423

A09 Anderson Dam DS 0.435

A10 Halls Valley 0.463

10% / 50yr B01 Loma Prieta 7.0 1.226 0.799 Los Gatos Pres. Ctr. 0.687

B02 Saratoga Aloha Avenue 0.727

B03 Corralitos 0.708

B04 Gavilan College 0.699

B05 Gilroy Historic 0.691

B06 Lexington Dam abut. 0.758

B07 Kobe 6.9 1.279 0.834 Kobe JMA 0.780

B08 Tottori 6.6 1.458 0.951 Kofu 0.622

B09 Hino 0.896

B10 Erzincan 6.7 1.395 0.909 Erzincan 0.696

2% / 50yr C01 Loma Prieta 7.0 1.226 1.228 Los Gatos Pres. Ctr. 1.100

C02 Saratoga Aloha Avenue 1.141

C03 Corralitos 1.077

C04 Gavilan College 1.054

C05 Gilroy Historic 1.062

C06 Lexington Dam abut. 1.190

C07 Kobe 6.9 1.279 1.282 Kobe JMA 1.220

C08 Tottori 6.6 1.458 1.461 Kofu 1.091

C09 Hino 1.397

C10 Erzincan 6.7 1.395 1.398 Erzincan 1.106
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10.2.2 Far-Field Excitations

Somerville and Collins (2002b) generated hazard spectra at the Van Nuys testbed site for far-

field outcrop motions at three hazard levels: 50%, 10% and 2% in 50 years. The peak ground

accelerations at these three hazard levels are 0.25g, 0.63g, and 0.99g, respectively. Based

on the deaggragation described by Somerville and Collins (2002b), the modal magnitudes

for all hazard levels was 6.75. The characteristic of each far-field hazard spectra are listed

in Table 10.3.

Table 10.3: Comparison of Van Nuys far-field hazard spectra characteristics (Shin, 2006)

Hazard PGA (g) Mw MSF PGA/MSF (g)

50% in 50 years 0.25 6.75 1.36 0.18

10% in 50 years 0.63 6.75 1.36 0.46

2% in 50 years 0.99 6.75 1.36 0.73

Similar to the near-field excitations, Shin (2006) classified the hazard based on the ratio

between the peak ground acceleration and the magnitude scaling factor (MSF). Based on

the hazard analysis conducted by Somerville and Collins (2002b), the ratios of the peak

ground acceleration to the magnitude scaling factor (MSF) for the 50%, 10% and 2% in 50

year ground motions were 0.18g, 0.46g, and 0.73g. These ratios are also listed in Table 10.3.

Somerville and Collins (2002b) chose 10 near-field outcrop motions at each of these

hazard levels, which are listed in Table 10.4. Shin (2006) scaled these 30 near-field motions

so that the ratio of the peak ground acceleration to the magnitude scaling factor equalled

the target ratios listed in Table 10.3. The scaled peak ground accelerations for each of these

outcrop motions are listed in Table 10.4.

To obtain the excitations for the prototype model, Shin (2006) deconvolved the 30 scaled

outcrop motions to bedrock underneath the prototype. The peak ground acceleration of

the resulting bedrock motions are listed in Table 10.4. The acceleration response spectra

(2% damping) for the 30 far-field bedrock motions that were used to excite the structure

are presented in Appendix G.
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Table 10.4: Characteristics of the far-field earthquake ground motions

Hazard Level ID Earthquake Mw MSF PGAM Station PGA

(g) bedrock (g)

50% / 50yr F01 Palm Springs 6.0 1.931 0.351 Palm Springs Airport 0.237

F02 Northridge 6.7 1.375 0.254 Ventura Blvd. #1 0.189

F03 Ventura Blvd. #9 0.230

F04 Lankershim Blvd. #1 0.212

F05 V. Nuys - Sher. Circle #1 0.209

F06 Oxnard Street #4 0.216

F07 San Fernando 6.6 1.458 0.265 14724 Ventura Blvd. 0.226

F08 15250 Ventura Blvd. 0.205

F09 V. Nuys - 7-Story Hotel 0.227

F10 Whit. Narrows 6.0 1.931 0.351 Cal Tech, Brown Ath. Bldg. 0.254

10% / 50yr G01 Northridge 6.7 1.395 0.642 Topanga Canyon Blvd. 0.454

G02 Sepulveda VA Hosp. 0.584

G03 V. Nuys - Sher. Circle #1 0.533

G04 V. Nuys - 7-Story Hotel 0.553

G05 Oxnard Street #4 0.560

G06 San Fernando 6.6 1.458 0.671 14724 Ventura Blvd. 0.558

G07 15910 Ventura Blvd. 0.537

G08 15250 Ventura Blvd. 0.612

G09 633 E. Broadway 0.590

G10 V. Nuys - 7-Story Hotel 0.564

2% / 50yr H01 Northridge 6.7 1.395 1.011 Ventura Blvd. #1 0.805

H02 Ventura Blvd. #9 0.939

H03 Lankershim Blvd. #1 0.859

H04 Nordhoff Fire Station 0.975

H05 Northridge, Roscoe #1 0.884

H06 13248 Roscoe Blvd. 0.944

H07 Sepulveda VA Hosp. 0.926

H08 V. Nuys, Sher. Way #1 0.971

H09 V. Nuys - 7-Story Hotel 0.862

H10 San Fernando 6.6 1.458 1.057 V. Nuys - 7-Story Hotel 0.961

10.2.3 Comparison of Near-Field and Far-Field Excitations

This section compares the peak ground accelerations, spectral accelerations, and earthquake

duration of the near-field and far-field bedrock excitations.

The peak ground acceleration for the four near-field and the three far-field earthquake

hazard levels are shown in Fig. 10.3a. The average peak ground acceleration of the motions

at each hazard level are listed in Table 10.5. For each hazard level, the average peak ground

acceleration was always larger for the near-field excitations. For example, at the 10% in 50
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year hazard level, the mean PGA for the near-field excitations was 0.73g, 33% larger than

the mean PGA for the far-field excitations (0.55g).

The spectral accelerations at the first period of the structure (T = 0.61s) and 2% damping

are plotted in Fig. 10.3b for each motion. The means of these values are listed in Table 10.5.

For each hazard level, the mean spectral accelerations were always larger for the near-field

excitations than for the far-field excitations. However, this difference was smaller than the

difference in the peak ground accelerations. For example, at the 10% in 50 year hazard

level, the mean spectral acceleration for the near-field excitation was 1.65g, only 1% larger

than the mean spectral acceleration for the far-field excitations (1.63g).

Fig. 10.3c plots the durations of both near-field and far-field earthquakes. The mean

durations for each hazard level are listed in Table 10.5. For this comparison, duration

was defined as the time between when the acceleration first and last exceeded 20% of its

maximum acceleration. The durations of the near-field earthquakes were typically much

shorter than those for the far-field earthquakes. For example, at the 10% in 50 year hazard

level, the mean duration for the near-field excitations was 6.9s, 59% shorter than the mean

duration for the far-field excitations (16.9s).

Table 10.5: Average characteristics of the near-field and far-field bedrock motions

Hazard Field PGA (g) SA(T = 0.61s) (g) Duration (s)

97% in 50 years Near-Field 0.15 0.21 4.5

Far-Field * * *

50% in 50 years Near-Field 0.49 0.84 4.3

Far-Field 0.22 0.48 16.1

10% in 50 years Near-Field 0.73 1.65 6.9

Far-Field 0.55 1.63 16.9

2% in 50 years Near-Field 1.14 2.55 7.4

Far-Field 0.91 2.24 12.1
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Figure 10.3: Excitation characteristics for near-field and far-field excitations, including: a)
peak ground acceleration, b) spectral acceleration (T = 0.61s, ξ = 2%), and c) earthquake
duration.

10.3 Prototype Response

This section presents key characteristics of the prototype response to the 40 near-field and

30 far-field earthquake excitations, including: response histories and response distributions

for representative far-field excitations, and response maxima for all excitations.

10.3.1 Representative Far-Field Ground Motions

This section illustrates typical response to far-field excitations by describing in detail the

response for three motions, one at each hazard level. The ground motions from the 50%

and 10% in 50 year hazard levels were recorded at the Van Nuys - Sherman Circle #1

station (records F05L and G03L, Table 10.4). The ground motion from the 2% in 50 year
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hazard level was recorded at the Van Nuys - Sherman Way #1 station (record H08L). The

acceleration time histories and acceleration response spectra (2% damping) of these three

motions are shown in Fig. 10.4. The peak acceleration occurred at approximately 4s for each

record, with the duration of the earthquake between 20s and 30s. For the 50% and 10% in

50 year earthquakes, the peak spectral acceleration occurred at a period of approximately

0.25s, which is nearly 60% less than the first period of vibration of the structure (0.61s).

At this period, the spectral acceleration were 0.27g and 0.86g. For the 2% in 50 year

earthquake, the peak spectral acceleration was near 0.15s. The spectral acceleration at the

period of the structure was 1.69g.

10.3.2 Far-Field Response Histories

The drift ratio was approximated as the tangential deviation between the top of the column

and the point of column inflection (δinfl), divided by the length from the top of the column

to the inflection point (Linfl), defined as (Drift = δinfl/Linfl). The length to the inflection

point was computed at displacement maxima, then used to compute drift ratios for the

entire displacement history. The column deformation from the top of the column to the

inflection point (δinfl) was defined as

δinfl = δinfl,s + δinfl,f (10.2)

where δinfl,s is the relative displacement to the inflection point due to anchorage slip, defined

as

δinfl,s = θsLinfl (10.3)

where θs is the rotation of the slip element. The term δinfl,f is the relative displacement to

the inflection point due to column flexure, defined as

δinfl,f =
N∑

i=1

φiwiLe

(
Linfl −

i−1∑

m=0

wmLe − wiLe

2

)
(10.4)

where φi and wi are the curvature and weight of integration point i, w0 = 0, and Le is the

length of the column element. The term N is the number of integration points between the

top of the column and the point of inflection.
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Figure 10.4: Acceleration time histories and acceleration response spectra (2% damping)
for motions (a) F05L, (b) G03L, and (c) H08L.
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Fig. 10.5 shows the drift ratio histories for all three bents and the three representative

excitations. Bent 1 (medium height bent) had the largest response during the 50% and

10% in 50 year earthquakes at a maximum drift ratio of approximately 0.75% and 2%,

respectively.

The shift of the maximum response from bent 1 to bent 3 was also visible in the shaking

table experiments (Table 4.6). During Tests 12-14, bent 1 of the shaking table specimen

sustained the largest maximum drift ratio of the three columns. For example, during Test

12, the maximum drift ratio of bent 1 was 0.30%, 42% larger than the maximum drift ratio

of bent 3 (0.21%). After Test 14, bent 3 sustained the largest maximum drift. For example,

during Test 19, bent 3 reached a drift ratio of 8%, 61% larger than the maximum drift ratio

of bent 1 (5.0%). This shift in system behavior, which is evident in both the prototype

model and the shaking table specimen, was attributed to the nonlinear interaction of the

bents that cannot be simulated in component tests or elastic analyses.

Because residual column drift ratios affect bridge alignment rather than column damage,

the residual column drift ratio was approximated as the ratio of the relative displacement

between the top of the columns and the ground surface (δclear), and the clear column

height (Lclear), defined as (Driftres = δclear/Lclear). During the larger excitation, bent

3 experienced the largest maximum drift ratio at 4.1%. Bent 3 also sustained significant

residual drifts (0.4%) during the high-intensity ground motion. Bents 1 and 2 had negligible

residual drift.
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Figure 10.5: Drift histories for three far-field earthquake hazard levels: a) 50% in 50 years
(F05L), b) 10% in 50 years (G03L), and c) 2% in 50 years (H08L)
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10.3.3 Far-Field Response Distributions

This section presents the moment, shear, and plastic rotation distributions for the columns

and piles, excited by the three representative far-field earthquake motions with hazard levels

of 50%, 10% and 2% in 50 years.

Moment Distribution

The moment distributions along the columns and piles at the time of maximum moment,

and at intervals of 0.4s, are shown in Fig. 10.6 for the three earthquake excitations. The

moment distribution for the low-intensity earthquake (F05L) was governed by a single mode,

with maximum bending moments at the top of the column. The point of maximum moment

within each pile remained nearly constant at 3D throughout the excitation history, ranging

between 2.5 column diameters (for the most flexible bent) to 3.5 column diameters (for the

stiffest bent).

The depth of maximum moment within the piles increased slightly as the ground motions

intensified. For example, the depth to maximum moment of the stiffest bent (bent 3)

increased from approximately 3.5 column diameters during the low-intensity ground motion

to approximately four column diameters during the high-intensity ground motion. This

suggests that the ratio of pile to soil stiffness increased during the high-intensity excitations.

Shear Distribution

The distribution of shear forces within the columns and piles are shown in Fig. 10.7 for the

three representative ground motions. The point of zero shear corresponds to the point of

maximum moment within the piles (Fig. 10.6). It is also evident from this figure that as

the column and soil underwent significant deformations, the shear distribution with the pile

was governed by more than one mode.

At all levels of excitation, the shear within the columns were generally the smallest for

bent 2 (tallest bent), and largest for bent 3 (shortest bent). The shear forces within the

columns varied according to column height. In contrast, the shear forces within the piles

were similar for each bent. For example, during the 2% in 50 year motion, the maximum
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shear force within the piles of bents 1, 2 and 3 were 84%, 80% and 84% of the nominal

shear capacity (φVn), according to ACI Committee 318 (2002). For this same motion, the

shear forces within the pile of bent 2 were approximately 1.8 times larger than those in the

column.

Plastic Curvature Distribution

The plastic curvature at the tops of the columns was approximated by dividing the calculated

plastic rotation by the estimated plastic hinge length. The plastic rotation at the top of the

column (θp) was calculated by summing the rotation due to anchorage slip (θp,s) and the

plastic rotation due to column flexure (θp,f ), defined as

θp = θp,f + θp,s (10.5)

The plastic rotations within the columns were calculated from curvatures at the column

integration points, and by equating displacements calculated from the distributed-plasticity

model to those calculated using a plastic-hinge model. Based on plastic hinge analysis,

the relative displacement between the top of the column and the inflection point (δp,infl) is

defined as

δp,infl = φpLp

(
Linfl − Lp

2

)
(10.6)

where Lp is the length of the plastic hinge (Eq. 9.7), Linfl is the length of the column from

the top fixity to the inflection point, and φp is the plastic curvature across the plastic hinge

zone. The plastic curvature was calculated by subtracting the yield curvature from the

measured curvature values, φp = φ − φy ≥ 0. The yield curvature was estimated as the

curvature at which the extreme tensile steel reached a strain of 0.002, or when the extreme

compressive concrete reached a strain of 0.003, whichever came first.

The plastic displacement based on the distributed-plasticity model (modified from Eq. 10.4)

is defined as.

δp,infl =
N∑

i=1

φpiwiLe

(
Linfl −

i−1∑

m=0

wmLe − wiLe

2

)
(10.7)

Berry (2006) found that for steel with less than 5% strain hardening, the first two integration

points accounted for all of the plastic displacement attributed to flexure within the column.
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The strain hardening ratio of the steel for this system was less than 1%. Using N = 2, and

equating Eq. 10.6 and Eq. 10.7, the plastic rotation due to flexure is

θp,f =
φp1wip1Le

(
Linfl − wip1Le

2

)
+ φp2wip2Le

(
Linfl − wip1Le − wip2Le

2

)

(
Linfl − Lp

2

) (10.8)

Simplifying the equation and adding the rotation due to the slip element, the plastic

rotation at the top of the column is defined as

θp =
φp1wip1L

2
e

(
2Linfl

Le
− wip1

)
+ φp2wip2L

2
e

(
2Linfl

Le
− 2wip1 − wip2

)

(2Linfl − Lp)
+ θp,s (10.9)

To provide an interface with the soil elements used in the numerical model, it was

necessary to use pile elements with lengths approximately 1/5 of the pile diameter. Because

the individual elements were short, and the moment gradient within the pile was gradual,

the plastic curvature within the pile elements was approximated as

φp =
| θi − θj |

Le
− φy φp ≥ 0 (10.10)

where θi and θj are the rotations at each end of the element, and Le is the length of the

pile element.

The plastic curvature distribution for the columns and piles are shown in Fig. 10.8.

For all excitation levels, the plastic curvatures in the columns greatly exceeded the plastic

curvatures in the piles. This effect was attributed to a more gradual moment gradient within

the piles. As a result, the piles did not begin to undergo plastic curvature until the 10% in 50

year excitation. During the high-intensity ground motion, the plastic curvatures within the

columns were approximately 9 times the plastic curvatures within the piles. For example,

the plastic curvatures at the tops of the columns were approximately 22φy, 13φy, and 27φy

for bents 1, 2, and 3 respectively. During this same motion, the maximum curvature within

the pile of bent 3 was approximately 3φy.



190

−2 −1 0 1 2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Bent 1

Ground
Surface

M / My

P
ile

 D
ep

th
 / 

C
ol

um
n 

D
ia

m
et

er

−2 −1 0 1 2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Bent 2

Ground
Surface

M / My

P
ile

 D
ep

th
 / 

C
ol

um
n 

D
ia

m
et

er

−2 −1 0 1 2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Bent 3

Ground
Surface

M / My

P
ile

 D
ep

th
 / 

C
ol

um
n 

D
ia

m
et

er

(a) 50%

−2 −1 0 1 2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Bent 1

Ground
Surface

M / My

P
ile

 D
ep

th
 / 

C
ol

um
n 

D
ia

m
et

er

−2 −1 0 1 2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Bent 2

Ground
Surface

M / My

P
ile

 D
ep

th
 / 

C
ol

um
n 

D
ia

m
et

er

−2 −1 0 1 2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Bent 3

Ground
Surface

M / My

P
ile

 D
ep

th
 / 

C
ol

um
n 

D
ia

m
et

er

(b) 10%

−2 −1 0 1 2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Bent 1

Ground
Surface

M / My

P
ile

 D
ep

th
 / 

C
ol

um
n 

D
ia

m
et

er

−2 −1 0 1 2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Bent 2

Ground
Surface

M / My

P
ile

 D
ep

th
 / 

C
ol

um
n 

D
ia

m
et

er

−2 −1 0 1 2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Bent 3

Ground
Surface

M / My

P
ile

 D
ep

th
 / 

C
ol

um
n 

D
ia

m
et

er

(c) 2%

Figure 10.6: Moment distributions for three far-field earthquake hazard levels: a) 50% in
50 years (F05L), b) 10% in 50 years (G03L), and c) 2% in 50 years (H08L)
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Figure 10.7: Shear distributions for three far-field earthquake hazard levels: a) 50% in 50
years (F05L), b) 10% in 50 years (G03L), and c) 2% in 50 years (H08L)
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Figure 10.8: Plastic Rotation distributions for three far-field earthquake hazard levels: a)
50% in 50 years (F05L), b) 10% in 50 years (G03L), and c) 2% in 50 years (H08L)
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10.3.4 Response Maxima

This section presents maxima of key response characteristics for the suite of 40 near-field

and 30 far-field excitations, including: maximum bent drift ratio, residual bent drift ratio,

maximum plastic rotation within the columns, total plastic rotation within the piles, max-

imum column shear, and maximum pile shear. The response maxima were plotted against

the intensity of each ground motion, quantified using the Cordova parameter (Cordova et al.,

2000). This parameter, defined in Chapter 11, accounts for system softening by using the

spectral acceleration at one and two times the first period of vibration of the structure.

Maximum and Residual Drifts

The maximum bent drift ratios are plotted in Fig. 10.9 for both near-field and far-field

excitations. For each bent, the average drift ratio at a Cordova of 0.3g and 3.0g is listed

in Table 10.6. On average, the bent 1 drift ratios were slightly larger than the drift ratios

for bent 3 during the low-intensity excitations for both near-field and far-field excitations.

For example, due to the far-field excitations, the average bent 1 drift ratio at a Cordova

of 0.3g was 0.88%, 13.9% higher than the average bent 3 drift ratio (0.77%). During the

high-intensity excitations, the drift ratios for these two bents were similar. For example, due

to the far-field excitations, the average bent 1 drift ratio at a Cordova of 3.0g was 8.71%,

only 3.6% larger than the average bent 3 drift ratio (8.41%). The drift ratios for bent 2

(longest bent) were almost always smaller than the drift ratios for bents 1 or 3.

Table 10.6: Average prototype drift maxima at a Cordova of 0.3g and 3.0g for near-field
and far-field excitations

Response Bent 0.3g 3.0g

NF FF NF/FF NF FF NF/FF

Maximum Drift Ratio (%) 1 1.03 0.88 1.17 7.87 8.71 0.90

2 0.74 0.57 1.32 5.73 6.63 0.86

3 0.98 0.77 1.28 7.84 8.41 0.93

Residual Drift Ratio (%) 1 0.032 0.010 3.20 0.90 0.81 1.12

2 0.029 0.010 2.85 0.73 0.49 1.49

3 0.028 0.010 2.78 0.93 0.53 1.75

The drift ratios for all three bents were generally larger during the high-intensity far-field
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excitations than during the near-field excitations. For example, at a Cordova of 3.0g, the

average drift ratios of bents 1, 2 and 3 for the far-field excitations were 8.71%, 6.63%, and

8.41%, respectively. These drift ratios were 11%, 16% and 7% larger than the drift ratios

at this intensity for the near-field excitations.

The large drift ratios for each bent suggest that significant damage will occur at the tops

of the columns. For example, according to the bar buckling equation developed by Berry

(2006), at a Cordova parameter of 3.0g during the far-field excitations, bents 1, 2, and 3

had a probability of bar buckling of 90%, 55%, and 87%, respectively.

Fig. 10.10 shows the residual drift ratios for all three bents excited by the near-field and

far-field excitations. The residual drift ratios for all bents were only weakly correlated with

the Cordova parameter. For example, the R2 value for the far-field excitations was 0.60,

0.49, and 0.50 for bents 1, 2, and 3, respectively.

Subjected to the near-field excitations, the average residual drift ratio of bents 1 and 3 at

a Cordova of 3.0g were approximately 0.9%. Large residual drift ratios may have important

consequences on the functionality of the bridge following an earthquake.

Column and Pile Plastic Rotations

Fig. 10.11 shows the maximum plastic rotation at the tops of the columns. The average

plastic rotations are for a Cordova of 0.3g and 3.0g are listed in Table 10.7. On average,

bents 1 and 3 experienced similar maximum plastic rotations. The plastic rotation in bent

2 (tallest bent) was almost always smaller than both of the shorter bents. For example,

for the near-field earthquakes at a Cordova of 0.3g, bents 1, 2, and 3 underwent plastic

rotations of 1.03%, 0.74%, and 0.98%, respectively.

The amount of plastic rotation in bents 1 and 3 was similar for the near-field and far-field

excitations. For example, at a Cordova of 3.0g, the average plastic rotations in bent 1 were

10.72% (near-field) and 10.83% (far-field). In bent 2, the maximum plastic rotation was

larger for near-field excitations during the low-intensity excitations, but larger for far-field

excitations during the high-intensity excitations. For example the plastic rotation of bent

2 at a Cordova of 3.0g was 6.84% for the near-field excitations, 31% less than the plastic
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Table 10.7: Average prototype plastic rotation maxima at a Cordova of 0.3g and 3.0g for
near-field and far-field excitations

Response Bent 0.3g 3.0g

NF FF NF/FF NF FF NF/FF

Column Plastic Rotation (%) 1 0.40 0.41 0.98 10.72 10.83 0.99

2 0.19 0.11 1.67 6.84 9.84 0.69

3 0.40 0.35 1.14 10.61 10.66 1.00

Total Pile Plastic Rotation (%) 1 0.06 0.13 0.48 10.02 8.34 1.20

2 0.32 0.08 4.20 2.86 4.09 0.70

3 0.23 0.13 1.82 5.72 6.24 0.92

rotation for the far-field excitations (9.84%).

The large plastic rotations at each bent indicate that the tops of the columns would

undergo significant flexural damage. For example, according to the bar buckling equation

developed by Berry (2006), the mean plastic rotation at bar buckling for these columns is

approximately 9.2%. The likelihood that bars would have buckled in bents 1, 2, and 3 at a

Cordova of 3.0g during the far-field excitations is 79%, 66%, and 77%.

Fig. 10.12 plots the total plastic rotation within the piles. The total plastic rotation was

calculated by summing all of the plastic rotations within the pile at an instant in time. For

many of the low-intensity near-field and far-field excitations, there was no plastic rotation

within the piles. These points do not appear on the plot.

For all levels of near-field and far-field excitations, the total pile plastic rotation was

always smaller than the plastic rotation at the top of the column. For example, at a Cordova

of 3.0g the total plastic rotations within the piles during the far-field excitations were 8.34%,

4.09%, and 6.24% for bents 1, 2, and 3, respectively. These values were 23%, 58%, and 41%

lower than the plastic rotations within the columns, respectively. The difference between

the total plastic rotation within the piles and the maximum plastic rotation within the

columns is attributed to the larger distribution of deformation within the piles.

Column and Pile Shear Forces

Fig. 10.13 plots the maximum shear force within each column. The average shear forces

at a Cordova of 0.3g and 3.0g are listed in Table 10.8. The scatter for this parameter was
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small compared to the other demand parameters, because this quantity was limited by the

flexural strength of the columns. On average, the maximum shear force within the columns

was largest for bent 3 (short bent), and smallest for bent 2 (tall bent).

Table 10.8: Average prototype plastic rotation maxima at a Cordova of 0.3g and 3.0g for
near-field and far-field excitations

Response Bent 0.3g 3.0g

NF FF NF/FF NF FF NF/FF

Column Shear (k) 1 242 255 0.95 395 384 1.03

2 160 162 0.98 302 305 0.99

3 292 301 0.97 458 451 1.02

Pile Shear (k) 1 248 243 1.02 436 459 0.95

2 170 154 1.10 402 423 0.95

3 295 302 0.97 473 459 1.03

The maximum shear force within the piles is shown in Fig. 10.14. The average shear

forces within the piles at a Cordova of 0.3g and 3.0g are listed in Table 10.8. The maximum

pile shear forces were similar to the maximum shear force within the columns for low-

intensity earthquakes. For example, at a Cordova of 0.3g, the shear force within the pile of

bent 2 due to the far-field excitations was 154k, 5% smaller than the shear force within the

column (162k).

During the high-intensity excitations, the maximum shear force within the piles were

larger than the shear forces within the piles. For example, at a Cordova of 3.0g, the shear

forces within the piles due to the far-field excitations are 459k, 423k, and 459k. These shear

forces are 19%, 39%, and 2% larger than the shear forces in the columns (384k, 305k, and

451k). This finding signifies that for lightly-confined columns, shear failure might occur

below the ground surface rather than within the visible portion of the columns.
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Figure 10.9: Drift ratio maxima for bents 1, 2, and 3 using (a) near-field excitations and
(b) far-field excitations.
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Figure 10.10: Residual drift ratios for bents 1, 2, and 3 using (a) near-field excitations and
(b) far-field excitations.
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Figure 10.11: Column plastic rotation maxima for bents 1, 2, and 3 using (a) near-field
excitations and (b) far-field excitations.
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Figure 10.12: Total pile plastic rotation for bents 1, 2, and 3 using (a) near-field excitations
and (b) far-field excitations.
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Figure 10.13: Maximum column shear for bents 1, 2, and 3 using (a) near-field excitations
and (b) far-field excitations.
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Figure 10.14: Maximum pile shear for bents 1, 2, and 3 using (a) near-field excitations and
(b) far-field excitations.
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10.4 Summary of Model Behavior

The prototype model was excited by a suite of 40 near-field and 30 far-field excitations. The

significant conclusions from the prototype response to these excitations are listed below.

1. As expected, bents 1 (medium-height bent) and 3 (shortest bent) experienced larger

drift ratios than bent 2 (longest bent). Bent 2 was the middle bent, and the clear

height of its columns were at least 50% larger than the clear heights of the other

bents. For low-intensity far-field excitations, the maximum drift ratios for bent 1

were generally larger than those for bent 3. For example, for the far-field excitations

at a Cordova of 0.3g, the average bent 1 drift ratio was 0.88%, 13.9% higher than the

average drift ratio for bent 3 (0.77%). The drift ratios of bents 1 and 3 were similar

during the high-intensity excitations. At 3.0g, the average bent 1 drift ratio was only

3.6% larger than the bent 3 drift ratio.

2. During the low-intensity excitations, the depth of maximum moment in the piles

ranged from 2.5 column diameters (bent 2) to 3.5 column diameters (bent 3) beneath

the ground surface. During the high-intensity excitations, the depth of maximum

moment for bent 3 increased from 3.5D to approximately 4D, suggesting that the

ratio of the pile stiffness to the soil stiffness increased during these high-intensity

excitations.

3. At a Cordova of 3g, the average drift ratios of bents 1 and 3 were approximately

8.7% and 8.4%, which could indicate significant flexural damage to the tops of the

columns. For example, according the bar buckling equation developed by (Berry,

2006), the likelihood of bar buckling at drift ratios of 8.7% and 8.4% is 90% and 87%,

respectively.

4. Bents 1 and 3 experienced large residual drift ratios when excited by near-field exci-

tations. For example, at a Cordova of 3.0g for the near-field excitations, the average

residual drift of bents 1 and 3 were approximately 0.9%. These high residual drifts

may have important consequences on the functionality of the bridge following an

earthquake.
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5. The plastic curvatures at the tops of the columns were much larger than the plastic

curvatures within the piles during the high-intensity excitations. For example, during

a representative far-field excitation (H08L), the maximum plastic curvature within

the column was approximately 27φy, nine times larger than the maximum plastic

curvature in the pile (3φy). This difference was attributed to the gradual moment

gradient within the piles, which reduced the concentration of deformations within

the piles. Such large differences in the plastic deformations suggest that significant

flexural damage to the system will occur at the tops of the columns rather than below

the ground surface.

6. At a Cordova of 3.0g, the average plastic rotations of bents 1, 2, and 3 during the

far-field excitations were 10.83%, 9.84%, and 10.66%. Similar to the large measured

drift ratios, these large plastic rotations indicate that significant flexural damage could

occur to the tops of the columns. For example, according to the bar buckling equation

developed by Berry (2006), the likelihoods of bar buckling in bents 1, 2, and 3 are

79%, 66%, and 77% for this level of plastic rotation.

7. The shear forces within the columns were governed by the moment capacity of the

column and the distance to the point of inflection. The boundary conditions in the

soil are much more complicated. As a result, the shear forces within the piles were

larger than the shear forces within the columns during the high-intensity excitations.

For example, at a Cordova of 3.0g during the far-field excitations, the average shear

force within the pile of bent 2 was 423k, 39% larger than the average shear force

within the columns of bent 2 (305k). The higher shear forces in the columns signify

that lightly-confined columns might fail in shear below the ground surface rather than

within the visibly portion of the column.
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Chapter 11

METHODOLOGY FOR EVALUATING SEISMIC MODELING
STRATEGIES

This chapter describes the methodology that was used to evaluate the accuracy and

precision of various seismic modeling strategies within a performance-based framework.

Section 11.1 outlines the PEER performance-based framework. This chapter also describes

the measures that were used to quantify the ground-motion intensity (Section 11.2), the

system demands (Section 11.3), and the structural damage (Section 11.4). The methods

for evaluating the accuracy and precision of the modeling strategies are described in Sec-

tion 11.5.

11.1 PEER Framework

The Pacific Earthquake Engineering Research Center (PEER) has developed a probabilis-

tic framework for implementing Performance-Based Earthquake Engineering (PBEE). This

framework enables users to quantify the expected performance of bridges and other struc-

tures at multiple levels, including: structural demand, expected damage, and effects on

system function and repair costs. This section reviews the methodology for using the PEER

framework in a continuous domain. Mayfield (2007) describes a similar methodology for

the discrete domain.

Fig. 11.1 illustrates the overall procedure for estimating the hazards at each performance

level, from the intensity measure hazard to the hazard of a decision variable.

Each hazard level depends on information from previous hazard levels and models. For

example, the accurate prediction of a demand hazard depends on the efficient character-

ization of the earthquake intensity, and accuracy and precision of demand models. The

methodology for calculating the decision variable hazard from the intensity measure hazard

is described in the following paragraphs.

The decision variable hazard (λDV ) depends on the damage measure hazard and the
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Figure 11.1: PBEE process illustration

model that describes the probability of exceeding the decision variable for a particular

damage level (decision variable fragility curves). The decision variable hazard is described

mathematically as

λDV (dv) =
∫

P [DV > dv|DM = dm]
dλDM (dm)

dDM
dDM (11.1)

where P [·] denotes a probability function, and dλDM (dm)/dDM is the slope of the damage

measure hazard curve at damage measure dm. In turn, the damage measure hazard (λDM )

depends on the demand measure hazard (λEDP ) and the damage measure fragility curves

(P [DM > dm|EDP = edp]), defined as

λDM (dm) =
∫

P [DM > dm|EDP = edp]
dλEDP (edp)

dEDP
dEDP (11.2)

The demand measure hazard depends on the intensity measure hazard (λIM ) and the

demand measure fragility curves (P [EDP > edp|IM = im]), defined as

λEDP (edp) =
∫

P [EDP > edp|IM = im]
dλIM (im)

dIM
dIM (11.3)

The intensity measure hazard is defined by local site conditions and regional geography.

By combining Eqs. 11.1 to 11.3, the hazard of the decision variable can be expressed as the

following triple integral

λDV (dv) =
∫ ∫ ∫

P [DV > dv|DM = dm]
dP [DM > dm|EDP = edp]

dDM
× · · ·

dP [EDP > edp|IM = im]
dEDP

dλIM (im)
dIM

dIM · dEDP · dDM (11.4)
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In this equation, the hazard of the decision variable (λDV ) depends on the hazard of the

intensity measure (λIM ), and the three fragility relationships between the various stages:

IM → EDP, EDP → DM, and DM → DV. Although knowing the hazard levels at each step

can yield useful information, this information is not essential for the final calculation.

The accurate estimation of the decision variable depends on the efficiency of the intensity

measure, as well as the accuracy in the demand, damage, and loss models. The efficiency of

over 50 intensity measures was investigated by Mackie and Stojadinovic (2005) for single and

multi-span bridge systems. By assembling a database of the performance of test columns,

Berry (2006) developed accurate column damage models. This thesis focuses on developing

demand models for bridge systems, and evaluating the accuracy and precision of these

models based on their effects on demand and damage estimates.

11.2 Motion Intensity

Mackie and Stojadinovic (2005) describe over 50 measures for quantifying earthquake inten-

sity. This thesis concentrates on 11 intensity measures, listed in Table 11.1, chosen because

of their common use and previous success in characterizing system demands.

Table 11.1: Candidate Intensity Measures

Class IM Intensity Measure Definition

I 1 Peak Ground Acceleration PGA = max(|a(t)|)
2 Peak Ground Velocity PGV = max(|v(t)|)
3 Arias Intensity Ia =

π

2g

R Td
0 (a(t))2dt

4 Cumulative Absolute Velocity CAV =
R Td
0 |a(t)|dt

II 5 Spectral Acceleration (T1) SA(T1) = SA(T1, ξ)

6 Spectral Acceleration (T2) SA(T2) = SA(T2, ξ)

7 Cordova Predictor COR(T1) = SA(T1, ξ)

s
SA(2T1, ξ)

SA(T1, ξ)

II-2 8 Square Root Sum of Squares SRSS =
p

SA(T1)2 + SA(T2)2

9 Complete Quadratic Combination CQC =
qPn

j=1

Pn
k=1 CjkSA(Tj)SA(Tk)

10 SRSS(COR) SRSS(COR) =
p

COR(T1)2 + COR(T2)2

11 CQC(COR) CQC(COR) =
qPn

j=1

Pn
k=1 CjkCOR(Tj)COR(Tk)

Class I intensity measures (peak ground acceleration, peak ground velocity, Arias inten-

sity (Arias, 1970), and cumulative absolute velocity) only use data from the ground-motion

time histories to quantify the intensity of the motion. These measures are often a maxima

(e.g., PGA, PGV) or an energy (e.g., Ia, CAV).
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Class II intensity measures (spectral accelerations, Cordova parameter) supplement the

information from the ground motion time histories with modal information from the struc-

ture. Spectral accelerations are typically chosen at the estimated period of the structure to

account for the elastic dynamic properties of the structure. The Cordova parameter (Cor-

dova et al., 2000) accounts for both the elastic dynamic properties of the structure and the

softening in the system by using the spectral accelerations at one and two times the first

period of vibration of the structure.

As part of this research, Class II-2 intensity measures (square root of the sum of the

squares, complete quadratic combination) were added to the list of intensity measure to

investigate the effects of incorporating the modal properties from the first two frequencies

of vibration of the system. The first two Class II-2 intensity measures (SRSS and CQC)

combine the spectral accelerations at the first and second modes of the system, without

accounting for column softening.

The CQC (DerKiureghian, 1980) combines modes, accounting for the correlation be-

tween modes j and k with the coefficient Cjk, defined as

Cjk =
8 (βjβkωjωk)

1/2 (βjωj + βkωk) ωjωk(
ω2

j − ω2
k

)2
+ 4βjβkωjωk

(
ω2

j + ω2
k

)
+ 4

(
β2

j + β2
k

)
ω2

j ω
2
k

(11.5)

where ωj and ωk are the angular frequencies of modes j and k, respectively. The terms βj

and βk are the damping ratios for modes j and k, respectively.

The SRSS and CQC methods were also applied to the Cordova parameters for the first

two modes of the system to account for both column softening and the second mode of

vibration.

The hazard at each level of motion intensity was modeled using a power law, defined in

Eq. 11.6. The natural logarithm of this equation is defined in Eq. 11.7.

λIM (im) = k0(im)−k (11.6)

ln(λIM (im)) = ln(k0)− k ln(im) (11.7)

The least-squares method was used to estimate the best fit of scalars k0 and k for these

cases. Fig. 11.2 illustrates the intensity-hazard relationship in both normal and log space.
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Figure 11.2: Illustration of the PGV hazard curve for the near-field excitations (Section 10.2)

11.3 Model Demand

This section describes the demand measures used in this research, the model relating the

ground motion intensity to the estimated structural demand, and the methodology for

calculating the estimated demand hazards.

11.3.1 Demand Measures

Four demand measures were chosen to quantify the performance of the numerical models:

maximum column drift ratio, residual column drift ratio, maximum column plastic rota-

tion, and maximum column shear. These demand measures were derived in Chapter 10 to

describe the response of the prototype specimen.

Column drift ratio is useful for describing the amount of column deformation with

a global parameter. Column displacements are commonly measured during experiments,

which has led to substantial data relating maximum column drift ratio to subsequent dam-

age. For example, Berry et al. (2004) assembled a database that documents the performance

over 400 reinforced concrete test columns.

The residual column drift ratio is an indicator of possible differential displacement be-
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tween the piers. Residual drift can affect bridge features that require alignment (e.g.,

railroad tracks), which would effect the post-earthquake functionality of a bridge.

The maximum column plastic rotation is a measure of local column deformation. Similar

to drift ratios, the maximum plastic rotation is useful for estimating column damage in

ductile columns. Berry (2006) developed a model to relate plastic rotation to various damage

states within circular bridge columns.

The maximum column shear is an important demand parameter for lightly-confined or

stocky columns, which might experience sudden shear failure. While researchers can easily

estimate the shear forces within columns of component tests, the forces within indeterminate

systems are much more difficult to approximate.

11.3.2 Demand Model

The demand model relates the intensity of a ground excitation to the demand it creates

on the structure. Many researchers (Mackie and Stojadinovic, 2005; Jalayer, 2003) have

found that the nonlinear relationship between the system response and the intensity of the

ground motion can be accurately modeled as linear in log-space for a large range of system

response. This relationship can be defined as

ln(EDP ) = A + B ln(IM) (11.8)

EDP = a(IM)b (11.9)

where a = eA and b = B. The constants A and B were estimated using a least-squares

approach. Eq. 11.9 represents the mean IM-EDP relationship.

The uncertainty of the demand model is attributed to two sources, aleatory uncertainty

and epistemic uncertainty. The aleatory uncertainty is due to the scatter of the IM-EDP

relationship around the mean, quantified by the standard deviation. The standard deviation

of the model error (σEDP |IM ) was assumed to be constant across the entire data set, and

was calculated as

σEDP |IM =

√√√√ 1
N − 1

N∑

i=1

(A + B ln(IMmeas)− ln(EDPmeas))2 (11.10)
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where N is the number of data points in the data set, and IMmeas and EDPmeas are the

measured IMs and EDPs, respectively, for each test. An illustration of this process is

displayed in Fig. 11.3.
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Figure 11.3: IM-EDP Illustration

Uncertainty associated with the numerical model (epistemic uncertainty) was approxi-

mated from results of the shaking table model (Chapter 8) and the centrifuge model (Shin,

2006). The uncertainty of the shaking table modal was approximated as the percent differ-

ence between the measured and simulated maximum displacements resulting from the low

and high-amplitude earthquake excitations, which was approximately 10%. Assuming the

epistemic uncertainty from the soil is similar to that from the structure, the total epistemic

uncertainty is approximately 14%. This is close to the level of epistemic uncertainty that

was proposed by Mackie and Stojadinovic (2005) for a detailed nonlinear seismic demand

model (15%). Therefore, this research used an epistemic uncertainty of 15%. The total

uncertainty for the seismic demand model (σSDM,T ) was approximated as the square root
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of the sum of the squares (SRSS) of the aleatory uncertainty (σEDP |IM ) and the epistemic

uncertainty (σU,SDM ), defined as

σSDM,T =
√

σ2
EDP |IM + σ2

U,SDM (11.11)

This thesis does not consider the additional uncertainty in the bridge and soil material

properties.

11.3.3 Demand Hazard

Jalayer (2003) used integration by parts to develop a closed-form solution for the demand

hazard (Eq. 11.3) from the intensity measure hazard and the fragility curves relating motion

intensity to system demand, defined as

λEDP (edp) = k0

[(
edp

a

)1/b
]−k

exp
(

k2

2b2
σ2

SDM,T

)
(11.12)

Mayfield (2007) illustrates the calculation of the EDP hazard curve numerically using

the equation

λEDP (edpj) =
N∑

i=1

p[EDP > edpj |IM = imi]∆λIM (imi) (11.13)

where i and j are indices for the intensity measure and the demand parameter, respectively.

The variable N is the total number of summation steps, which is defined by the discritezation

size that is used.

11.4 Model Damage

Various damage measures are possible for describing the extent of damage to a bridge,

including column damage measures (e.g., concrete spalling, buckling of the longitudinal re-

inforcement) and system damage measures (e.g., unseating, misalignment). This research

focussed on the concrete spalling and bar buckling. These damage levels were chosen be-

cause: (1) each measure has an associated repair cost, (2) Berry (2006) has developed

EDP/DM fragility curves for these measures, and (3) these damage states are relevant to

current bridge design standards.
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11.4.1 Damage Models

The UW-PEER reinforced concrete column database (Berry et al., 2004) contains perfor-

mance data for over 400 columns. From this database, Berry (2006) developed empirical

fragility equations relating concrete spalling and bar buckling to three measures of demand:

column drift, plastic rotation, and material strains. The damage equations utilizing column

drift and plastic rotation are used in this research.

Damage Estimates Based on Column Drift

According to Berry (2006), the calculated drift ratio for the mean occurrence of damage

can be described by the equation

δdam,calc

L
(%) ∼= C0

(
1 + C1

ρeffdb

D

)(
1− C2

P

Agf ′c

)(
1 + C3

L

D

)
(11.14)

where P is the column axial load, Ag is the gross section area of each column, f ′c is the

unconfined concrete compressive strength, D is the column diameter, db is the diameter of

the longitudinal reinforcement, and L is the length of the column from the column fixity to

the inflection point. The effective transverse reinforcement ratio (ρeff ) is defined as

ρeff = ρs
fy

f ′c
(11.15)

where ρs is the transverse reinforcement ratio and fy is the yield stress of the reinforcement.

The coefficients C0, C1, C2, and C3 were calibrated to minimize the difference between

the calculated and observed damage for a subset of spiral-reinforced columns within the

database (29 columns for concrete spalling and 33 columns for bar buckling). The optimal

coefficients for spalling and bar buckling are listed in Table 11.2.

Table 11.2: Optimal drift coefficients for spalling and bar buckling (Berry, 2006)

damage state C0 C1 C2 C3 δdam,meas/δdam,calc COV

spalling 1.6 0.0 1.0 0.1 1.07 34.9

bar buckling 3.25 150 1.0 0.1 1.01 24.7

The ratios of the measured displacements at damage to those calculated using Eq. 11.14

had means of 1.07 and 1.01 for concrete spalling and bar buckling, respectively. The coeffi-

cients of variation for these ratios were 34.9% and 24.7%, respectively.
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Damage Estimates Based on Column Plastic Rotation

Berry (2006) developed a similar equation to Eq. 11.14 for estimating the mean plastic

rotation at which damage is expected, defined as

θp,dam,calc = C0 (1 + C4ρeff )
(

1 + C1
P

Agf ′c

)−1 (
1 + C2

L

D
+ C3

fydb

D

)
(11.16)

The optimal coefficients (C0 − C4) for both spalling and bar buckling are listed in Ta-

ble 11.3. The ratio of the measured to calculated plastic rotation for the two damage states

were 0.99 ± 48.1% (spalling) and 1.01 ± 24.1% (bar buckling).

Table 11.3: Optimal plastic rotation coefficients for spalling and bar buckling (Berry, 2006)

damage state C0 C1 C2 C3 C4 θp,dam,meas/θp,dam,calc COV

spalling 0.0100 0.0010 0.0500 0.0030 0.0000 0.99 48.1

bar buckling 0.0009 0.0000 1.3000 3.0000 7.3000 1.01 24.1

11.4.2 Damage Hazard

Column damage is a series of binary observations rather than a continuous variable. For

example, key column damage measures (e.g., bar yielding, concrete spalling, bar buckling,

column loss of lateral load capacity) are isolated observations, with no observations of

damage in between.

Because of the binary quality of column damage, the damage hazard was solved numer-

ically. The hazard for each damage level generated a single point on the damage hazard

curve. The discrete procedure for calculating the damage hazard for each level of damage

is represented in Eq. 11.17, and illustrated in Fig. 11.4.

λDM (dmj) =
N∑

i=1

p[DM > dmj |EDP = edpi]∆λEDP (edpi) (11.17)

For a given dm, the DM hazard is the sum of the products between incremental change in

the EDP hazard curve (∆λEDP (edpi)) and the probability of damage (p[DM > dmj |EDP =

edpi]) for each edp.
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Figure 11.4: Illustration of EDP hazard curve calculation

11.5 Model Evaluation

The accuracy and precision of the seismic demand models introduced in Chapter 12 were

evaluated within the performance-based framework presented in this chapter. The demand

models were evaluated by comparing the response from these models to the response from

the prototype model (Chapter 10) on two levels, estimated system demands and resulting

damage estimates.

The system demands of the models were compared on a test-by-test basis with the

prototype model for the suite near-field and far-field excitations (Section 10.2). The error

of the model demands was defined as the percent difference between the demands estimated

with the simpler models to the demands estimated with the prototype model. The accuracy

and precision of the models was defined as the mean and standard deviation of these errors

for all intensity levels.

The accuracy of the demand models was also compared on the system damage level. The

damage hazards for each demand model were calculated using Eq. 11.17. These damage

hazards were compared to those from the prototype model to assess the effects of each
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modeling approximation on the overall damage estimates. The errors in the damage hazards

were also compared to the errors in damage hazards from inefficient intensity measures to

investigate the relative importance of accurately modeling the structural system.
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Chapter 12

EVALUATION OF BRIDGE MODELING STRATEGIES

This chapter evaluates various foundation and structural modeling strategies for approx-

imating the seismic behavior of a soil-foundation-structure bridge system. These strategies

were evaluated within a performance-based framework (Chapter 11) by comparing their cal-

culated performance with the calculated performance of the prototype model (Chapter 10).

Specifically, this chapter: describes the modeling strategies that were evaluated (Sec-

tion 12.1); evaluates the accuracy and precision of the seismic modeling strategies by com-

paring the engineering demand parameters of the various models (Section 12.2); evaluates

the sensitivity of the model accuracy to the estimated depth of fixity (Section 12.3); com-

pares the efficiency of common intensity measures (Section 12.4); calculates the sensitivity

of the IM efficiency to the structural parameters (Section 12.5); and estimates the dam-

age hazard (for concrete spalling and bar buckling) for the various models and intensity

measures (Section 12.6). Key conclusions from this chapter are summarized in Section 12.7.

12.1 Bridge System Modeling Strategies

This research investigated the influence of foundation and structural modeling strategies on

the accuracy and precision of bridge system models. The foundation was modeled using

three methodologies: two-dimensional, nonlinear soil columns; linear soil springs; and fixing

the column at a depth below the ground surface. The columns and shafts were modeled with

nonlinear column elements, with effective-section linear column elements, and with gross-

section linear column elements. Each of the foundation and structure modeling strategies

is discussed in this section.
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12.1.1 Foundation Approximations

The foundation in the prototype was modeled using two-dimensional nonlinear soil columns

(Chapter 10). Shin (2006) calibrated the soil elements and P-y springs in this model based

on the response during centrifuge tests. To evaluate the consequences of using simpler

foundation approximations, the foundations were approximated with either (1) linear soil

springs or (2) fixing the column bases at a depth below the ground surface.

First, the numerical model of the prototype specimen was approximated by replacing the

two-dimensional nonlinear soil columns with linear soil springs at the ground surface (Novak,

1974). In these models, flexibility and damping attributed to the soil and foundation were

modeled with linear translational and rotational springs and dashpots.

The spring stiffnesses were calculated by Professor Kramer at the University of Washing-

ton with the program DYNA (Novak et al., 1993). The program used the effective elastic

pile and soil properties. Stiffnesses and damping ratios were obtained for two boundary

conditions at the top of the pile, pinned and fixed against rotation. The two top-of-pile

constraints are illustrated in Fig. 12.1. In both cases, the bases of the shafts were assumed

to be fixed. The calculated stiffness and damping values for the two boundary conditions

are listed in Table 12.1. Because the structure above ground had some stiffness but was not

rigid, the actual fixity conditions at the top of the pile would be expected to lie between

these two extreme values. The program did not calculate spring stiffnesses for the actual

boundary conditions between these two extreme cases.

Ground Surface

Pinned  
Boundary Condition

Fixed  
Boundary Condition

Pile Ends

Figure 12.1: Illustration of fixed and pinned boundary conditions for spring model
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Table 12.1: Stiffness and damping values for the spring models

Type Degree of Freedom Pinned Fixed

Stiffness Horizontal Translation (k/in.) 8.49E+02 1.67E+03

Vertical Translation (k/in.) 6.25E+03 6.25E+03

Moment Rotation (k*in./rad) 0.00E+00 6.92E+06

Torsion Rotation (k*in./rad) 1.40E+06 1.40E+06

Damping Horizontal Translation (k/in./s) 1.01E+01 1.81E+01

Vertical Translation (k/in./s) 6.19E+01 6.19E+01

Moment Rotation (k*in./rad/s) 0.00E+00 2.53E+04

Torsion Rotation (k*in./rad/s) 3.56E+03 3.56E+03

Second, the foundation was approximated by fixing the columns below the ground sur-

face. For this analysis, depths of zero and three times the column diameter were considered.

A fixity depth at the ground surface was chosen to illustrate the effects of neglecting the

influence of the soil and foundation flexibility on the structural response.

The bases of the columns were also fixed at a depth of three column diameters below the

ground surface, based on the location of the maximum moment in the piles of the prototype

model (Section 10.3.3). This approximation accounted for the foundation flexibility by

elongating the columns. This approximation did not account for the interaction of the pile

and soil between the ground surface and the assumed point of fixity, nor did it model the

nonlinear behavior of the soil.

12.1.2 Structural Approximations

The nonlinear structural elements of the prototype model were calibrated based on the

dynamic response from the shaking table tests (Chapter 8). To evaluate the consequences

of using simpler column modeling strategies, the columns were modeled using elastic column

elements with either gross-section or effective-section properties. For both approximations,

the bond-slip section included in the nonlinear column model was removed, and the effective

viscous damping ratio was assumed to be 5%.

The column stiffnesses were first approximated using gross-section properties (EI =

EIg). This assumption is the simplest to implement and may be accurate during low-

intensity earthquakes, in which the columns have little cracking. However, this method was
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expected to greatly overestimate the column stiffness during high-intensity excitations.

In practice, the most common elastic analysis methods involve approximating the column

stiffness using effective-section properties. This methodology accounts for the progression

of column cracking during high-intensity earthquakes. For ductile columns, Caltrans (2004)

suggests using an effective modulus of rigidity (EcIeff ) based on the secant slope to the

yield point in a moment-curvature relationship.

EcIeff =
My

φy
(12.1)

where Ec is the elastic modulus of the concrete, and My and φy are the calculated moment

and curvature at first yield of the longitudinal reinforcement. Using this effective rigidity

may underestimate the column stiffness during low-intensity excitations, when columns

are not typically cracked along the entire length of the member. This method neglects the

flexibility due to bond slip within the anchorages at all intensity levels, and does not account

for the nonlinear behavior of the columns.

12.1.3 Matrix of Bridge Modeling Strategies

The foundation and structural approximation methodologies discussed in the previous sec-

tions were combined to create the matrix of bridge modeling strategies shown in Fig. 12.2.

Each row in Fig. 12.2 represent a particular foundation modeling strategy. The bottom

row represents the nonlinear soil, which was calibrated based on a series of centrifuge tests

(Shin et al., 2006). The other four rows represent simpler foundation approximations (Sec-

tion 12.1.1). Each column in Fig. 12.2 represents the structural modeling strategies (Sec-

tion 12.1.2). The right column represents the nonlinear structure that was calibrated from

the shake-table tests (Chapter 8). The left column represents two linear structure approxi-

mations; gross-section and effective-section column stiffnesses.

The matrix describes a total of 13 bridge modeling strategies: 12 combinations of struc-

ture and foundation modeling approximations, and the prototype model with the calibrated

soil and structure approximations. The accuracy and precision of these modeling strategies

were evaluated (in comparison with the prototype model) in terms of deformation and shear

demands (Section 12.2), and damage levels (Section 12.6).
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Foundation Linear Column Nonlinear Column

Approximation Properties Properties

Fixed at Surface EI = EcIg EI = EcIeff

Fixed at 3.0D EI = EcIg EI = EcIeff

Soil Springs EI = EcIg EI = EcIeff

Pinned

Soil Springs EI = EcIg EI = EcIeff

Fixed

Soil Columns Prototype Model

Not Considered

Figure 12.2: Matrix of bridge system modeling strategies

12.2 Accuracy and Precision of Bridge Modeling Strategies

This section compares the deformation and force demands on the two-span bridge estimated

using the 12 simpler bridge modeling strategies (Section 12.1) with the corresponding de-
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mands estimated using the prototype model.

12.2.1 Error Quantification

The errors in the structural demands for each model (ErrorEDP ) were quantified on a

motion-by-motion basis by the relative differences between the demands from the simpler

models (EDPmodel) and the demands from the prototype model (EDPproto). For each

motion (i), the error in the demands of each model was defined as

ErrorEDP,i(%) =
EDPmodel,i − EDPproto,i

EDPproto,i
× 100 (12.2)

The accuracy of the model at every bent was defined as the average error in the engineering

demand parameter at each hazard level, defined as

Accuracy = µ =
1
N

N∑

i=1

ErrorEDP,i (12.3)

where N is the number of motions at each hazard level (N = 10 for this research). The

precision of the modeling strategy was quantified by the standard deviation in the error of

the engineering demand parameter at each hazard level, defined as

Precision = σ =

√√√√ 1
N − 1

N∑

i=1

[ErrorEDP,i − µerror]
2 (12.4)

The mean (accuracy, µ) and standard deviation (precision, σ) of the error of each model

were calculated at all hazard levels for both near-field and far-field excitations. The overall

accuracy and precision of each model was computed for each EDP using the calculated error

from all motions and all bents (a total of 180 values).

The error statistics for all EDPs and modeling approximations are presented in Appen-

dix H. The errors in the calculated drift ratios for the inelastic, effective elastic, and gross

elastic models are presented in tables H.1 - H.3, and are plotted in figs. H.1 - H.3.

As an example, Table 12.2 and Fig. 12.3, repeated from the appendix, illustrates the

organization of the calculated errors. The columns in Table 12.2 provide the means and

standard deviations for the four foundation approximations. The rows provide the statistics

for bents 1, 2, and 3, subjected to the near-field and far-field excitations for three levels of
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hazard. The 97% in 50 year hazard level was not considered in these statistics because this

hazard level was only developed for the near-field situation. In each plot within Fig. 12.3, the

mean errors for the three hazard levels are denoted with asterisks. The standard deviations

are presented using error bars centered around the mean values.

Table 12.2: Error in estimated drift ratios for the inelastic structural models

Bent Field Hazard Foundation Approximations

Fixed @ 3D Fixed @ 0D Springs (Pinned) Springs (Fixed)

µ σ µ σ µ σ µ σ

1 NF 50% 1.0 12 34.1 43 89.7 23 53.5 42

10% -3.1 19 17.4 83 76.0 21 41.4 73

2% -6.8 11 11.6 65 85.7 28 28.2 46

FF 50% 9.9 17 27.6 45 102.9 29 62.3 56

10% -1.5 8 -5.2 29 108.3 43 20.2 24

2% -4.7 7 -12.6 21 84.2 29 21.5 29

2 NF 50% -3.8 8 -19.5 24 48.0 16 1.1 32

10% -7.9 11 -39.1 36 34.7 17 -23.5 41

2% -8.6 11 -40.7 29 45.5 25 -25.8 27

FF 50% 0.9 8 -17.4 25 49.0 40 -3.3 28

10% -5.0 4 -41.3 20 44.9 17 -20.8 19

2% -8.4 7 -49.0 11 31.4 20 -31.6 14

3 NF 50% 1.4 12 -21.8 36 83.5 25 19.6 64

10% -10.9 13 -58.9 50 66.9 27 -29.7 65

2% -5.4 15 -62.1 36 87.4 36 -31.1 49

FF 50% 6.1 15 -54.9 21 84.9 37 1.0 45

10% -5.9 7 -57.6 16 79.5 16 -27.0 27

2% -4.9 10 -68.0 14 79.2 33 -47.8 18

Total -3.2 12 -25.4 48 71.2 35 0.5 51

The errors in the estimated plastic rotations and column shears for the inelastic mod-

els are tabulated in Tables H.4 - H.5. These results are shown in Figs. H.4 - H.5. The

statistics presented in Appendix H were used to determine the accuracy and precision of

the modeling approximations on estimated drift ratios (Sections 12.2.2) and on other EDPs

(Section 12.2.3).
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Figure 12.3: Error in estimated drift ratios for the inelastic structural models
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12.2.2 Effects of Modeling Approximations on Drift Ratio

This section compares the accuracy and precision of the drift ratios estimated for the

four foundation modeling approximations and three structural modeling approximations.

Fig. 12.4 plots the estimated drift ratios for the 12 simpler modeling strategies versus the

drift ratios estimated with the prototype model. Each row in Fig. 12.4 corresponds to a

particular foundation approximation. The columns correspond to the structural approxi-

mations. For example, the top, left-hand plot in Fig. 12.4 compares the estimated drift

ratios of the inelastic fixed @ 3D model with the drift ratios estimated with the prototype

model.

The 1:1 ratio and 20% bounds are included in the plots to add perspective on how each

model represents the prototype model. For example, the differences between the drift ratios

of the inelastic fixed @ 3D model and the prototype model are nearly all less than 20%. In

contrast, the differences in the drift ratios of the gross elastic springs (fixed) model and the

prototype model greatly exceeded 20% for nearly all levels of drift ratio.

The correlation coefficients (R2) for each bent are included in the plots to show the

correlation between the demands estimated with the simpler models to those estimated

with the prototype model. For example, the drift ratios for the inelastic fixed @ 3D model

are well correlated to the drift ratios of the prototype model, with R2 > 0.95 for all bents.

In other words, the relationship is insensitive to the level of drift ratio.

The effects of foundation approximations were determined by comparing the rows of

Fig. 12.4, and based on the statistics presented in Appendix H. As seen in Fig. 12.4, the

most accurate model combined the fixed @ 3D foundation approximation with the inelastic

columns. The drift ratio response of the inelastic fixed @ 3D model was almost always

within 20% of the response of the prototype model. On average, this model underestimated

the drift ratio by 3.2%, with a standard deviation of 12% (Table H.1). The inelastic fixed @

3D model was also the most accurate approximation for each individual bent. Specifically,

the mean percent difference in the bent 1, 2, and 3 drift ratios for the inelastic fixed @ 3D

model were -0.9%, -5.5%, and -3.3%, respectively (Table H.1).

The springs (pinned) model was generally the least accurate foundation approximation
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Figure 12.4: Comparison of the estimated drift ratios for the 12 simpler modeling strategies
to the drift ratios estimated with the prototype model
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for the inelastic models. Because the bottom of the columns were free to rotate, much of the

column deformation occurred at the top of the columns. This caused the springs (pinned)

model to consistently overestimate the deformation demands for each bent. The mean and

standard deviation of the error with this model (considering all bents) were 71% and 35%,

respectively.

The fixed @ 0D and springs (fixed) foundation approximations resulted in structures

that were much stiffer and more asymmetric than the prototype model. For example, Bent

3 in the fixed @ 3D model was 1.6 times stiffer than Bent 1. In comparison, Bent 3 in the

fixed @ 0D model was 2.4 times stiffer than Bent 1. This increase in the relative stiffness of

bent 3 (compared to bent 1) changed the mode shapes and increased the twist response of

the system. For example, for the inelastic fixed @ 0D model the average errors in the drift

ratios at bents 1 and 3 were 12% and -54%, respectively.

The inelastic models were more accurate than the effective-elastic models for three of

the four foundation approximations (except for the springs (pinned) model). All of the

inelastic models were more precise than the effective-elastic models. For example, the mean

error of the inelastic fixed @ 3D model was -3.2%. In contrast, the mean errors of the

effective-elastic and gross-elastic fixed @ 3D models were -4.8% and -40%, respectively.

Although the overall mean error of the effective-elastic fixed @ 3D model (-4.8%) was

only slightly larger than the overall mean error of the inelastic fixed @ 3D model (-3.2%),

the errors on a bent-by-bent basis were much larger for the effective elastic model. For

example, the average errors of the drift ratios at bents 1 and 3 were 13% and -16%. In

contrast, the average errors of the drift ratios at bents 1 and 3 for the inelastic fixed @ 3D

model were only -0.9% and -3.3%.

Regardless of the foundation approximation, all of the gross-section elastic structural

models were inaccurate and imprecise. All of the gross-section elastic models underestimated

the bent demands. The mean error for these models ranged from -71% to -21%.
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12.2.3 Effects of Modeling Approximations on other EDPs

The estimated plastic rotation, residual drift ratio, and column shear for the inelastic column

models were compared with the estimates of the prototype model in Fig. 12.5. These demand

parameters were not compared for the elastic structural models.

The errors in the estimated plastic rotations at the tops of the columns were more

sensitive to the foundation approximation than were the estimated drift ratios. For example,

the standard deviation of the errors in the plastic rotations for the inelastic fixed @ 3D model

was 26%, compared to the standard deviation of only 12% in the estimated drift ratio.

Because the calculated error in Eq. 12.2 divides the differences in the estimated EDPs

by the EDP estimated with the prototype model, this error was sensitive to small values of

the prototype EDP. The plastic rotation at the tops of the columns during the 50% in 50

year earthquakes was typically small. Therefore, the plastic rotation error statistics for this

level of earthquake intensity should be carefully considered. For example, the mean error of

the inelastic springs (fixed) model during the 50% in 50 year far field excitations was 211%.

However, the mean errors for the 10% and 2% in 50 year far field excitations were only 39%

and 32%, respectively.

Because the moment capacity of each column was the same for all foundation modeling

approximations, the shear forces within the columns were approximately proportional to

the length of the column to the inflection point. The lengths to the inflection point of the

bents in the prototype column were approximately 3, 4, and 3 times the column diameter

for bents 1, 2, and 3, respectively. For the fixed @ 3D model, the lengths to the inflection

points were approximately 3.5D, 4.5D, and 3D, respectively. Because the lengths to the

inflection points were approximately the same in the fixed @ 3D model, the estimated shear

forces within the columns were similar to those in the prototype model.

The fixed @ 0D and springs (fixed) models underestimated the lengths to the inflection

points of each bent. Therefore, these models overpredicted the estimated shear forces within

each bent by as much as 120% in bent 3 (Table H.5). The lengths to the inflection points

for the springs (pinned) model were 4D, 6D, and 3D for bents 1, 2, and 3, respectively.

Fig. H.5 shows that because the length to the inflection point for bent 2 in this simpler
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Figure 12.5: Comparison of the plastic rotation, column shear, and residual drift ratios for
the four inelastic modeling strategies



230

model was 50% larger than the length to the inflection point of bent 2 in the prototype

model, the estimated shear demands on bent 2 were always smaller. Because the lengths to

the inflection points were similar to the prototype model for bents 1 and 3, the shear forces

in these bents were similar to the shear forces in the prototype model.

The residual drift ratios of none of the simpler inelastic models correlated well with the

residual drift ratios of the prototype. For example, the correlation coefficient (R2) for bent 3

in the inelastic fixed @ 3D model was 15%. The correlations for the other modeling strategies

were generally worse for this demand parameter. For example, the highest correlation

coefficient for the inelastic springs (fixed) model was 11%. This low correlation to the

prototype response was expected, since the correlation between the prototype residual drift

ratios and the motion intensity was also low.

12.3 Sensitivity of Model Accuracy to Effective Depth of Fixity

The inelastic fixed @ 3D model was shown in Section 12.2 to be the most accurate and precise

of the 12 simpler modeling strategies presented in Section 12.1. The fixity depth for this

model was chosen based on the estimated location of the maximum moment within the piles

of the prototype model. It is important to evaluate the sensitivity of performance estimates

to this assumption, because the prototype model would not be available to designers.

According to the methodology developed by Chai (2002) for estimating the fixity depth of

piles in cohesionless soils, the effective depth of fixity for bents 1, 2, and 3 was approximately

3.6 column diameters for the soil and pile properties in this research. This depth is about

20% larger than the depth that was approximated with the experimental data.

To investigate the effects of various fixity depth approximations, this section evaluates

the accuracy and precision of fixed-base models for fixity depths ranging from two to four

column diameters (approximately ± one column diameter from the optimal solution). The

accuracy of each model was evaluated using three demand parameters: drift ratio, plastic

rotation, and column shear. Fig. 12.6 compares the estimates of these three demand pa-

rameters using the fixity depth models with those of the prototype model. The effects of

fixity depth on the residual column drift ratios were not investigated, because this demand

parameter correlated poorly with motion intensity for all models.
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The mean (accuracy) and standard deviation (precision) of the demand estimates for

each bent, using the suites of near-field and far-field excitations, are tabulated in tables H.6 -

H.8. These statistics are also shown in figs. H.6 - H.8.

As seen in Fig. 12.6, the considered range in fixity depth did not significantly affect the

accuracy in drift ratio estimates for each model. The mean errors in the estimated drift

ratios for these five fixity depths ranged from -3.2% to 0.6%. The model precision was

slightly more sensitive to the fixity depth. The standard deviations of the errors for the five

fixity depths ranged from 12% to 20%. Overall, the fixed @ 3D model was the most precise

(σ = 12%).

The accuracy of the plastic rotation estimates was much more sensitive to the fixity

depth than the calculated drift ratios. The mean errors in the estimated plastic rotations

for the five fixity depths ranged from -2.6% to 18.2%. The choice in fixity depth greatly

affected the precision in the error of the estimated plastic rotation. The standard deviations

of these five fixity depths ranged from 25% to 52%. In general, the fixed @ 3.5D model was

the most accurate and precise for estimating the maximum plastic rotations (µ = −1.1%,

σ = 25%).

The most accurate model for representing column shear depended on the level of ground

excitation. For example, for the 50% in 50 year far-field excitations, the lowest average

error in the bent 1 shear occurred for the fixed at 3.5D model (-2.0%). For the 10% and

2% in 50 year motions, the lowest average errors (0.9% and -1.3%) occurred at a fixity

depth of 2.5D. This illustrates that as the ground motions became more intense, the soil-to-

structure stiffness ratio increased, moving the fixity depth closer to the ground surface. On

average, the fixed @ 3D model was the most accurate in estimating the maximum column

shears, with an average error of -3.2%. The fixed @ 3.5D model was the most precise with

a standard deviation of 6.6%.
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Figure 12.6: Sensitivity of estimated EDPs to fixity depth

12.4 Selection of Efficient Intensity Measures

This section compares the efficiencies of the intensity measures listed in Table 11.1 for the 40

near-field and 30 far-field excitations. The efficiency of each intensity measure was quantified
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by the dispersion of the data around a best fit of the relationship between the measure of

intensity and the system demands (σEDP |IM ). The fixed-base models were excited by free-

field motions at the point of pile fixity, whereas the prototype model was excited by soil

motions along the entire pile. Each of these motions were generated from the transmission

of the bedrock excitation through the soil. Therefore, to consistently compare the IM

efficiencies for all models, the intensity measures were based on the bedrock excitations.

The IM efficiencies (using maximum drift ratios) are shown in Fig. 12.7 for the prototype

model, inelastic fixed @ 3D model, and the effective-elastic fixed @ 3D model. For all

intensity measures, the IMs for the far-field excitations were consistently more efficient than

those for the near-field excitations. For example, with the prototype model, the standard

deviation using the Cordova predictor for the far-field excitations was 24%, whereas the

standard deviation for the near-field excitations was 40%.

Of the four Class I intensity measures (PGA, PGV , Ia, CAV ), which depend only on

the characteristics of the ground motions, the peak ground velocity was the most efficient for

the near-field excitations for all three bridge models. For the far-field excitations, the peak

ground velocity and the Arias intensity gave similar efficiency levels for the two inelastic

models. For the effective-section elastic model, the peak ground acceleration was the most

efficient.

Of the three Class II intensity measures (SA1, SA2, COR), which depend on the char-

acteristics of the ground motion and the the dynamic properties of the bridge, the Cordova

parameter was the most efficient for the two inelastic models; the spectral acceleration was

the most efficient for the effective-section elastic model.

The Class II-2 intensity measures (SRSS, CQC, SRSSCOR, CQCCOR), which used

dynamic properties from the first two modes of the system, generally had similar efficiencies

as the Class II intensity measures. For example, for the far-field excitations, the standard

deviation at bent 3 of the inelastic fixed @ 3D model using the Cordova parameter was 0.25.

For this same motion set, the standard deviation using the square root of the sum of the

squares of the Cordova parameters for the first two modes (SRSSCOR) was also 0.25. This

similarity between the Class II and Class II-2 efficiencies was attributed to the similarity

of the first two periods of vibration. For example, the second period of vibration of the
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Figure 12.7: IM efficiencies (using drift) for: a) prototype model, b) inelastic fixed at 3d
model, and c) effective elastic fixed at 3d model.



235

prototype model was 0.49s, only 20% smaller than the period of vibration of the first mode

(0.61s).

12.5 Sensitivity of IM Efficiency to Cordova Parameters

This section calibrates the two coefficients of the model used by Cordova et al. (2000) to

optimize the efficiency of the intensity measure for the prototype bridge system. This section

also investigates the sensitivity of the efficiency of the intensity measure to slight deviations

in these coefficients.

For the inelastic models, the Cordova parameter was the most efficient of the considered

intensity measures (Chapter 11). The model Cordova et al. (2000) used for quantifying the

intensity of a ground motion was defined as

SA∗ = SA(T1)
[
SA(CT1)
SA(T1)

]α

(12.5)

where C and α are coefficients of the model determined through calibration. For four

types of building frames Cordova et al. (2000) determined that the optimal coefficients for

Eq. 12.5 were C = 2.0 and α = 0.5. For this analysis, candidate values for the coefficients

were evaluated for ranges [1 ≤ C ≤ 4] and [0.25 ≤ α ≤ 1]. The IM efficiencies using these

ranges of values are shown in Fig. 12.8 for both the near-field and far-field excitations.

As seen in Fig. 12.8a, the parameters that correspond to the most efficient IM for the

near-field excitations are C = 2.5 and α = 0.75, resulting in an increase in efficiency of

approximately 20% over the Cordova parameters. For the far-field excitations, the optimal

parameters are C = 2.5 and α = 0.5, only about 5% more efficient than the Cordova

parameters.

As the value of the exponent α increased, the efficiency of the model was more sensitive

to slight changes in the value of C. Therefore, values of C = 2.5 and α = 0.5 were used for

subsequent analyses, denoted as the modified Cordova parameter (MCOR).
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12.6 Effects of Bridge Modeling Strategies on Estimated Damage

This section evaluates the accuracy of concrete spalling and bar buckling damage estimates

for the simpler bridge models. Damage was estimated at these two damage states using the

equations developed by Berry (2006), and the PBEE procedure described in Chapter 11.

The error of the estimated damage was quantified by the percent difference between the esti-

mated damage hazards from the simpler modeling strategies (λDM,Model) and the estimated

damage hazard from the prototype model (λDM,Proto), defined as

ERRORDM,model(%) =
λDM,model − λDM,proto

λDM,proto
× 100 (12.6)

Section 12.6.1 compares the damage estimates for the 12 simpler modeling strategies out-

lined in Section 12.1 with the damage estimates from the prototype model. The sensitivity

of the estimated column damage to the equivalent fixity depth is presented in Section 12.6.2.

The sensitivity of the estimated column damage to the choice of intensity measure is pre-

sented in Section 12.6.3.

12.6.1 Effects of Foundation and Structural Modeling Strategies on Damage Estimates

This section investigates the effects of the foundation and structural modeling strategies

on the levels of estimated column damage. For each model, the most efficient previously

studied IM was used in the process for estimating the damage levels; the Cordova parameter

for the inelastic models and the spectral acceleration for the elastic models. The errors in

the damage measures for all of the models are provided in Appendix H. The error statistics

for each model are presented in Tables H.9 - H.11, and are plotted in Figs. H.9 - H.11.

As an example, Fig. 12.9, repeated from the appendix, illustrates the organization of

the calculated damage estimates. The columns in Fig. 12.9 represent the near-field and

far-field excitations; the rows represent the bents. The errors in the spalling (SP) and bar

buckling (BB) damage measures were calculated for both the estimated drift ratios and the

estimated plastic rotations. For the elastic columns, only drift ratios were used to calculate

the damage probabilities.
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Figure 12.9: Error in the DM hazard for the inelastic structural modeling approximations

Overall, the spalling hazard was more difficult to predict than the bar buckling hazard for

all the models. Of all the inelastic column modeling strategies, the plastic rotations from the
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far-field excitations of the springs (fixed) model produced the largest error (700%). For this

same motion set, the effective elastic springs (fixed) model overestimated spalling hazard

by 2800%. This large error was attributed to the smaller demand estimates at the spalling

damage level, especially for estimating damage based on plastic rotation. For example,

excited by the 50% in 50 year far-field excitations, the average error in the plastic rotation

estimates at Bent 1 of the inelastic springs (fixed) model was 211%. In contrast, the average

error at this same location for the 10% in 50 year far-field excitations was only 39%.

The bar buckling hazard was almost always underestimated. As expected, the stiffest

modeling strategies resulted in the largest underestimations for this damage state. For

example, the average error of the bar buckling hazard for the four gross elastic models

ranged from -99% to -89%.

The inelastic fixed @ 3D model was the most accurate and precise model for estimating

the column damage hazards of all three bents. On average this model overestimated the

spalling hazard by only 9.1%, with a standard deviation of 17%. The average error for the

other three inelastic models ranged from 42% to 159%. The inelastic fixed @ 3D model

underestimated bar buckling by only -19%, with a standard deviation of 4.3%. The average

error for bar buckling of the other three inelastic models ranged from -64% to 109%.

12.6.2 Sensitivity of DM Hazard to Equivalent Fixity Depth

The inelastic fixed @ 3D model was determined to be the most accurate model for predicting

the probability of spalling and bar buckling (Section 12.6.1). This section investigates the

sensitivity of these damage estimates to various fixity depths. The errors in the estimated

damage measure hazards were calculated for the inelastic fixed-base models, fixed at 2.0D,

2.5D, 3.0D, 3.5D, and 4.0D beneath the ground surface. For each of these models, the

error in the estimated damage measure hazard was defined using Eq. 12.6. The errors in

the damage measures are shown in Fig. 12.10 for all three bents using both drift ratio and

plastic rotation as the engineering demand parameters. These errors are also tabulated in

Table H.12.

The estimated spalling hazards for bents 1 and 3 changed significantly with fixity depth.
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Figure 12.10: Error in the damage measure hazard for the fixity depth models for a) near-
field and b) far-field excitations
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For example, the percent differences in the estimated spalling hazards for bent 1 using

plastic rotations excited by the far-field excitations ranged from 27% to 115%. In contrast,

the probability of spalling at bent 2 was less sensitive to the fixity depth. For example, using

this same motion set, the percent difference in estimated spalling using plastic rotations

ranged from -6.4% to 19%. The higher sensitivity of bents 1 and 3 to the fixity depth was

attributed to the increase in system asymmetry as the fixity depth decreased, which did not

significantly affect the response of bent 2 (the location of the center of mass).

The fixed @ 3.5D model was the most accurate model for estimating spalling, overpre-

dicting the spalling hazard by only 1.7% ± 14%. The fixed @ 2D model was least accurate

and least precise at predicting the spalling hazard, with an average error of 47%.

The estimated bar buckling hazard was less sensitive to the fixity depth than the spalling

hazard. On average, the fixity depth models underpredicted the bar buckling hazard by

18.6% to 21%. The fixed @ 2D model was the least precise, with a standard deviation of

16.6%. The fixed @ 3D model was the most precise, with a standard deviation of 4.3%.

The standard deviations of the other three fixity depths ranged from 4.8% to 9.2%.

12.6.3 Sensitivity of DM Hazard to Intensity Measure

This section investigates the sensitivity of the damage hazards estimated with the proto-

type model to the choice of intensity measure for the 11 intensity measures described in

Section 11.2, and the modified Cordova parameter (MCOR, optimized in Section 12.5).

The Cordova parameter was determined to be the most efficient previously considered in-

tensity measure for the prototype model. Therefore, the error in the demand hazard due to

the choice in intensity measure (ERRORDM,IM ) was quantified by the percent difference

between the damage hazard estimated with the Cordova parameter (λDM,COR) and the

damage hazard estimated with an alternate IM (λDM,ALT ), defined as

ERRORDM,IM (%) =
λDM,ALT − λDM,COR

λDM,ALT
× 100 (12.7)

The errors in the damage measure hazards for the 12 intensity measures are shown in

Fig. 12.11. The statistics of these comparisons are tabulated in Table H.13 for five of the

more common intensity measures.
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Figure 12.11: Error in the damage measure hazard for the various intensity measures for a)
near-field and b) far-field excitations
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For all bents, the spalling hazard was more sensitive to the choice of intensity measure

than the bar-buckling hazard. For example, on average the spalling hazard calculated with

the peak ground acceleration was 80% larger than the hazard estimated with the Cordova

parameter. In contrast, the bar buckling hazard was overpredicted by only 12% when using

peak ground acceleration as the intensity measure.

For near-field accelerations, the peak ground velocity was only slightly less efficient than

the Cordova parameter. The PGV overestimated the damage hazard for spalling by 10%

and underestimated the damage hazard for bar buckling by only 0.8%. Using the modified

Cordova parameter, which was optimized to maximize the IM efficiency for the bridge

system in this research, the spalling and bar buckling hazards were 3.9% lower and 0.2%

higher, respectively, than the hazards estimated with the Cordova parameter.

Although the spectral acceleration at the first period of vibration of the structure was on

average 25% less efficient than the Cordova parameter for the prototype model, the spalling

and bar buckling hazards were overpredicted by only 13% and 6.4%, respectively.

For both far-field and near-field excitations, the average errors using the peak ground

velocity, spectral acceleration, or the modified Cordova parameter were typically less than

10%. This observation signifies that because of the large number of earthquake excitations

that were used, the damage estimates were not significantly affected by the choice in efficient

intensity measure. However, one motivation for choosing an efficient intensity measure is to

be able to use less motions to efficiently characterize the system response. The effects of the

various intensity measures on the damage hazard levels was not investigated for a smaller

number of motions, but the consequence of the choice in intensity measure is expected to

become more significant.

12.7 Chapter Summary

A two-span reinforced concrete bridge on drilled shaft foundations was simulated using 13

bridge modeling strategies, which are summarized in Fig. 12.2. One of these modeling strate-

gies (the prototype model) was a nonlinear bridge model on nonlinear soil columns. The

other 12 models were assembled using combinations of simpler foundation and structural

approximations.
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The effects of the foundation and structural approximations were investigated by com-

paring component demands and damage levels estimated with the 12 simpler models with

the demands and damage levels estimated with the prototype model. Key conclusions from

these comparisons are listed below.

1. For the soil properties considered in this research, the inelastic fixed @ 3D model was

the most accurate and precise for simulating the deformation (maximum drift ratio

and maximum plastic rotation) and force (column shear) demands of the prototype

model.

2. The effective elastic fixed @ 3D model was on average only slightly less accurate than

the inelastic fixed @ 3D model. However, the standard deviation of the drift ratios

of the effective elastic model (σ = 39%) was three times higher than the standard

deviation of the inelastic model (σ = 12%). The use of a less precise model with the

same level of accuracy means that the model would need to be excited by more ground

motions to develop the same confidence in the demand estimates.

3. Twisting of the system was not effectively simulated by the gross-section or the

effective-section elastic modeling strategies. These strategies typically caused the de-

mand parameters to be overestimated for bent 1, but underestimated for bent 3. For

example, on average the inelastic springs (fixed) model overestimated the maximum

bent 1 drift ratio by 38%, and underestimated the maximum bent 3 drift ratio by

48%.

4. Although residual column drift ratios may have important consequences for bridge

function, this EDP was difficult to predict. As a result, the correlation between

ground-motion intensity and this demand parameter was low for all models.

5. For the soil and pile properties considered in this research, the accuracy and precision

of the structural demands were insensitive to moderate changes in the fixity depth

of the inelastic fixed base models. For example, the mean error in the estimated

drift ratios ranged from -3.2% to 0.6% for fixity depths ranging from 2D to 4D. The

maximum plastic rotation was more sensitive to deviations in the fixity depth. Overall,

the fixed @ 3.5D model (fixity depth estimated using an empirical equation developed
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by Chai (2002) for the pile and soil properties of the prototype specimen) was slightly

more accurate and precise than the inelastic fixed @ 3.0D model (which was chosen

based on the average point of maximum moment in the prototype model for all three

bents).

6. The Cordova parameter (COR) was the most efficient considered intensity measure

for the two nonlinear models. By optimizing the coefficients within the Cordova

parameter (MCOR) for the prototype bridge system, the efficiency of this parameter

was improved by as much as 20%. For the linear model, the spectral acceleration at

the first period of vibration of the structure (SA1) was the most efficient.

7. The inelastic fixed @ 3D model was the most accurate and precise at estimating

the concrete spalling and bar buckling hazards for all bents. On average, spalling

was overestimated by 9.1% and bar buckling was underestimated by 19%. Spalling

was the most inaccurate hazard level for the other modeling strategies. The bar

buckling hazard was almost always underpredicted. For example, the gross-section

elastic springs (fixed) model underpredicted the bar buckling hazard by 99%.

8. Because of the number of motions used to estimate column damage levels, the esti-

mated damage hazards were insensitive to the choice in efficient intensity measure. For

example, using the peak ground velocity, spectral acceleration, or modified cordova

parameter caused a difference in the estimated spalling hazard ranging from -3.9% to

13%. The choice of intensity measure is expected to have a larger impact when using

less motions to characterize the system response.
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Chapter 13

SUMMARY AND CONCLUSIONS

Performance Based Earthquake Engineering (PBEE) is an increasingly attractive al-

ternative to traditional bridge design practice. PBEE attempts to explicitly predict the

seismic performance of structures, such as the system force and deformation demands, ex-

pected level of damage, likely repair costs, and the extent of disruption of function. These

performance predictions can be performed with numerically intensive nonlinear models of

the soil, foundation and structure. However, the accuracy and precision of these numeri-

cal models have been difficult to quantify in the past because individual experiments are

typically inadequate for accurately simulating the dynamic behavior of the entire nonlinear

system. Even if calibrated nonlinear models were routinely available, most practitioners

would prefer to use simpler models. It is important to understand the impact of using

simpler models on PBEE.

The objectives of this dissertation were to develop a calibrated numerical model of a

reinforced concrete bridge on drilled shafts from three experiments (shake table, centrifuge,

and pseudo-static component tests), and to use this model to evaluate the accuracy of a

variety of bridge modeling strategies within a performance-based framework. All analyses

considered a single bridge geometry (bent heights of 5 ft, 6 ft, and 8 ft), foundation type

(drilled shafts), and soil type (dense, dry sand). This research resulted in (1) the generation

of experimental data from a series of shaking table tests, (2) the characterization of the

shake-table specimen using response measurements and system identification methodologies,

(3) the development of a calibrated numerical model of a reinforced concrete bridge on a

drilled shaft foundation, and (4) the evaluation (within a performance-based framework) of

the accuracy and precision of simpler foundation and structural modeling strategies.
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13.1 Experimental Testing

As one in a series of four coordinated experiments, a quarter-scale, reinforced concrete

bridge was dynamically tested on three shake tables at the NEES facility at the University

of Nevada, Reno. The geometry of the bridge was designed to conform to the constraints of

the testing facility and to represent a typical bridge in the western United States. The bridge

specimen was a two-span section of a multi-span reinforced concrete box-girder bridge. The

spans were supported on three bents with span-to-depth ratios of 5, 8, and 6 (Chapter 2).

The reinforcement was proportioned using the NCHRP Recommended LRFD Guidelines

for Seismic Design of Highway Bridges (ATC/MCEER, 2001).

The earthquake motions used to excite the shaking table specimen were derived from

the 90-degree component of the Century City North (CCN090) outcrop record from the

1994 Northridge earthquake (Chapter 3). To generate the final motion for the shaking table

tests, the outcrop record was deconvoluted to the bedrock level, then convoluted back to the

estimated point of column fixity (2 column diameters below the ground surface) through

dense, dry sand.

The experimental test schedule was composed of low and high-amplitude earthquake

excitations. The low-amplitude tests were composed of coherent, incoherent, biaxial and

centrifuge excitations, all designed to create bent responses smaller than the estimated bent

yield displacements. The high-amplitude tests were composed of coherent excitations of

increasing intensity. White-noise and square-wave excitations were dispersed throughout

testing to aid in tracking the modal properties of the structure.

The achieved table accelerations differed significantly from the target values. During the

low-amplitude tests, the average differences in the peak achieved and target accelerations

of bents 1, 2, and 3 ranged from 17% to 76%. These differences were attributed to table

friction. During the high-amplitude tests, the average differences ranged from 25% to 31%.

These differences were attributed to structural feedback due to the inertial forces within

the system. The differences in the spectral accelerations at the first mode of the structure

were smaller, ranging from 18% to 31% during the low-amplitude tests, and from 9% to

23% during the high-amplitude tests.
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The three-dimensional response of the shaking table system was captured with more

than 300 instruments, including: strain gauges (160), potentiometers (111), and accelerom-

eters (15). The longitudinal and transverse table displacement, velocity and acceleration

responses were captured using 18 devices.

Each of the columns was inspected for damage intermittently throughout the low-

amplitude tests, and following every high-amplitude test. The damage states that were

observed include: cracking, concrete flaking, concrete spalling, exposure of the transverse

and longitudinal reinforcement, buckling of the longitudinal reinforcement, fracture of the

transverse and longitudinal reinforcement, and core degradation.

No damage was observed during the low-amplitude tests. Damage was first observed

during the first high-amplitude test (Test 13) on bent 1 (medium-height bent), which had

a maximum bent drift ratio of 0.85%. In general, bent 3 (the shortest bent) sustained the

most damage throughout testing. By the end of the high-amplitude tests, in which bent

3 experienced a drift ratio of 11%, longitudinal bars had buckled at 53 of the 64 possible

locations (16 at each column joint). Bars had fractured at 17 of the 64 locations.

The damage to the system was confined to the six columns until Test 20, when cracks and

spalling in the cross beams were observed in circular patterns concentric to each column in

bent 3. This cracking pattern was attributed to bar slip within the anchorages. No damage

was observed in the footings or slab throughout testing.

Key conclusions from the experiment are listed below.

1. Despite sustaining drift ratios up to 11% in one bent, and being subjected to peak

accelerations of 2.2g, the structure did not collapse. The amount of transverse re-

inforcement recommended by the NCHRP 12-49 commentary was adequate for pre-

venting buckling of the longitudinal reinforcement until the bents reached large drift

ratios. Bar buckling occurred in Bent 3 at a drift ratio between 5.5% and 7.9%. The

detailing of the transverse reinforcement prevented the columns in the stockiest bent

(shear span ratio 2.5:1) from failing in shear, even at drift ratios as large as 7.9%.

2. The maximum center-of-mass displacement of the bridge, which was dominated by the

symmetric modes of the system, was independent of the motion coherency. In contrast,
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motion incoherency significantly affected the twist displacements of the system, which

were dominated by the asymmetric modes of the system. This experimental finding

reinforces findings by Price and Eberhard (1998) based on numerical simulations of

short-span bridges.

3. The maximum center of mass displacement was estimated well by the average spectral

displacement for all three tables at the first mode of the structure and 5% damping.

13.2 Identified System Modal Properties

The modal properties of the shaking table specimen were determined with four system iden-

tification algorithms: a successive linear programming (SLP) algorithm, an autoregressive

algorithm with exogenous excitation (ARX), a stochastic autoregressive algorithm (AR),

and a subspace identification algorithm (SI).

Six modes of the shaking table specimen were identified by exciting the bridge in the

transverse and longitudinal directions, including: three transverse modes, two vertical

modes, and one longitudinal mode. Because the shaking table specimen was almost exclu-

sively excited in the transverse direction, only the transverse modes were used to compare

algorithms.

The periods of the first three transverse modes (identified with the ARX and SLP

algorithms during the low-amplitude tests) were approximately 0.33s, 0.26s, and 0.078s. The

periods of the first two transverse modes increased gradually throughout the low-amplitude

tests, which was attributed to the progression of cracking within the columns. The third

transverse mode did not change throughout the tests, because it depended primarily on the

slab stiffness, which did not degrade during the tests.

The first three transverse mode shapes of the shaking table specimen were composed of

combinations of slab translation, in-plane twisting, and slab bending. Mode 1 was primarily

composed of translation (87%) and twisting (12%). Mode 2 was primarily composed of

twisting (76%) and translation (24%). Mode 3 was primarily composed of slab bending

(92%), and slab translation (7%).

The damping ratios from the first three transverse modes ranged from 1% to 4%. The
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large scatter in the identified damping ratios was due to the relative insensitivity of the

structural response to slight changes in the damping ratio, as analyzed using the SLP

algorithm. For example, during the earthquake excitations, a 5% increase in the stiffness

of bents 1 or 3 caused the objective function used by the SLP algorithm to increase by

approximately 100% and 260%, respectively. A 5% increase in the damping ratios caused

an average increase in the objective function of less than 0.5%.

The modal properties identified with each of these algorithms were compared to in-

vestigate the effects of pre-defining a structural model (parametric vs. non-parametric al-

gorithms), accounting for the input excitation (input/output vs. stochastic algorithms),

excitation type (earthquake, white noise, and square wave), and the type of response mea-

surement (acceleration vs. displacement). Significant conclusions from these comparisons

are listed below.

1. The parametric (SLP) and non-parametric (ARX) input/output algorithms had the

same accuracy and precision for the identified modal properties. To implement the

SLP algorithm, it was necessary to develop an adequate numerical model of the system.

In addition, the SLP algorithm required a succession of linear programming steps

for every variable that was optimized, making the computational demand of this

algorithm computationally demanding for three-dimensional modal identification. In

contrast, the non-parametric ARX algorithm did not require any a-prior knowledge of

the system, and the computational demands were lower, but it required more effort to

extract the properties of the individual structural components, such as bent stiffnesses.

2. For both input/output algorithms (ARX or SLP), the identified modal properties

were independent of the type of excitation (white-noise, square-wave, or earthquake).

In contrast, because square-wave and earthquake excitations have biased frequency

content, these types of excitations affected the modal properties identified with the

stochastic algorithms. For example, the identified period of mode 1 during Test 3B

(earthquake excitation) was 0.41s (using the stochastic SI algorithm), 25% larger

than the period of the same mode identified with the input/output SLP and ARX

algorithms (0.33s).
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3. The acceleration response data led to a more precise identification of modal properties

than the displacement data. This difference was attributed to the existance of large

accelerations in directions out of the plane of loading, and to the smaller noise-to-signal

ratios in the acceleration data.

13.3 Modeling of the Shake-Table Tests

A numerical model was developed in OpenSEES to simulate the dynamic response of the 2-

span, fixed-base, quarter-scale, shake-table specimen. The structural model was developed

using nonlinear, distributed-plasticity elements for the columns, and elastic beam-column

elements for the cross-beams and slab.

The nonlinear column elements were composed of four parts: the nonlinear material

models, the zero-length sections to simulate anchorage slip, and the column integration

and section discretization schemes required for the distributed plasticity elements. The

nonlinear material models for the specimen were calibrated from measured concrete and steel

properties. The column cross-section discretization and integration schemes were adopted

from recommendations by Berry (2006), which were based on convergence tests of the

moment-curvature responses for 75 circular columns from the UW-PEER column database

(Berry et al., 2004). Components of the shake-table model (bond stress, effective cross-

beam width, and viscous damping) were calibrated using response data recorded during the

shake-table tests.

The accuracy of the numerical model was assessed by comparing the simulated response

of the model with the measured response from the shaking table tests. The responses were

compared for: total base shear, displacement maxima, displacement histories, and modal

properties. Conclusions from the assessment of the shake-table model are listed below.

1. The calibrated OpenSEES model had a total system base shear of 391k, which dif-

fered from the measured base shear (386k) by less than 1.3%. Because the system

was indeterminate, the base shear of the individual bents could not be determined

experimentally.

2. The measured and simulated displacement maxima were similar at the beginning of
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the low-amplitude excitations, but diverged towards the end of the low-amplitude

excitations. This difference was attributed to the progression of cracking within the

columns of the experimental specimen, which the numerical model did not capture.

3. During the high-amplitude tests, the calculated and measured displacement maxima

were similar until Test 19, at which point significant bar buckling occurred in bent

3. The divergence in the maxima after this test was attributed to inabilities of the

numerical model to adequately simulate the extent of column damage.

13.4 Model Assessment with Pseudo-Static Component Tests

Because the shaking table specimen was an indeterminate system, a primary objective of

component tests conducted at Purdue University (Makido, 2007) was to directly provide the

force-deformation response of the shortest bent of the shaking table specimen, and to assess

the accuracy of the numerical model. Two of the five specimens tested at Purdue Univer-

sity (Specimens B-1 and C-1) had nominally identical properties to the columns in bent 3

(shortest bent) of the shaking table tests (Makido, 2007). For lightly-confined columns, Ranf

et al. (2005) found that the amount of cycling influenced the damage progression within

the columns. Therefore, a displacement history representative of the amount of cumulative

plastic deformation bent 3 experienced during the shaking table tests was generated using

a rainflow analysis.

The calculated response from the numerical model was similar to the measured response

for various measures, including the force-displacement response, displacement-column elon-

gation response, and displacement-rotation response.

1. The maximum base shear in the numerical model differed from the maximum base

shear in the specimens by less than 4%. The strength reduction from the specimens

was also simulated well by the numerical model. For example, by the end of the tests,

Specimen C-1 lost 40% of it’s lateral load carrying capacity, only 8% less than what

the numerical model simulated.

2. The column elongation and effects of overturning were similar for the specimens and

the numerical model. The experimental specimens retained larger residual column
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elongations than the numerical model simulated.

3. The relationship between plastic rotation and displacement was approximately linear

for the specimens and the numerical model, signifying that the proportion of the col-

umn deformation coming from the rotation within the plastic hinge zone was constant.

4. Column deformations at key damage states (yielding of the longitudinal reinforcement,

spalling of the concrete cover, and fracture of the longitudinal reinforcement) were

similar for both the experimental specimens and the numerical model. For example,

spalling was first observed in Specimen C-1 at a drift ratio of 1.2%, which was the

same as what the numerical model simulated using the strain equations for concrete

spalling developed by Berry (2006).

13.5 Predicted Prototype Behavior

The numerical model of the prototype specimen (a reinforced concrete bridge on drilled-

shaft foundations) was assembled by combining the calibrated structural components from

the shaking table model and component tests, and the calibrated soil and foundation com-

ponents from a centrifuge model developed by Shin (2006). All geometric properties of the

full-scale prototype model resulted from scaling of the two specimens. The material prop-

erties of the prototype model were the same as those of the shaking table model, except for

the compressive strength of the concrete (5000 psi).

The response of the calibrated prototype model was investigated by subjecting it to suites

of 40 near-field and 30 far-field excitations. The near-field excitations were developed for the

PEER I-880 Testbed Project, which modeled a bridge along I-880 in Oakland, California.

The far-field excitations were developed for the PEER Van Nuys building testbed project.

Each of these suites of motions contained sets of ten motions at various hazard levels: 50%,

10%, and 2% probability of exceedence in 50 years. Shin (2006) added a fourth hazard level

(97% probability of exceedence in 50 years) to investigate the system response to low-level

excitations.

The prototype was characterized using six demand parameters: maximum bent drift,

residual bent drift, maximum plastic rotation within the column, maximum plastic rotation
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within the pile, maximum column shear, and maximum pile shear. The intensity of the

ground motion was quantified using the Cordova parameter (Cordova et al., 2000), which

accounts for system softening by using the spectral acceleration at one and two times the

first period of vibration of the structure. Significant conclusions from these tests are listed

below.

1. During high-intensity excitations (Cordova parameter = 3g), the average drift ratios

of bents 1 and 3 were 8.7% and 8.4%. According to the bar buckling equation de-

veloped by Berry (2006), the likelihood of bar buckling at these drift ratios would be

approximately 90%.

2. The average residual drift ratios of bents 1 and 3 during high-intensity excitations

(Cordova parameter = 3g) due to the near-field excitations were approximately 0.5%.

These residual drift ratios might have significant consequences on the functionality of

the bridge following an earthquake.

3. The top of the column in bent 3 experienced plastic curvatures that were approxi-

mately 27 times the yield curvature, and approximately 9 times the largest curvature

recorded in the piles. This data suggests that for flexure-critical columns, significant

damage will likely occur above ground, near the tops of the columns.

4. Until the moment capacity was reached at the tops of the columns, the maximum

moment occurred above ground at the top of the columns. The moment below ground

continued to increase with the motion intensity.

5. The maximum moment within the piles occurred at approximately 2.5 and 3.5 column

diameters below the ground surface for the most flexible and stiffest bents, respectively.

During the high-intensity excitations, the depth of maximum moment in the piles of

the stiffest bent increased from 3.5D to 4D.

6. The shear forces within the columns were governed by the moment capacity of the

column and the distance to the point of inflection. The boundary conditions in the soil

were much more complicated. As a result, the shear forces within the piles were lower

for the low level excitations. In contrast, the shear forces within the piles were larger
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than the shear forces within the columns during the high-intensity excitations. For

example, at a Cordova parameter of 3.0g during the far-field excitations, the average

shear force within the pile of bent 2 was 423k, 39% larger than the average shear force

within the columns of bent 2 (305k). The higher shear forces in the columns signify

that lightly-confined or stocky columns might fail in shear below the ground surface

rather than within the visible portion of the column.

13.6 Evaluation of Seismic Modeling Strategies

The foundation and structural components of the prototype model were approximated using

various methodologies. The foundation was approximated using: two-dimensional nonlin-

ear soil columns attached to the piles using nonlinear P-y, Q-z, and T-z springs, linear soil

springs and dashpots to represent the flexibility and damping within the soil, and fixed

column bases to represent the soil flexibility through equivalent column heights. The struc-

ture was approximated using: nonlinear column elements, effective-section linear column

elements, and gross-section linear column elements.

The combination of the various foundation and structural approximations led to a matrix

of 13 modeling strategies: one prototype model and 12 simpler models. The accuracy and

precision of these models were evaluated by comparing the EDP’s of the simpler models

with those of the prototype model when excited by suites of 40 near-field and 30 far-field

excitations. Accuracy and precision were quantified by the mean and standard deviation of

the percent difference in the estimated EDPs, defined as

Accuracy = µerror =
1
N

N∑

i=1

ErrorEDP,i (13.1)

Precision =

√√√√ 1
N − 1

N∑

i=1

[ErrorEDP,i − µerror]
2 (13.2)

The prototype model would not be available for designers to estimate the pile fixity

depth. Therefore, the sensitivities of the model demands (drift ratio, plastic rotation, and

column shear) to the estimated depth of pile fixity were evaluated for fixity depths raging

from 2D to 4D.
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The efficiencies of common intensity measures was investigated using three of the models

(prototype, inelastic fixed @ 3D, and effective-elastic fixed @ 3D). The sensitivity of the IM

efficiency to the modal properties of bridge were also investigated to determine whether the

chosen intensity measures could be optimized for the bridge system in this research.

The effects of the modeling strategies on the estimated concrete spalling and bar buckling

damage hazards (ERRORDM,model) were investigated for the 12 simpler models. As with

the demand error analysis, the sensitivity of the estimated damage levels to the effective

fixity depth was also investigated. To gain perspective on the size of error for the simpler

models, the errors in the damage measures due to the modeling approximations and the

various fixity depths (ERRORDM,model) were compared with the errors in the damage

measures due to selecting a less efficient IM (ERRORDM,IM ).

Conclusions from the evaluation of the accuracy and precision of the bridge modeling

strategies are listed below.

1. For the soil properties considered in this research, the inelastic fixed @ 3D model was

the most accurate and precise of the 12 modeling strategies for estimating system

demands. For example, the overall mean and standard deviation of the errors in

the estimated maximum drift rations for the fixed @ 3d model was -3.2% and 12%,

respectively. The mean errors from the other three nonlinear models ranged from

-25.4% to 71.2%. The standard deviations of the other three models ranged from 35%

to 51%.

2. Overall, the effective-elastic fixed @ 3D model was the most accurate and precise of

the elastic models. This model was on average only slightly less accurate than the

inelastic fixed @ 3D model. However, the standard deviation for the effective elastic

fixed @ 3D model (σ = 39%) was more than three times the standard deviation for

the inelastic fixed @ 3D model (σ = 12%).

3. System twisting was not effectively estimated with the stiff inelastic or the elastic

models. This model limitation typically caused the demand parameters to be overes-

timated for bent 1, and underestimated for bent 3. For example, the average errors

for bents 1 and 3 of the effective-elastic fixed @ 3D model were 12.7% and -16.2%,
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respectively.

4. For the soil and pile properties considered in this research, the accuracy and precision

of the estimated drift ratios for the inelastic fixed base models were insensitive to the

assumed depth of fixity. For example, the mean errors of the estimated drift ratios for

fixity depths between 2D and 4D ranged from -3.2% to 0.6%. The mean errors in the

estimated plastic rotations were more sensitive to the fixity depth, with mean errors

ranging from -2.6% to 18.2%. For estimating the overall drift ratios, the fixed @ 3.5D

model (estimated fixity depth based on a procedure developed by Chai (2002)) was

slightly more accurate, but slightly less precise, than the inelastic fixed @ 3.0D model

(fixity depth based on estimated depth of maximum moment in the prototype model).

5. Of the 11 considered intensity measures that were investigated in this research, the

Cordova parameter (Class II) was the most efficient for the inelastic models, followed

closely by the peak ground velocity (Class I). The modified Cordova (MCOR) para-

meter (optimized for this bridge system) was as much as 20% more efficient than the

Cordova parameter. The spectral acceleration (SA1, Class II) was the most efficient

IM for the elastic models.

6. On average, the Class II-2 intensity measures, which incorporated the frequencies of

vibration for the first two modes of the structure, did not improve the IM efficiency

over the Class II models for this structure. This finding was attributed to the similarity

in the first two periods of vibration of the bridge (0.61s and 0.53s).

7. The inelastic fixed @ 3D model was the most accurate and precise of the 12 simpler

models for estimating the concrete spalling and bar buckling hazards for all bents.

On average, spalling was overestimated by 9.1% and bar buckling was underestimated

by 19.4%. Spalling was very difficult to predict for all modeling strategies, and bar

buckling was almost always underpredicted. For example, the gross-elastic models

underpredicted bar buckling by 99% to 89%.

8. Due to the amount of motions used for estimating the damage levels for each bent, the

estimated damage hazards were insensitive to the choice in an efficient intensity mea-

sure. For example, using the peak ground velocity, spectral acceleration, or modified
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Cordova parameter caused a difference in the estimated spalling hazard ranging from

-3.9% to 13%. The choice of intensity measure is expected to have a larger impact

when using less motions to characterize the system response.

13.7 Suggestions for Model Selection

For a reinforced concrete bridge on drilled shaft foundations, founded on dense, dry sand,

the most accurate and precise modeling strategy for estimating both demands and damage

was achieved by modeling the columns with inelastic elements, and modeling the foundation

with a fixed base, fixed at a depth below the ground surface corresponding to the location

of the maximum moment within the piles. The accuracy and precision of the demand

and damage estimates were not significantly affected by moderate fluctuations in the fixity

depth. Therefore, the effective fixity depth can be estimated using approximate methods

(e.g., Chai (2002)).

An effective-elastic, fixed-base model can be used to obtain accurate (but relatively im-

precise) estimations of the overall system demands. However, the twisting of the bridge

was not adequately simulated at moderate and high intensity levels with effective-elastic

columns. This limitation caused damage estimates (which are based on the response of the

individual bridge components) to be either overpredicted or underprecited for the bents af-

fected by the asymmetric system modes (bents 1 and 3). More work is needed for accurately

modeling the torsional response of nonlinear systems with effective-elastic systems.

Fixing the column bases at the ground surface, and modeling the foundation flexibility

with elastic translational and rotational springs, did not simulate the response of the pro-

totype system well for the two extreme spring stiffness cases. However, with the correct

spring stiffnesses, this model might accurately predict the demand and damage levels. More

analysis needs to be conducted to develop methods for accurately determining the values of

the spring stiffnesses.
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Appendix A

SHAKING TABLE LIMITS

The selection of the appropriate ground motion is also based on the capacity of the

shaking tables, which are primarily limited by bearing capacity and oil flow capacity within

the actuators. The limits are shown in Table A.1. Because the oil flow is also based on

the feedback of the structure, these soft limits may deviate slightly from the ones reported.

However, for choosing a final ground motion, these will be treated as hard limits to compare

the ability of each motion to excite the structure while staying within the imposed limits.

Table A.1: Shaking table limits

Parameter Dimension

Table Size 14.0 ft x 14.6 ft

Dynamic Displacement ±12 in.

Static Displacement ±14 in.

Pitch Moment (E-W direction) 1,000,000 ft-lb

Yaw Moment (torsion) 400,000 ft-lb

Roll Moment (N-S direction) 400,000 ft-lb

Velocity ±40 in./s

Force 165,000 lb

Acceleration ±1.4 g

The acceleration limit is based on an allowable actuator force of 165,000 lb for each

shaking table. Using the allowable actuator force (Fa), the bent shear capacities, Vu, shak-

ing table mass (MT ), spacer block mass (MS) and footing mass (MF ), the shaking table

acceleration limit can be calculated as

amax =
Fa − Vu

MT + MS + MF
(A.1)

Bent 3 has the largest ultimate shear capacity (Vu = 45 k) and the most massive footing

and spacer block (MS +MF = 21.8 lbm). The mass of the tables is MT = 64 lbm. Therefore,
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the table acceleration limit is controlled by Bent 3, with an allowable acceleration of 1.4g.

The moment demand on the shaking tables were checked by using the estimated column

plastic moment capacities as an estimate of the maximum table demand. The largest pitch

moment (the moment in the transverse bridge direction) occurs on bent 3, which has the

largest shear and moment capacity. Table A.2 outlines the largest moments that would be

demanded on the tables.

Table A.2: Shaking table moment demand in the transverse bridge direction

Unit Description Unit Moment

Bent End Moment (675 k − in. per column) 1,350

Bent Base Shear (45 k) 4,860

Footing @ a = 1.4g (MF = 10125 lbm) 553

Spacer Block @ a = 1.4g (MS = 11700 lbm) 197

Axial Load Unbalance (2[0.082f ′cAg]) 3,478

Total Moment Demand (k − in.) 10,437

Total Moment Demand (lb− ft) 869,761

Total Moment Capacity (lb− ft) 1,000,000

As seen in Table A.2, the most conservative estimate of the shaking table moment

demand in the transverse direction is less than the allowable capacity. The moment limits in

the other two directions were investigated using the preliminary numerical model subjected

to high-amplitude earthquake excitations.
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Appendix B

DESIGN DOCUMENTS

The design documents were created by Johnson et al. (2006) at the University of Nevada,

Reno.
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Appendix C

INSTRUMENTATION PLANS

The instrumentation plans were created by Johnson et al. (2006) at the University of

Nevada, Reno.
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Appendix D

MEASURED RESPONSE FIGURES

This appendix presents auxiliary figures from Chapter 4 of characteristics of the mea-

sured response of the shaking table specimen.
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Figure D.1: Displacement-strain envelopes for bent 1: (a) longitudinal anchorage gauges, (b)
longitudinal interface gauges, (c) longitudinal column gauges, and (d) transverse anchorage
gauges
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Figure D.2: Displacement-strain envelopes for bent 2: (a) longitudinal anchorage gauges, (b)
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gauges
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Figure D.3: Displacement-strain envelopes for bent 3: (a) longitudinal anchorage gauges, (b)
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Figure D.4: Displacement-rotation envelopes for the first 7 inches and the next 5 inches of
column for bents 1, 2, and 3
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Appendix E

DAMAGE OBSERVATIONS

The columns were inspected for damage after each test. Because the columns were

essentially fixed-fixed, each column had four main locations to inspect for damage; the east

and west faces at the top and bottom of each column. The tables below present the damage

that was found at each of these locations for each of the high-amplitude tests.

Table E.1: Recorded damage observation abbreviations

Damage Abbrev. Description

CR(#, size) Column residual cracking (the crack number refers to the nth crack from the

column-anchorage interface, which may be due to the spalling of previous

cracks, size = maximum crack width in mm)

FL Flaking of cover concrete

SP(height) Column spalling at the column-anchorage interface (height of spalling in mm)

TE(#) Exposure of the transverse reinforcement (number of bars)

LE(#) Exposure of the longitudinal reinforcement (number of bars)

iLB(#) Incipient buckling of the longitudinal reinforcement (This accounts for bars

that are separated from the concrete, but do not appear buckled at the end of

the test. These bars may have buckled during the tests)

LB(#) Buckling of longitudinal reinforcement (number of bars)

TF(#) Fracture of transverse reinforcement (number of bars)

LF(#) Fracture of longitudinal reinforcement (number of bars)

CD Core degradation
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Table E.2: Observed damage for the east column on bent 1

Test East West

Top Bottom Top Bottom

12 — — — —

13 CR(1,neg) — — —

14 CR(1,0.08) CR(1,neg) CR(1,neg) CR(1,neg)

15 CR(1,0.17), FL CR(1,0.17) CR(1,0.25), FL CR(1,0.17)

16 CR(1,0.25), SP(75) CR(1,0.33), FL CR(1,0.33), SP(125) CR(1,0.33), FL

17 CR(1,0.25), SP(90) CR(1,0.33), SP(63) CR(1,0.33), SP(150),

TE(2)

CR(1,0.33), SP(50)

18 CR(1,0.25), SP(90) CR(1,0.33), SP(114),

TE(2)

CR(1,0.33), SP(150),

TE(2)

CR(1,0.33), SP(90)

19 CR(2,0.75), SP(90) CR(2,0.33), SP(140),

TE(3)

CR(1,0.33), SP(150),

TE(3), LE(1)

CR(1,0.33), SP(90)

20 CR(2,0.75), SP(90) CR(2,0.33), SP(140),

TE(3)

CR(1,0.33), SP(150),

TE(3), LE(1)

CR(1,0.33), SP(90)

21 CR(2,0.75), SP(90) CR(2,0.33), SP(140),

TE(3)

CR(1,0.33), SP(150),

TE(3), LE(1)

CR(1,0.33), SP(90)

22 CR(2,0.75), SP(90) CR(2,0.33), SP(140),

TE(3), LE(2)

CR(1,0.33), SP(150),

TE(3), LE(2), iLB(1)

CR(1,0.33), SP(90)

Table E.3: Observed damage for the west column on bent 1

Test East West

Top Bottom Top Bottom

12 — — — —

13 — — CR(1,neg) —

14 — — CR(1,neg) —

15 CR(1,0.17), FL CR(1,0.17) CR(1,0.25) CR(1,0.17)

16 CR(1,0.50), SP(100) CR(1,0.33), FL CR(1,0.25), SP(75) CR(1,0.50), FL

17 CR(1,0.50), SP(100) CR(1,0.50), FL CR(1,0.33), SP(75) CR(1,0.50), FL

18 CR(1,0.50), SP(100) CR(2,0.17), SP(65) CR(1,0.50), SP(75) CR(1,0.50), SP(100),

TE(1)

19 CR(2,0.50), SP(130),

TE(2)

CR(2,0.75), SP(90) CR(2,0.50), SP(115) CR(2,0.50), SP(100),

TE(1)

20 CR(2,0.50), SP(130),

TE(2)

CR(2,0.75), SP(100) CR(2,0.50), SP(115) CR(2,0.50), SP(100),

TE(1)

21 CR(2,0.50), SP(130),

TE(2)

CR(2,0.75), SP(100) CR(2,0.50), SP(115) CR(2,0.50), SP(100),

TE(1), LE(2)

22 CR(2,0.50), SP(130),

TE(2)

CR(2,0.75), SP(130) CR(2,0.50), SP(115) CR(2,0.50), SP(100),

TE(2), LE(2), iLB(1)
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Table E.4: Observed damage for the east column on bent 2

Test East West

Top Bottom Top Bottom

12 — — — —

13 — — — —

14 — — — —

15 CR(1,0.08) CR(1,0.08) CR(1,0.08) —

16 CR(1,0.17) CR(1,0.08), FL CR(1,0.17), FL CR(1,0.08)

17 CR(1,0.17) CR(1,0.17), FL CR(1,0.25), FL CR(1,0.17)

18 CR(1,0.33), FL CR(1,0.50), FL CR(1,0.33), SP(100) CR(1,0.17)

19 CR(1,1.00), SP(95) CR(2,0.50), SP(90) CR(1,1.00), SP(115) CR(1,0.33), SP(115)

20 CR(1,1.00), SP(100) CR(2,0.50), SP(100) CR(1,2.00), SP(115) CR(1,0.33), SP(115)

21 CR(1,1.00), SP(100) CR(2,0.50), SP(100) CR(1,2.00), SP(115) CR(1,0.33), SP(115)

22 CR(1,1.00), SP(140) CR(2,0.50), SP(100) CR(1,2.00), SP(200),

TE(1)

CR(1,0.33), SP(115)

Table E.5: Observed damage for the west column on bent 2

Test East West

Top Bottom Top Bottom

12 — — — —

13 — — — —

14 — — — CR(1,neg)

15 CR(1,0.08) CR(1,0.08) — CR(1,0.08)

16 CR(1,0.17), FL CR(1,0.08) CR(1,0.08) CR(1,0.17)

17 CR(1,0.17), FL CR(1,0.08) CR(1,0.17) CR(1,0.17)

18 CR(1,0.50), SP(100) CR(2,0.17), SP(100),

TE(1)

CR(1,0.25), FL CR(1,2.00), SP(40)

19 CR(1,2.00), SP(130) CR(2,0.33), SP(120),

TE(1)

CR(1,2.00), SP(25) CR(2,0.33), SP(125)

20 CR(1,2.00), SP(130) CR(2,0.33), SP(120),

TE(1)

CR(1,2.00), SP(25) CR(2,0.33), SP(125)

21 CR(1,2.00), SP(130) CR(2,0.33), SP(120),

TE(1)

CR(1,2.00), SP(25) CR(2,0.33), SP(125)

22 CR(1,2.00), SP(140),

TE(2), LE(2), LB(1)

CR(2,0.33), SP(120),

TE(1)

CR(1,2.00), SP(125) CR(2,0.33), SP(125),

TE(1)



308

Table E.6: Observed damage for the east column on bent 3

Test East West

Top Bottom Top Bottom

12 — — — —

13 — — — —

14 CR(1,neg) — CR(1,neg) —

15 CR(1,0.17), FL CR(1,0.17), FL CR(1,0.25), FL CR(1,0.08)

16 CR(1,0.25), SP(40) CR(1,0.25), SP(60) CR(1,0.25), SP(90) CR(1,0.17), FL

17 CR(2,0.17), SP(100) CR(1,0.33), SP(65) CR(1,0.50), SP(90),

TE(1)

CR(1,0.25), SP(100)

18 CR(2,0.50), SP(100),

TE(1)

CR(2,0.33), SP(90),

TE(2)

CR(2,0.17), SP(140),

TE(3), LE(2)

CR(1,0.75), SP(127)

19 CR(2,2.00), SP(115),

TE(3), LE(2), LB(3)

CR(2,0.33), SP(150),

TE(4), LE(8), LB(6),

TF(2)

SP(140), TE(3), LE(5),

LB(2)

SP(180), TE(4), LE(6),

LB(4)

20 CR(3,0.75), SP(140),

TE(4), LE(5), LB(3)

CR(2,0.33), SP(150),

TE(4), LE(8), LB(8),

TF(2)

SP(140), TE(3), LE(6),

LB(4), LF(4)

SP(180), TE(4), LE(6),

LB(8)

21 CR(3,0.75), SP(140),

TE(4), LE(5), LB(5),

LF(2)

CR(2,0.33), SP(150),

TE(4), LE(8), LB(8),

TF(2), LF(5)

SP(140), TE(4), LE(6),

LB(4), LF(4)

SP(180), TE(4), LE(6),

LB(8)

Table E.7: Observed damage for the west column on bent 3

Test East West

Top Bottom Top Bottom

12 — — — —

13 — — — —

14 — — CR(1,neg) CR(1,neg)

15 CR(1,0.25), SP(65) CR(1,0.17) CR(1,0.17) CR(1,0.17), SP(100)

16 CR(1,0.33), SP(90) CR(1,0.25) CR(1,0.25), FL CR(1,0.25), SP(100),

TE(1)

17 CR(2,0.33), SP(115) CR(1,0.25) CR(1,0.33), FL CR(2,0.25), SP(100),

TE(1)

18 CR(3,0.17), SP(140),

TE(3), LE(2)

CR(1,0.33), SP(65) CR(2,2.00), SP(25) CR(2,0.25), SP(100),

TE(2), LE(2), iLB

19 CR(3,0.33), SP(190),

TE(6), LE(7), LB(6),

TF(1)

CR(3,0.33), SP(115),

TE(3), LE(6), LB(6)

CR(3,2.00), SP(165),

TE(4), LB(6)

CR(3,0.33), SP(205),

TE(4), LE(7), LB(3),

TF(1)

20 CR(3,0.33), SP(190),

TE(6), LE(7), LB(6),

TF(1), LF(2)

SP(115), TE(3), LE(6),

LB(6)

CR(3,2.00), SP(165),

TE(4), LB(6)

SP(205), TE(4), LE(7),

LB(3), TF(1), LF(1)

21 SP(190), TE(6), LE(8),

LB(8), TF(1), LF(2)

SP(150), TE(3), LE(8),

LB(6), LF(2)

SP(165), TE(5), LE(8),

LB(6)

SP(205), TE(4), LE(8),

LB(8), TF(1), LF(2)
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Appendix F

SYSTEM IDENTIFICATION RESULTS USING DISPLACEMENT
DATA

This appendix presents the identified modal properties (periods, damping ratios and

mode shapes) of the shaking table specimen using displacement measurements. These prop-

erties were used with the identified modal properties using acceleration data (Section 6.1)

to investigate the influence of noise corrupted data on the identified properties. Discussions

of the results documented in this appendix are provided in Section 6.6.
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Table F.1: Period comparison for earthquake excitations (disp. data)

Test
Mode 1 Mode 2 Mode 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

1A 0.33 0.32 1.0 0.24 0.23 1.1 0.18 0.09 2.1

1B 0.33 0.32 1.0 0.25 0.24 1.0 0.15 0.09 1.7

2A 0.33 0.32 1.0 0.25 0.24 1.0 0.02 0.09 0.2

2B 0.34 0.31 1.1 0.26 0.24 1.1 0.03 0.09 0.4

3A 0.33 0.32 1.0 0.26 0.28 0.9 0.15 0.09 1.8

3B 0.34 0.33 1.0 0.26 0.24 1.1 0.16 0.09 1.9

4 0.34 0.33 1.0 0.27 0.26 1.0 0.03 0.09 0.3

5 0.34 0.33 1.0 0.26 0.26 1.0 0.08 0.09 0.9

6 0.34 0.33 1.0 0.26 0.25 1.0 0.16 0.09 1.8

7 0.34 0.33 1.0 0.26 0.26 1.0 0.03 0.09 0.3

9A 0.34 0.34 1.0 0.27 0.24 1.1 0.13 0.09 1.6

9B 0.35 0.34 1.0 0.27 0.26 1.0 0.11 0.09 1.2

10 0.35 0.34 1.0 0.27 0.26 1.0 0.27 0.09 3.1

11 0.35 0.34 1.0 0.27 0.27 1.0 0.26 0.09 3.0

12 0.36 0.35 1.0 0.27 0.27 1.0 0.24 0.09 2.8

µ 0.34 0.33 1.0 0.26 0.25 1.0 0.13 0.09 1.5

σ 0.01 0.01 0.0 0.01 0.01 0.0 0.08 0.00 1.0

δ 0.03 0.03 0.0 0.03 0.05 0.0 0.63 0.00 0.6

Table F.2: Period comparison for white-noise excitations (disp. data)

Test
Mode 1 Mode 2 Mode 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

WN0001T 0.32 0.31 1.0 0.24 0.24 1.0 0.07 0.08 0.8

WN0304TA 0.32 0.32 1.0 0.25 0.24 1.1 0.04 0.09 0.5

WN0304TB 0.34 0.33 1.0 0.25 0.25 1.0 0.07 0.09 0.8

WN0709TA 0.34 0.33 1.0 0.26 0.25 1.0 0.07 0.09 0.8

WN0709TB 0.34 0.34 1.0 0.26 0.26 1.0 0.08 0.09 0.9

WN1112TA 0.35 0.34 1.0 0.26 0.26 1.0 0.08 0.09 0.9

WN1112TB 0.35 0.34 1.0 0.27 0.26 1.1 0.08 0.09 0.9

µ 0.34 0.33 1.0 0.26 0.25 1.0 0.07 0.09 0.8

σ 0.01 0.01 0.0 0.01 0.01 0.0 0.01 0.00 0.2

δ 0.03 0.03 0.0 0.04 0.03 0.0 0.20 0.01 0.2

Table F.3: Period comparison for square-wave excitations (disp. data)

Test
Mode 1 Mode 2 Mode 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

SQ0709 0.33 0.33 1.0 0.27 0.26 1.0 0.02 0.09 0.3

SQ1112A 0.34 0.34 1.0 0.27 0.26 1.1 0.06 0.09 0.7

SQ1112B 0.34 0.34 1.0 0.29 0.26 1.1 0.26 0.09 3.0

µ 0.34 0.34 1.0 0.27 0.26 1.1 0.11 0.09 1.3

σ 0.01 0.00 0.0 0.01 0.00 0.0 0.12 0.00 1.4

δ 0.02 0.01 0.0 0.04 0.00 0.0 1.08 0.00 1.1
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Figure F.1: Estimated periods using displacement data for (a) low-amplitude, (b) white
noise, and (c) square wave excitations
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Table F.4: Damping comparison for earthquake excitations (disp. data)

Test
Mode 1 Mode 2 Mode 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

1A 1.3 1.9 0.7 4.0 5.0 0.8 24.4 13.3 1.8

1B 1.4 2.0 0.7 4.0 1.9 2.1 15.6 11.0 1.4

2A 3.0 2.0 1.5 4.5 2.5 1.8 4.6 34.1 0.1

2B 1.6 10.9 0.1 3.9 25.0 0.2 6.6 11.1 0.6

3A 2.7 2.2 1.2 17.1 50.0 0.3 22.8 1.6 14.2

3B 2.3 2.0 1.1 11.3 8.3 1.4 16.0 50.0 0.3

4 1.9 1.8 1.1 6.5 3.7 1.7 4.4 11.4 0.4

5 1.4 1.8 0.8 7.1 3.4 2.1 10.4 9.2 1.1

6 2.0 2.0 1.0 3.5 2.4 1.5 16.0 26.7 0.6

7 1.4 1.5 1.0 6.2 4.1 1.5 9.6 19.7 0.5

9A 2.9 4.3 0.7 15.4 25.8 0.6 27.7 9.8 2.8

9B 1.8 1.9 1.0 6.0 2.5 2.4 15.9 19.7 0.8

10 1.7 1.4 1.1 4.0 3.1 1.3 62.3 3.5 17.8

11 2.0 1.7 1.2 2.7 2.1 1.3 41.2 1.7 24.2

12 1.9 1.8 1.1 3.6 2.4 1.5 47.9 17.2 2.8

µ 2.0 2.6 0.9 6.6 9.5 1.4 21.7 16.0 4.6

σ 0.5 2.4 0.3 4.4 13.7 0.6 16.9 13.0 7.6

δ 0.3 0.9 0.3 0.7 1.4 0.5 0.8 0.8 1.6

Table F.5: Damping comparison for white-noise excitations (disp. data)

Test
Mode 1 Mode 2 Mode 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

WN0001T 2.3 1.5 1.5 7.6 4.1 1.9 23.8 19.7 1.2

WN0304TA 4.3 2.5 1.7 21.6 3.0 7.1 13.5 20.7 0.7

WN0304TB 2.5 2.5 1.0 5.3 2.0 2.6 19.1 22.2 0.9

WN0709TA 2.6 2.0 1.3 5.8 2.5 2.3 17.3 21.7 0.8

WN0709TB 2.0 2.0 1.0 5.1 3.6 1.4 10.3 19.2 0.5

WN1112TA 2.1 1.5 1.4 6.8 4.6 1.5 9.9 16.7 0.6

WN1112TB 1.7 2.0 0.8 70.3 3.0 23.0 9.5 19.7 0.5

µ 2.5 2.0 1.2 17.5 3.3 5.7 14.8 20.0 0.7

σ 0.9 0.4 0.3 24.0 0.9 7.9 5.5 1.8 0.2

δ 0.3 0.2 0.2 1.4 0.3 1.4 0.4 0.1 0.3

Table F.6: Damping comparison for square-wave excitations (disp. data)

Test
Mode 1 Mode 2 Mode 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

SQ0709 2.7 2.5 1.1 25.2 2.0 12.4 8.6 25.8 0.3

SQ1112A 2.0 2.0 1.0 25.0 1.0 24.3 18.5 24.8 0.7

SQ1112B 3.7 2.0 1.8 7.6 1.5 5.0 30.5 26.3 1.2

µ 2.8 2.2 1.3 19.3 1.5 13.9 19.2 25.6 0.7

σ 0.9 0.3 0.5 10.1 0.5 9.7 11.0 0.8 0.4

δ 0.3 0.1 0.4 0.5 0.3 0.7 0.6 0.0 0.6
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Figure F.2: Estimated damping ratios using displacement data for (a) low-amplitude, (b)
white noise, and (c) square wave excitations
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Table F.7: Mode 1 basis vector contributions for earthquake excitations (disp. data)

Test
basis vector 1 basis vector 2 basis vector 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

1A 0.833 0.899 0.9 -0.489 -0.528 0.9 0.419 -0.227 -1.8

1B 0.941 0.925 1.0 -0.455 -0.464 1.0 -0.402 -0.228 1.8

2A 0.793 0.931 0.9 -0.449 -0.446 1.0 -0.498 -0.226 2.2

2B 0.971 0.997 1.0 -0.465 0.008 -59.1 -0.332 -0.209 1.6

3A 0.798 0.813 1.0 -0.380 -0.663 0.6 0.748 -0.268 -2.8

3B 0.824 0.894 0.9 -0.529 -0.537 1.0 0.073 -0.232 -0.3

4 0.916 0.910 1.0 -0.504 -0.498 1.0 -0.413 -0.242 1.7

5 0.931 0.909 1.0 -0.505 -0.502 1.0 -0.201 -0.242 0.8

6 0.912 0.918 1.0 -0.481 -0.480 1.0 0.450 -0.233 -1.9

7 0.943 0.917 1.0 -0.575 -0.482 1.2 0.816 -0.238 -3.4

9A 0.821 0.897 0.9 -0.341 -0.532 0.6 0.217 -0.231 -0.9

9B 0.947 0.921 1.0 -0.438 -0.472 0.9 0.519 -0.238 -2.2

10 0.943 0.897 1.1 -0.466 -0.529 0.9 0.476 -0.243 -2.0

11 0.960 0.905 1.1 -0.460 -0.511 0.9 0.405 -0.243 -1.7

12 0.923 0.903 1.0 -0.556 -0.514 1.1 -0.386 -0.242 1.6

µ 0.897 0.909 1.0 -0.473 -0.477 -3.1 0.126 -0.236 -0.5

σ 0.063 0.037 0.1 0.060 0.143 15.5 0.460 0.013 1.9

δ 0.071 0.040 0.1 0.128 0.300 5.1 3.647 0.053 3.9

Table F.8: Mode 1 basis vector contributions for white-noise excitations (disp. data)

Test
basis vector 1 basis vector 2 basis vector 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

WN0001T 0.862 0.868 1.0 -0.466 -0.586 0.8 0.889 -0.242 -3.7

WN0304TA 0.839 0.930 0.9 -0.420 -0.448 0.9 0.394 -0.225 -1.8

WN0304TB 0.897 0.919 1.0 -0.484 -0.478 1.0 0.378 -0.233 -1.6

WN0709TA 0.891 0.921 1.0 -0.546 -0.473 1.2 0.124 -0.232 -0.5

WN0709TB 0.897 0.904 1.0 -0.448 -0.514 0.9 -0.500 -0.238 2.1

WN1112TA 0.879 0.871 1.0 -0.481 -0.578 0.8 -0.061 -0.247 0.2

WN1112TB 0.895 0.914 1.0 0.556 -0.491 -1.1 -0.139 -0.234 0.6

µ 0.880 0.904 1.0 -0.327 -0.510 0.6 0.155 -0.236 -0.7

σ 0.022 0.025 0.0 0.391 0.053 0.8 0.449 0.007 1.9

δ 0.025 0.027 0.0 1.197 0.105 1.2 2.898 0.031 2.8

Table F.9: Mode 1 basis vector contributions for square-wave excitations (disp. data)

Test
basis vector 1 basis vector 2 basis vector 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

SQ0709 0.935 0.924 1.0 -0.723 -0.465 1.6 0.457 -0.234 -2.0

SQ1112A 0.947 0.923 1.0 -0.640 -0.467 1.4 -0.094 -0.232 0.4

SQ1112B 0.828 0.922 0.9 -0.508 -0.470 1.1 0.447 -0.233 -1.9

µ 0.903 0.923 1.0 -0.624 -0.467 1.3 0.270 -0.233 -1.2

σ 0.066 0.001 0.1 0.108 0.002 0.2 0.315 0.001 1.4

δ 0.073 0.001 0.1 0.173 0.005 0.2 1.167 0.004 1.2
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Figure F.3: Estimated mode shape envelopes using displacement data for mode 1 using the
low-amplitude (a) earthquake, (b) white noise, and (c) square wave excitations
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Table F.10: Mode 2 basis vector contributions for earthquake excitations (disp. data)

Test
basis vector 1 basis vector 2 basis vector 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

1A 0.546 0.437 1.2 0.862 0.847 1.0 -0.597 -0.027 22.4

1B 0.330 0.378 0.9 0.884 0.884 1.0 0.398 -0.020 -19.9

2A 0.588 0.362 1.6 0.883 0.894 1.0 0.644 -0.020 -32.8

2B 0.223 -0.006 -37.0 0.882 1.000 0.9 0.673 0.000 1836.9

3A 0.600 0.583 1.0 0.829 0.748 1.1 -0.430 -0.011 40.0

3B 0.565 0.446 1.3 0.835 0.842 1.0 0.412 -0.025 -16.5

4 0.391 0.413 0.9 0.852 0.866 1.0 0.633 -0.016 -39.9

5 0.357 0.417 0.9 0.847 0.864 1.0 0.306 -0.016 -19.1

6 0.409 0.394 1.0 0.859 0.876 1.0 0.076 -0.019 -4.0

7 0.332 0.397 0.8 0.786 0.875 0.9 -0.438 -0.016 26.6

9A 0.546 0.442 1.2 0.877 0.845 1.0 -0.531 -0.025 21.5

9B 0.317 0.388 0.8 0.893 0.881 1.0 0.442 -0.016 -27.9

10 0.327 0.442 0.7 0.881 0.848 1.0 -0.562 -0.017 32.4

11 0.263 0.426 0.6 0.883 0.859 1.0 -0.617 -0.016 38.5

12 0.384 0.428 0.9 0.827 0.857 1.0 0.760 -0.017 -45.2

µ 0.412 0.396 -1.5 0.859 0.866 1.0 0.078 -0.017 120.9

σ 0.125 0.122 9.8 0.030 0.050 0.1 0.540 0.006 475.6

δ 0.302 0.308 6.4 0.034 0.058 0.1 6.951 0.371 3.9

Table F.11: Mode 2 basis vector contributions for white-noise excitations (disp. data)

Test
basis vector 1 basis vector 2 basis vector 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

WN0001T 0.506 0.496 1.0 0.816 0.809 1.0 -0.258 -0.024 10.6

WN0304TA 0.539 0.364 1.5 0.643 0.893 0.7 0.561 -0.020 -27.6

WN0304TB 0.441 0.393 1.1 0.811 0.877 0.9 0.636 -0.019 -33.6

WN0709TA 0.454 0.387 1.2 0.787 0.880 0.9 0.281 -0.019 -14.8

WN0709TB 0.440 0.427 1.0 0.873 0.856 1.0 0.354 -0.019 -18.7

WN1112TA 0.476 0.490 1.0 0.857 0.815 1.1 -0.067 -0.020 3.4

WN1112TB 0.444 0.405 1.1 -0.633 0.870 -0.7 0.019 -0.019 -1.0

µ 0.471 0.423 1.1 0.593 0.857 0.7 0.218 -0.020 -11.7

σ 0.038 0.052 0.2 0.546 0.033 0.6 0.332 0.002 16.5

δ 0.081 0.122 0.2 0.920 0.038 0.9 1.525 0.098 1.4

Table F.12: Mode 2 basis vector contributions for square-wave excitations (disp. data)

Test
basis vector 1 basis vector 2 basis vector 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

SQ0709 0.353 0.381 0.9 0.611 0.884 0.7 -0.609 -0.017 35.2

SQ1112A 0.318 0.382 0.8 0.702 0.883 0.8 0.432 -0.018 -23.6

SQ1112B 0.557 0.385 1.4 0.801 0.882 0.9 -0.648 -0.018 35.4

µ 0.409 0.383 1.1 0.704 0.883 0.8 -0.275 -0.018 15.7

σ 0.129 0.002 0.3 0.095 0.001 0.1 0.613 0.001 34.0

δ 0.316 0.005 0.3 0.135 0.002 0.1 2.230 0.032 2.2
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Figure F.4: Estimated mode shape envelopes using displacement data for mode 2 using the
low-amplitude (a) earthquake, (b) white noise, and (c) square wave excitations
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Table F.13: Mode 3 basis vector contributions for earthquake excitations (disp. data)

Test
basis vector 1 basis vector 2 basis vector 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

1A -0.023 -0.035 0.7 0.129 0.061 2.1 0.645 0.973 0.7

1B 0.049 -0.041 -1.2 0.106 0.051 2.1 -0.372 0.973 -0.4

2A 0.086 -0.045 -1.9 0.131 0.051 2.6 -0.477 0.974 -0.5

2B 0.074 -0.078 -0.9 0.074 -0.001 -65.9 -0.574 0.978 -0.6

3A 0.023 0.003 6.7 0.403 0.016 25.2 0.473 0.963 0.5

3B -0.016 -0.030 0.5 0.148 0.057 2.6 -0.698 0.972 -0.7

4 0.081 -0.027 -3.0 0.137 0.039 3.5 -0.547 0.970 -0.6

5 0.047 -0.026 -1.8 0.166 0.039 4.2 0.834 0.970 0.9

6 -0.017 -0.036 0.5 0.167 0.047 3.5 0.820 0.972 0.8

7 0.011 -0.031 -0.4 0.218 0.041 5.3 0.340 0.971 0.4

9A 0.127 -0.031 -4.0 0.328 0.057 5.8 0.634 0.973 0.7

9B 0.039 -0.032 -1.2 0.100 0.040 2.5 -0.665 0.971 -0.7

10 0.065 -0.023 -2.8 0.082 0.041 2.0 0.633 0.970 0.7

11 0.094 -0.025 -3.8 0.095 0.039 2.5 0.611 0.970 0.6

12 -0.009 -0.025 0.3 0.077 0.041 1.9 -0.522 0.970 -0.5

µ 0.042 -0.032 -0.8 0.157 0.041 -0.0 0.076 0.971 0.1

σ 0.046 0.017 2.6 0.094 0.016 19.1 0.622 0.003 0.6

δ 1.098 0.520 3.1 0.598 0.387 2471.6 8.209 0.003 8.1

Table F.14: Mode 3 basis vector contributions for white-noise excitations (disp. data)

Test
basis vector 1 basis vector 2 basis vector 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

WN0001T -0.020 -0.017 1.2 0.321 0.051 6.4 -0.329 0.970 -0.3

WN0304TA 0.044 -0.045 -1.0 0.613 0.052 11.7 0.724 0.974 0.7

WN0304TB -0.012 -0.036 0.3 0.309 0.047 6.5 0.666 0.972 0.7

WN0709TA -0.010 -0.037 0.3 0.267 0.048 5.6 0.932 0.973 1.0

WN0709TB 0.020 -0.028 -0.7 0.190 0.045 4.2 0.710 0.971 0.7

WN1112TA 0.015 -0.015 -1.0 0.179 0.042 4.3 0.985 0.969 1.0

WN1112TB 0.013 -0.034 -0.4 0.495 0.047 10.5 0.980 0.972 1.0

µ 0.007 -0.030 -0.2 0.339 0.047 7.0 0.667 0.972 0.7

σ 0.022 0.011 0.8 0.160 0.003 3.0 0.459 0.002 0.5

δ 3.134 0.364 4.4 0.472 0.073 0.4 0.689 0.002 0.7

Table F.15: Mode 3 basis vector contributions for square-wave excitations (disp. data)

Test
basis vector 1 basis vector 2 basis vector 3

ARX SLP Ratio ARX SLP Ratio ARX SLP Ratio

SQ0709 0.031 -0.036 -0.9 0.296 0.044 6.7 0.547 0.972 0.6

SQ1112A 0.014 -0.038 -0.4 0.307 0.047 6.6 0.891 0.973 0.9

SQ1112B 0.047 -0.037 -1.3 0.293 0.046 6.3 0.567 0.972 0.6

µ 0.031 -0.037 -0.8 0.299 0.046 6.5 0.668 0.972 0.7

σ 0.017 0.001 0.5 0.008 0.001 0.2 0.193 0.000 0.2

δ 0.537 0.022 0.5 0.025 0.029 0.0 0.289 0.000 0.3
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Figure F.5: Estimated mode shape envelopes using displacement data for mode 3 using the
low-amplitude (a) earthquake, (b) white noise, and (c) square wave excitations
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Appendix G

ACCELERATION RESPONSE SPECTRA FOR NEAR-FIELD AND
FAR-FIELD MOTIONS

This chapter presents the acceleration response spectra (2% damping) of the near-field

and far-field bedrock motions that were described in Chapter 10.
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Figure G.1: Response spectra for near-field motion set D
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Figure G.2: Response spectra for near-field motion set A
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Figure G.3: Response spectra for near-field motion set B
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Figure G.4: Response spectra for near-field motion set C
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Figure G.5: Response spectra for far-field motion set F
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Figure G.6: Response spectra for far-field motion set G
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Figure G.7: Response spectra for far-field motion set H
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Appendix H

SUPPLEMENT TO THE EVALUATION OF BRIDGE MODELING
STRATEGIES

This appendix presents tables and figures referred to in Chapter 12 for evaluating the

bridge modeling strategies in a performance-based framework.
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Table H.1: Error in estimated drift ratios for the inelastic structural models

Bent Field Hazard Foundation Approximations

Fixed @ 3D Fixed @ 0D Springs (Pinned) Springs (Fixed)

µ σ µ σ µ σ µ σ

1 NF 50% 1.0 12 34.1 43 89.7 23 53.5 42

10% -3.1 19 17.4 83 76.0 21 41.4 73

2% -6.8 11 11.6 65 85.7 28 28.2 46

FF 50% 9.9 17 27.6 45 102.9 29 62.3 56

10% -1.5 8 -5.2 29 108.3 43 20.2 24

2% -4.7 7 -12.6 21 84.2 29 21.5 29

2 NF 50% -3.8 8 -19.5 24 48.0 16 1.1 32

10% -7.9 11 -39.1 36 34.7 17 -23.5 41

2% -8.6 11 -40.7 29 45.5 25 -25.8 27

FF 50% 0.9 8 -17.4 25 49.0 40 -3.3 28

10% -5.0 4 -41.3 20 44.9 17 -20.8 19

2% -8.4 7 -49.0 11 31.4 20 -31.6 14

3 NF 50% 1.4 12 -21.8 36 83.5 25 19.6 64

10% -10.9 13 -58.9 50 66.9 27 -29.7 65

2% -5.4 15 -62.1 36 87.4 36 -31.1 49

FF 50% 6.1 15 -54.9 21 84.9 37 1.0 45

10% -5.9 7 -57.6 16 79.5 16 -27.0 27

2% -4.9 10 -68.0 14 79.2 33 -47.8 18

Total -3.2 12 -25.4 48 71.2 35 0.5 51

Table H.2: Error in estimated drift ratios for the effective elastic structural models

Bent Field Hazard Foundation Approximations

Fixed @ 3D Fixed @ 0D Springs (Pinned) Springs (Fixed)

µ σ µ σ µ σ µ σ

1 NF 50% 19.0 38 24.0 79 107.0 64 54.0 72

10% 19.6 60 -26.0 105 81.1 94 14.4 148

2% 8.2 56 -28.0 75 64.6 85 2.2 132

FF 50% 20.4 37 3.3 61 100.0 66 71.6 46

10% 13.4 48 -43.1 28 73.0 75 -6.3 35

2% -4.0 33 -54.8 25 38.9 42 -37.3 27

2 NF 50% 3.9 19 15.6 81 47.7 26 30.5 51

10% -13.3 39 -42.8 69 22.0 60 -18.3 88

2% -21.5 32 -43.4 55 8.5 51 -24.7 83

FF 50% 8.7 21 -7.6 45 52.0 34 51.2 44

10% -11.5 31 -48.9 24 26.4 52 -18.3 33

2% -32.5 23 -59.4 21 -10.0 28 -51.4 19

3 NF 50% 16.9 35 -45.4 24 53.7 58 -23.0 45

10% -32.0 33 -63.0 28 -9.6 80 -62.3 41

2% -33.0 31 -44.1 54 -16.2 78 -60.6 39

FF 50% 8.8 19 -64.4 15 55.3 48 -30.9 26

10% -14.6 26 -76.2 10 -4.9 35 -60.8 17

2% -43.6 14 -54.1 42 -40.7 21 -69.6 15

Total -4.8 39 -36.6 58 36.0 70 -13.3 75
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Table H.3: Error in estimated drift ratios for the gross elastic structural models

Bent Field Hazard Foundation Approximations

Fixed @ 3D Fixed @ 0D Springs (Pinned) Springs (Fixed)

µ σ µ σ µ σ µ σ

1 NF 50% 2.8 61 -68.2 10 38.3 62 -20.2 46

10% -25.8 109 -76.9 15 -6.4 98 -46.0 86

2% -33.0 87 -58.1 46 -16.4 88 -52.2 63

FF 50% 7.3 38 -78.2 9 41.1 42 -27.4 43

10% -41.5 28 -84.8 8 -11.3 36 -61.1 18

2% -58.2 19 -68.2 30 -44.3 22 -73.6 11

2 NF 50% -2.7 54 -52.6 21 39.7 46 -9.4 55

10% -44.4 70 -73.3 16 -17.9 80 -49.9 70

2% -47.1 58 -63.8 31 -25.9 73 -54.1 52

FF 50% 0.9 38 -63.5 13 48.9 41 -19.1 42

10% -48.4 26 -78.0 8 -12.4 37 -57.6 20

2% -66.2 13 -67.3 26 -49.0 18 -71.3 13

3 NF 50% -41.4 38 -76.7 16 -34.8 34 -63.0 21

10% -67.9 33 -75.8 20 -66.9 37 -79.6 23

2% -62.4 32 -49.1 55 -67.7 32 -75.8 23

FF 50% -44.7 22 -89.1 4 -45.1 21 -71.5 13

10% -70.1 14 -87.9 10 -66.4 12 -84.2 6

2% -72.4 15 -63.6 38 -76.8 10 -79.9 14

Total -39.7 53 -70.8 26 -20.7 62 -55.3 45
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Figure H.1: Error in estimated drift ratios for the inelastic structural models
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Figure H.2: Error in estimated drift ratios for the effective elastic structural models
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Figure H.3: Error in estimated drift ratios for the gross elastic structural models
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Table H.4: Error in estimated plastic rotation for the inelastic structural models

Bent Field Hazard Foundation Approximations

Fixed @ 3D Fixed @ 0D Springs (Pinned) Springs (Fixed)

µ σ µ σ µ σ µ σ

1 NF 50% 7.6 24 120.1 119 141.1 63 150.4 117

10% 9.8 59 150.1 465 105.5 90 175.6 445

2% -5.1 15 48.7 145 99.4 42 60.0 96

FF 50% 29.8 37 139.4 148 194.4 112 211.3 163

10% 0.0 12 7.8 41 122.0 49 38.7 33

2% -5.9 8 -6.8 25 87.0 32 32.2 36

2 NF 50% -2.0 20 39.2 99 60.9 44 109.6 158

10% -9.0 18 -9.4 136 26.1 18 29.1 203

2% -9.3 13 -12.8 117 47.4 35 5.7 116

FF 50% 0.6 21 35.1 84 69.0 103 69.2 115

10% -6.4 7 -39.4 32 39.8 22 -9.2 38

2% -10.8 8 -51.7 13 25.4 22 -30.3 18

3 NF 50% 16.0 24 28.4 98 165.1 90 129.1 185

10% -9.3 17 -33.1 135 90.6 66 14.9 195

2% -2.1 21 -50.3 75 105.4 60 -8.1 109

FF 50% 28.4 40 -43.1 48 186.6 135 79.9 140

10% -3.8 10 -54.8 23 96.4 24 -13.3 42

2% -4.9 12 -68.4 17 85.9 37 -45.2 21

Total 1.3 26 11.1 150 97.1 80 55.5 167

Table H.5: Error in estimated column shear for the inelastic structural models

Bent Field Hazard Foundation Approximations

Fixed @ 3D Fixed @ 0D Springs (Pinned) Springs (Fixed)

µ σ µ σ µ σ µ σ

1 NF 50% 3.8 10 98.4 25 -8.1 9 90.3 24

10% -5.7 9 74.5 33 -13.9 8 75.2 29

2% -7.5 8 67.0 19 -14.2 7 68.2 16

FF 50% 5.0 8 102.7 24 -1.2 10 98.3 23

10% -7.2 3 67.4 10 -15.4 3 67.0 9

2% -10.6 2 58.7 3 -17.5 1 61.5 4

2 NF 50% 1.6 8 68.2 21 -24.8 3 57.5 27

10% -4.7 5 47.2 24 -27.4 6 46.7 26

2% -6.3 5 44.9 22 -29.6 4 43.1 15

FF 50% 2.8 3 68.3 22 -22.5 4 55.6 18

10% -4.1 5 38.9 12 -28.4 3 40.8 9

2% -7.5 3 36.3 4 -31.3 2 36.9 3

3 NF 50% 4.2 7 116.6 29 10.8 10 119.7 23

10% -6.2 7 90.7 30 1.4 11 97.3 28

2% -7.4 6 86.7 22 0.8 6 91.1 19

FF 50% 7.3 9 96.0 33 13.8 10 112.4 21

10% -5.7 4 89.2 11 -0.7 4 93.2 11

2% -9.2 2 80.4 8 -2.5 1 83.6 6

Total -3.2 8 74.0 30 -11.7 15 74.4 31
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Figure H.4: Error in estimated maximum plastic rotations for the inelastic structural models
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Figure H.5: Error in estimated column shear for the inelastic structural models
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Table H.6: Error in the estimated drift ratios for the inelastic fixed base models

Bent Field Hazard Fixity Depth

2.0D 2.5D 3.0D 3.5D 4.0D

µ σ µ σ µ σ µ σ µ σ

1 NF 50% 9.0 10 5.8 14 1.0 12 2.9 13 3.3 17

10% 7.2 26 5.1 24 -3.1 19 -7.9 12 -12.9 14

2% 4.3 19 -3.4 13 -6.8 11 -8.7 9 -6.9 13

FF 50% 13.9 25 11.4 22 9.9 17 9.3 24 22.0 30

10% 9.1 16 4.8 9 -1.5 8 3.0 16 4.0 23

2% 5.4 10 0.3 8 -4.7 7 -8.4 8 -11.4 11

2 NF 50% 2.8 15 2.4 15 -3.8 8 -3.7 8 -2.8 13

10% -6.8 24 -6.3 17 -7.9 11 -9.5 9 -11.9 8

2% -7.2 14 -7.6 13 -8.6 11 -8.8 10 -7.4 10

FF 50% 6.2 19 5.6 14 0.9 8 8.8 20 8.1 16

10% -6.5 14 -4.2 7 -5.0 4 0.1 11 2.2 16

2% -11.6 11 -9.1 8 -8.4 7 -8.1 8 -9.7 10

3 NF 50% 7.9 22 7.5 18 1.4 12 -1.4 12 -3.6 15

10% -10.0 29 -10.7 20 -10.9 13 -9.8 12 -10.7 14

2% -5.1 22 -1.8 20 -5.4 15 -7.9 12 -9.0 12

FF 50% 9.6 23 7.8 17 6.1 15 7.4 10 10.0 25

10% -8.1 15 -7.1 9 -5.9 7 1.8 7 1.7 14

2% -8.5 16 -8.6 15 -4.9 10 -6.0 12 -7.6 11

Total 0.6 20.0 -0.5 16.2 -3.2 12.1 -2.6 13.6 -2.4 17.9

Table H.7: Error in the estimated plastic rotation for the inelastic fixed base models

Bent Field Hazard Fixity Depth

2.0D 2.5D 3.0D 3.5D 4.0D

µ σ µ σ µ σ µ σ µ σ

1 NF 50% 29.7 23 21.8 33 7.6 24 8.2 22 6.7 30

10% 42.1 125 32.1 102 9.8 59 -5.2 27 -15.0 20

2% 13.1 32 -0.1 16 -5.1 15 -9.6 11 -8.3 16

FF 50% 53.4 59 42.4 55 29.8 37 26.8 58 48.0 74

10% 16.0 23 8.9 13 0.0 12 3.6 20 2.7 27

2% 7.4 11 0.7 8 -5.9 8 -10.9 9 -14.7 12

2 NF 50% 35.3 51 25.0 49 -2.0 20 -9.7 12 -12.9 25

10% 3.2 55 -2.1 34 -9.0 18 -14.1 11 -18.1 10

2% -1.5 25 -5.9 16 -9.3 13 -11.8 12 -11.5 13

FF 50% 41.6 55 25.4 34 0.6 21 13.9 43 6.3 39

10% -2.3 26 -2.5 14 -6.4 7 -0.8 15 0.0 22

2% -12.1 14 -10.6 10 -10.8 8 -11.7 10 -14.6 12

3 NF 50% 44.8 55 36.6 43 16.0 24 4.0 23 -5.8 26

10% 3.7 62 -3.3 37 -9.3 17 -11.5 12 -12.7 14

2% 4.1 41 6.7 40 -2.1 21 -7.6 14 -11.1 13

FF 50% 57.1 64 41.1 45 28.4 40 18.6 23 21.5 58

10% -1.0 23 -3.0 13 -3.8 10 4.6 10 3.6 20

2% -6.7 18 -7.7 17 -4.9 12 -7.4 13 -9.9 12

Total 18.2 52.3 11.4 41.3 1.3 25.9 -1.1 24.6 -2.6 32.4
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Table H.8: Error in the estimated column shear for the inelastic fixed base models

Bent Field Hazard Fixity Depth

2.0D 2.5D 3.0D 3.5D 4.0D

µ σ µ σ µ σ µ σ µ σ

1 NF 50% 21.3 13 11.8 12 3.8 10 -5.6 6 -10.6 8

10% 9.4 15 0.9 11 -5.7 9 -11.4 8 -17.5 6

2% 6.4 9 -1.3 9 -7.5 8 -14.5 5 -13.6 17

FF 50% 24.2 13 15.1 11 5.0 8 -2.0 6 -5.0 9

10% 7.1 4 -0.6 4 -7.2 3 -12.9 3 -17.7 3

2% 3.2 3 -4.0 2 -10.6 2 -16.0 2 -20.7 2

2 NF 50% 18.9 11 11.0 11 1.6 8 -6.4 5 -13.2 3

10% 7.6 8 1.8 7 -4.7 5 -9.8 4 -14.4 5

2% 5.3 9 -1.5 6 -6.3 5 -11.0 6 -15.4 5

FF 50% 19.2 12 11.1 8 2.8 3 -2.5 5 -8.5 7

10% 5.4 5 0.5 5 -4.1 5 -9.0 5 -12.6 5

2% 2.1 3 -3.2 3 -7.5 3 -11.3 3 -15.7 3

3 NF 50% 24.2 11 13.8 9 4.2 7 -3.3 7 -12.0 5

10% 12.5 14 2.8 11 -6.2 7 -13.7 4 -19.8 3

2% 10.2 9 1.6 10 -7.4 6 -14.3 5 -20.2 5

FF 50% 28.6 13 16.6 10 7.3 9 -3.5 6 -9.8 6

10% 10.8 5 1.8 4 -5.7 4 -12.5 4 -18.1 4

2% 7.2 4 -1.4 4 -9.2 2 -14.6 3 -21.2 2

Total 12.4 12.2 4.3 10.3 -3.2 8.2 -9.7 6.6 -14.8 7.5
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Figure H.6: Sensitivity of drift accuracy to equivalent fixity depth
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Figure H.7: Sensitivity of plastic rotation accuracy to equivalent fixity depth
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Figure H.8: Sensitivity of shear accuracy to equivalent fixity depth



342

−100

0

100

200

300

400

500

600

Fixed
@ 3D

Fixed
@ 0D

Springs
(Pinned)

Springs
(Fixed)

Near Field
S

P

B
B

S
P

B
B

S
P

B
B

S
P

B
B

B
en

t 
1

E
R

R
O

R
D

M
,m

od
el

 (
%

)

B
en

t 
1

Drift
Plastic Rotation

−100

0

100

200

300

400

500

600

Fixed
@ 3D

Fixed
@ 0D

Springs
(Pinned)

Springs
(Fixed)

S
P

B
B

S
P

B
B

S
P

B
B

S
P

B
B

B
en

t 
2

E
R

R
O

R
D

M
,m

od
el

 (
%

)

B
en

t 
2

−100

0

100

200

300

400

500

600

Fixed
@ 3D

Fixed
@ 0D

Springs
(Pinned)

Springs
(Fixed)

S
P

B
B

S
P

B
B

S
P

B
B

S
P

B
B

B
en

t 
3

E
R

R
O

R
D

M
,m

od
el

 (
%

)

B
en

t 
3

−100

0

100

200

300

400

500

600

Fixed
@ 3D

Fixed
@ 0D

Springs
(Pinned)

Springs
(Fixed)

Far Field

S
P

B
B

S
P

B
B

S
P

B
B

S
P

B
B

E
R

R
O

R
D

M
,m

od
el

 (
%

)

−100

0

100

200

300

400

500

600

Fixed
@ 3D

Fixed
@ 0D

Springs
(Pinned)

Springs
(Fixed)

S
P

B
B

S
P

B
B

S
P

B
B

S
P

B
B

E
R

R
O

R
D

M
,m

od
el

 (
%

)

−100

0

100

200

300

400

500

600

Fixed
@ 3D

Fixed
@ 0D

Springs
(Pinned)

Springs
(Fixed)

S
P

B
B

S
P

B
B

S
P

B
B

S
P

B
B

E
R

R
O

R
D

M
,m

od
el

 (
%

)

Figure H.9: DM hazard error for inelastic structural modeling approximations
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Figure H.10: DM hazard error for effective elastic structural modeling approximations
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Figure H.11: DM hazard error for gross elastic structural modeling approximations
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Table H.9: Error in the estimated damage for the inelastic models

Bent Field EDP Foundation Approximations

Fixed @ 3D Fixed @ 0D Springs (Pinned) Springs (Fixed)

SP BB SP BB SP BB SP BB

1 NF Drift Ratio 11.0 -17.8 143.5 -5.4 173.3 155.8 223.1 69.6

Plastic Rotation 21.8 -15.4 377.0 -38.2 194.7 106.8 511.5 17.3

FF Drift Ratio 19.5 -13.6 102.3 -13.6 230.1 221.1 244.8 83.8

Plastic Rotation 41.6 -21.0 360.7 -45.1 309.5 148.1 700.3 16.7

2 NF Drift Ratio -16.7 -28.2 -61.0 -85.5 36.3 28.6 -28.4 -69.5

Plastic Rotation -11.0 -20.2 -42.0 -76.7 11.1 22.6 -5.5 -57.7

FF Drift Ratio -7.4 -23.2 -56.6 -84.0 48.4 39.0 -22.3 -59.1

Plastic Rotation -4.0 -14.9 -34.3 -76.3 29.1 25.1 3.4 -53.0

3 NF Drift Ratio -1.4 -24.7 -82.3 -92.3 134.3 138.4 -18.9 -72.2

Plastic Rotation 15.2 -20.1 -60.2 -85.5 190.0 107.0 85.4 -64.2

FF Drift Ratio 8.6 -13.9 -80.6 -86.5 182.7 188.2 10.6 -77.4

Plastic Rotation 31.9 -19.6 -68.3 -78.7 275.4 126.0 203.1 -81.1

µ 9.1 -19.4 41.5 -64.0 151.2 108.9 158.9 -28.9

σ 17.1 4.3 161.8 29.1 95.8 64.3 225.3 56.8

Table H.10: Error in the estimated damage for the effective elastic models

Bent Field EDP Foundation Approximations

Fixed @ 3D Fixed @ 0D Springs (Pinned) Springs (Fixed)

SP BB SP BB SP BB SP BB

1 NF Drift Ratio -4.1 7.0 50.1 -86.6 110.3 114.2 95.1 -61.8

FF Drift Ratio 19.1 -15.5 -30.5 -84.3 263.3 96.4 2838.0 -82.6

2 NF Drift Ratio -36.9 -43.0 -65.2 -97.0 -4.5 -25.4 -43.6 -86.9

FF Drift Ratio -32.3 -71.9 -68.7 -94.6 19.0 -55.6 95.9 -98.8

3 NF Drift Ratio -32.0 -61.1 14.3 -75.0 38.0 -60.9 -82.6 -98.2

FF Drift Ratio 16.4 -78.0 -71.3 -80.2 605.0 -88.1 -62.7 -99.5

µ -11.7 -43.8 -28.5 -86.3 171.8 -3.2 473.4 -88.0

σ 25.6 33.6 50.6 8.4 233.3 86.6 1161.1 14.6

Table H.11: Error in the estimated damage for the gross elastic models

Bent Field EDP Foundation Approximations

Fixed @ 3D Fixed @ 0D Springs (Pinned) Springs (Fixed)

SP BB SP BB SP BB SP BB

1 NF Drift Ratio -54.0 -95.6 -83.1 -92.9 -13.0 -76.4 -78.9 -98.9

FF Drift Ratio -2.6 -99.0 -92.2 -95.1 242.9 -92.9 -85.8 -98.6

2 NF Drift Ratio -86.6 -98.5 -89.1 -97.5 -61.6 -90.6 -90.8 -99.4

FF Drift Ratio -89.1 -99.9 -92.0 -96.8 -32.3 -98.8 -91.2 -99.3

3 NF Drift Ratio -90.3 -98.3 -51.6 -66.1 -93.3 -99.3 -95.9 -99.5

FF Drift Ratio -91.7 -99.6 -90.5 -86.4 -94.0 -99.7 -96.5 -99.0

µ -69.0 -98.5 -83.1 -89.2 -8.6 -93.0 -89.8 -99.1

σ 35.5 1.5 15.8 12.0 127.4 9.0 6.6 0.4
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Table H.12: Error in damage measure hazard for inelastic fixed base models

Bent Field EDP Fixity Depth

2.0D 2.5D 3.0D 3.5D 4.0D

SP BB SP BB SP BB SP BB SP BB

1 NF Drift Ratio 56.0 -0.6 45.9 -5.4 11.0 -17.8 -2.1 -23.5 -11.9 -32.0

Plastic Rotation 85.2 -7.9 67.9 -8.7 21.8 -15.4 3.0 -18.7 -10.2 -25.2

FF Drift Ratio 60.5 15.3 26.1 -0.4 19.5 -13.6 16.0 -17.8 13.7 -16.7

Plastic Rotation 114.5 -3.9 58.4 -12.7 41.6 -21.0 32.2 -23.5 27.3 -22.6

2 NF Drift Ratio -9.5 -36.7 -5.8 -30.8 -16.7 -28.2 -20.9 -28.0 -26.8 -30.7

Plastic Rotation 0.4 -27.2 3.9 -21.9 -11.0 -20.2 -16.4 -19.6 -24.7 -22.6

FF Drift Ratio 7.7 -34.8 -3.0 -25.7 -7.4 -23.2 -2.7 -26.6 -7.3 -20.6

Plastic Rotation 18.8 -31.1 7.0 -21.9 -4.0 -14.9 -3.0 -19.9 -6.4 -10.2

3 NF Drift Ratio 16.7 -31.6 12.6 -24.8 -1.4 -24.7 -9.3 -24.1 -17.1 -28.9

Plastic Rotation 57.0 -36.0 37.8 -23.2 15.2 -20.1 0.1 -17.4 -10.6 -20.0

FF Drift Ratio 34.8 -19.5 12.7 -19.1 8.6 -13.9 5.6 -12.7 4.7 -13.1

Plastic Rotation 101.1 -35.0 54.2 -28.3 31.9 -19.6 17.7 -12.3 18.5 -9.3

µ 45.3 -20.8 26.5 -18.6 9.1 -19.4 1.7 -20.4 -4.2 -21.0

σ 38.8 16.6 24.5 9.2 17.1 4.3 14.2 4.8 16.2 7.3

Table H.13: Error in damage measure hazard for intensity measures

Bent Field EDP Fixity Depth

PGA PGV SA1 Ia MCOR

SP BB SP BB SP BB SP BB SP BB

1 NF Drift Ratio 117.1 19.9 14.6 -6.3 17.9 11.0 91.4 9.1 -2.9 -4.2

Plastic Rotation 125.9 30.2 12.0 -5.5 25.9 15.1 87.4 14.3 -3.6 -4.4

FF Drift Ratio 66.9 -6.9 11.3 6.4 16.2 2.1 10.9 6.6 -6.0 5.3

Plastic Rotation 65.0 2.6 10.3 7.0 19.1 5.1 9.2 6.9 -4.0 3.8

2 NF Drift Ratio 99.1 11.9 5.7 -10.5 18.5 10.6 63.3 -1.4 -4.4 -4.9

Plastic Rotation 78.6 7.4 1.7 -11.6 16.4 10.0 51.5 -3.9 -5.8 -5.3

FF Drift Ratio 31.1 -10.4 8.4 6.1 2.6 0.6 11.8 6.6 -1.4 5.9

Plastic Rotation 34.5 -11.3 9.5 6.0 7.0 0.8 11.0 6.3 -0.6 6.3

3 NF Drift Ratio 99.7 13.7 10.4 -8.1 12.3 8.8 70.1 1.9 -4.2 -4.7

Plastic Rotation 112.1 26.7 8.2 -6.8 17.6 11.6 74.0 10.5 -4.6 -4.8

FF Drift Ratio 67.7 -7.3 13.7 6.6 -1.2 0.2 16.7 7.1 -5.6 5.4

Plastic Rotation 58.2 0.7 12.6 7.5 4.2 1.3 13.9 7.9 -3.2 4.2

µ 79.7 6.4 9.9 -0.8 13.0 6.4 42.6 6.0 -3.9 0.2

σ 31.3 14.3 3.6 7.9 8.1 5.3 33.3 5.0 1.7 5.2
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