
EDITORI
AL REVIEW
Vaginal microbiota and susceptibility to HIV

McKenna C. Eastmenta and R. Scott McClellanda,b,c
aDepartment of M
Washington, USA

Correspondence to
359909, Seattle, W

Tel: +1 574 210 1
Received: 3 Augu

DOI:10.1097/QAD

ISSN
Bacterial vaginosis, characterized by the replacement of the Lactobacillus-dominant
microbiota with anaerobic bacteria and facultative Gram-negative rods, has been
associated with adverse reproductive health outcomes including HIV acquisition. With
the advent of newer molecular techniques, the vaginal microbiota can be investigated
in more detail and the association with HIV examined more thoroughly. This review
examines recent evidence suggesting that vaginal dysbiosis with increased microbial
diversity, specific vaginal bacterial communities, and the presence and concentrations
of some individual bacterial species, may increase HIV susceptibility. Potential mech-
anisms through which vaginal microbiota could impact HIV susceptibility are dis-
cussed. On the basis of the available data, this review finds that there is a modest, but
growing, body of evidence linking vaginal microbiota to HIV susceptibility in women.
The evidence could be strengthened through two main pathways. First, laboratory
studies such as ex-vivo or animal experiments are needed to move from plausible
mechanisms towards proven mechanisms that explain an effect of the vaginal micro-
biota on HIV susceptibility. Second, experimental evidence could directly test the
hypothesis that sustaining optimal microbiota reduces HIV risk, though there are
important obstacles to conducting such studies. Finally, this review examines strong
evidence from a recent publication suggesting that deviations from an optimal vaginal
microbiome, and particularly the presence of some bacterial communities with high
relative abundance of Gardnerella vaginalis, reduces the efficacy of vaginal tenofovir-
based microbicides. Copyright � 2018 Wolters Kluwer Health, Inc. All rights reserved.
AIDS 2018, 32:687–698
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Introduction

Women in sub-Saharan Africa continue to bear a greater
burden of HIV compared with men [1]. Disruptions of
the vaginal microbiota could play a key role in mediating
HIV susceptibility in African women.

In the early 1900s, Doderlein bacillus, later classified as
Lactobacillus, was linked with vaginal health in married
white women [2]. In this population, deviation from
a microbiota dominated by Lactobacillus species was
 Copyright © 2018 Wolters Kluwe
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associated with vaginal discharge. As the vaginal
microbiota has been characterized in a wider range of
populations, it is evident that non-Lactobacillus-dominant
vaginal microbial communities are common [3], can
occur with and without symptoms [2], and may be
associated with a range of adverse reproductive health
outcomes including HIV acquisition [4–9].

Heterosexual transmission of HIV is inefficient [10]. Co-
factors including sexually transmitted infections (STIs)
and vaginal dysbiosis likely contribute to increased HIV
r Health, Inc. All rights reserved.
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transmission efficiency [4,11–23]. Bacterial vaginosis, the
most common type of vaginal dysbiosis, is a condition in
which Lactobacillus-dominant microbiota is replaced by
complex bacterial communities with anaerobic bacteria
and facultative Gram-negative rods [2]. Bacterial vagino-
sis has been associated with HIV acquisition in women
[4–9]. As bacterial vaginosis often persists [24,25], and
frequently recurs even when treated [26,27], this
condition may contribute substantially to the population
attributable risk (PAR) of HIV infection. Two studies
suggest that bacterial vaginosis contributes substantially
more to HIV PAR than any genital condition other than
herpes simplex virus-2 (HSV-2) [28,29].

Beginning in 2005, advances in molecular evaluation of
the vaginal microbiota [30], have enabled examination of
vaginal microbial communities in much finer detail. This
article summarizes recent literature using molecular
characterization to explore the possible role of vaginal
microbiota in mediating women’s susceptibility to HIV
infection.
Laboratory methods for characterizing
vaginal microbiota

There are two commonly used criteria to diagnose
bacterial vaginosis. Amsel criteria includes three or more
of four clinical signs including clue cells on wet mount
microscopy, ‘fishy’ amine odor, vaginal pH greater than
4.5, and thin, homogenous vaginal discharge [31]. The
criteria developed by Nugent and Hillier (Nugent
criteria) define bacterial vaginosis based on Gram stain
enumeration of bacterial morphotypes [32].

In addition to the appearance of bacteria on Gram stain,
the vaginal microbiota has been characterized using
culture-based methods. One advantage is that culture can
identify some minority species more easily than through
newer molecular techniques [33]. Culture also allows
for antimicrobial sensitivity testing. However, many key
bacterial taxa associated with bacterial vaginosis are
difficult to cultivate [34].

During the past 15 years, advances in molecular
microbiology have contributed substantially to our
understanding of the vaginal microbiota by providing
a complementary approach [35]. Many of these novel
methods begin with broad-range PCR amplification
targeting highly conserved 16S rRNA gene sequences.
Additional steps are then employed to identify bacteria.
These techniques include denaturing gradient gel
electrophoresis (DGGE) [36], terminal restriction frag-
ment length polymorphism analysis (T-RFLP) [37],
cloning and Sanger sequencing [38], amplified ribosomal
DNA restriction analysis (ARDRA) [39], and
 Copyright © 2018 Wolters Kluwer H
pyrosequencing [40,41]. Taxon-directed quantitative
PCR (qPCR) can been used to measure quantities of
individual bacterial taxa [42,43]. In addition, fluorescent
in-situ hybridization (FISH) is a nonamplified method
that uses fluorescently labeled 16S rRNA probes to detect
bacterial taxa, characterize their morphology, and localize
species into microniches [30]. In combination, newer
methods have allowed for a simplified approach to
identifying bacteria, including cultivation-resistant bac-
teria. Bacterial quantities can be evaluated in terms of
their relative abundance (e.g. pyrosequencing data) and
concentration (e.g. qPCR). Relative abundance data have
been used to identify vaginal bacterial community types
that provide more differentiation than the traditional
Amsel and Nugent criteria [44].

Application of molecular methods has considerably
advanced our understanding of both healthy and
disrupted vaginal microbiota. Women with bacterial
vaginosis have more diverse vaginal microbiota compared
with women without bacterial vaginosis [41,45,46].
Diversity has been defined in a variety of ways including
the Shannon Diversity Index, operational taxonomic
units, and number of positive probes [41,45,46]. Multiple
bacterial taxa have been associated with bacterial
vaginosis, including bacterial vaginosis-associated bacte-
ria 1 (BVAB1), BVAB2, Mageeibacillus indolicus (previ-
ously BVAB3), Gardnerella vaginalis, Atopobium vaginae,
Eggerthella-like uncultured bacteria, Leptotrichia spp.,
Megasphaera spp., Prevotella spp., Mycoplasma hominis,
Bifidobacterium spp., and Dialister spp. [30]. In contrast,
Lactobacillus crispatus has been associated with a healthier
vaginal microbiome [47–49].
Ethnic and geographic variations in vaginal
microbiota

Since the 1990s, studies using Amsel or Nugent criteria
have detected differences in bacterial vaginosis prevalence
by race and ethnicity [3,50–54]. Nonwhite women
generally have higher rates of bacterial vaginosis
compared with white women. In 2011, Ravel et al.
[44] used broad-range PCR amplification of 16S rRNA
genes with pyrosequencing to explore this question.
Compared with Hispanic and black women in North
America, Asian and white women were more likely to
have vaginal communities dominated by Lactobacillus
species. Vaginal pH was lower in Asian and white women
compared with black and Hispanic women, an effect the
authors hypothesized was related to lactic acid production
by Lactobacillus spp. Understanding the diversity of the
vaginal microbiome across different populations is
critical, because associations between the vaginal micro-
biota and susceptibility to HIV infection may vary by
race, ethnicity, and geography.
ealth, Inc. All rights reserved.
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Studies of bacterial vaginosis as a risk for
HIV infection in women

Bacterial vaginosis, diagnosed by Amsel or Nugent criteria,
has been associated with HIV prevalence and incidence in
numerous studies. Beginning in 1995, multiple studies have
found associations between bacterial vaginosis and prevalent
HIV infection [4–6,9,28,29,55–74]. Stronger evidence
is provided by numerous prospective cohort studies and
meta-analyses, which have consistently shown that both
intermediate vaginal microbiota and bacterial vaginosis are
associated with �1.5-fold higher risk of HIV acquisition
[7,8,75]. As detailed above, bacterial vaginosis and abnormal
microbiota diagnosed by Gram stain are microbiologically
heterogeneous. Women with similar vaginal Gram stains
often have distinctly different vaginal bacterial communities
[76]. Taken together, the data on vaginal dysbiosis as a risk
factor for HIV, combined with an evolving understanding of
the complexity of the vaginal microbiome, raise a question
about the specificity of the relationship between bacterial
vaginosis and HIV. In particular, vaginal dysbiosis on Gram
stain may be a nonspecific marker for individual bacteria
or bacterial communities, which are the true drivers of
increased HIV susceptibility.
Molecular studies of vaginal microbiota
and HIV acquisition

Three studies published or presented during the past year
have employed molecular microbiological approaches to
 Copyright © 2018 Wolters Kluwe

Table 1. Studies using molecular techniques to examine the vaginal micr

Author (year)
Country/
region

Study
population

N (number of
HIV events) Method

Gosmann et al.
(2017) [79]

South Africa Women in Females
Rising Through
Education,
Support, and
Healthy (FRESH)
Study

236 (31) 16S rRNA V4
gene
sequencing

Passmore and
Williams
(2016) [77]

South Africa Women in CAPRISA
004 Trial

119 (49) V1-V3 rDNA
sequencing

McClelland
et al.
(2018) [78]

Eastern and
Southern
Africa

Female sex workers,
pregnant/
postpartum, and
HIV-negative
women in
discordant couples

349 (87) Broad range PCR
with deep
sequencing
and
quantitative
PCR

aOR, adjusted odds ratio; CI, confidence interval; CST, community state t
aAlthough cervicotypes and CSTs both describe vaginal communities by rela
are different.
expand our understanding of the vaginal microbiota and
HIV acquisition [77–79] (Table 1). Last year, Gosmann
et al. [79] published a prospective cohort study of 236
HIV-uninfected South African adolescent women (18–
23 years). Cervical and vaginal samples were character-
ized using nucleic acid extraction, amplification with 16S
rRNA V4 primer constructs, and sequencing with
Illumina MiSeq [80]. The authors defined four vaginal
bacterial community groupings (cervicotypes). Cervico-
type 1 (CT1) was characterized by high relative
abundance of L. crispatus, CT2 had a high relative
abundance of Lactobacillus iners, CT3 was dominated by
G. vaginalis, and CT4 was a diverse bacterial community
not dominated by L. crispatus, L. iners, or G. vaginalis. In an
analysis that excluded women with Chlamydia trachomatis,
CT4 was associated with significantly higher risk of
HIV acquisition compared with CT1. Two subtypes of
Prevotella bivia, Prevotella melaninogenica, Veillonella mon-
tpellierensis, Mycoplasma spp., and Sneathia sanguinegens
were significantly more abundant in 31 women who
acquired HIV compared with 205 women who remained
HIV-uninfected. Non-iners Lactobacillus species were
associated with protection against HIV.

The South African Study also explored potential
mechanisms through which vaginal microbiota might
impact HIV susceptibility. Women with CT4 vaginal
communities had 17-fold higher number of activated
CD4þHIV target cells on cervical cytobrushes compared
with women with CT1 communities. Strengths of this
study included a prospective cohort design, a subset
r Health, Inc. All rights reserved.

obiome and HIV acquisition.

Main findings
Measure of
association Limitations

Vaginal bacterial communities
dominated by Gardnerella
vaginalis (CT3) and by taxa
other than Lactobacillus spp.,
L. iners, and G. vaginalis (CT4)
associated with HIV
acquisitiona.
Prevotella bivia 1, Prevotella

melaninogenica, Veillonella
montpellierensis,
Mycoplasma spp., Prevotella
bivia 2, and Sneathia
sanguinegens associated with
HIV

CT3: hazard ratio
4.22 (95% CI
1.06–16.88),
P¼0.042
CT4: hazard ratio
4.03 (95% CI
1.14–14.27)
P¼0.031

HIV incidence
analyses stratify by
the presence of
Chlamydia spp.,
but do not adjust
for other potential
confounding
factors including
for sexual risk
behaviors

Vaginal communities defined by
Prevotella bivia (CST4)
associated with inflammation
and HIV acquisitiona.
P. bivia associated with HIV
acquisition

aOR 12.7, 95% CI
2.1–77.8,
P¼0.006

Relatively small
sample size
Data described in
abstract showed
only unadjusted
ratios.

HIV seroconversion with more
vaginal microbial diversity
Eggerthella species type 1,
Gemella asaccharolytica,
Leptotrichia/Sneathia,
Megasphaera spp., and
Mycoplasma hominis
significantly associated with
HIV acquisition

Shannon Diversity
Index median 0.9,
(IQR 0.4–2.3) in
HIV sero-
converters
compared with
controls with
median 0.7, (IQR
0.1–1.4), P¼0.03

Did not explore
mechanistic
explanations for
the associations

ypes; CT, cervicotypes; IQR, interquartile range.
tive abundance, the specific processes for defining these communities
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analysis excluding women with chlamydia, and parallel
investigation of plausible mechanisms. One limitation of
this study is that analyses examining the association
between vaginal community types and HIV acquisition
did not control for sexual risk behavior. Although the
authors did not find statistically significant differences in
condom use, frequency or type of sexual acts, or number
of sexual partners across cervicotypes, this does not
exclude possible confounding by these variables. Second,
there were modest numbers of incident HIV infections.
Third, this relatively homogenous population of adoles-
cent South African women may not be generalizable to
other regions or age groups. Despite these limitations, this
study provides the first published evidence that certain
vaginal communities and individual bacterial species may
shape vaginal mucosal HIV susceptibility.

The next study, by Passmore and Williams [77], was
presented at the 2016 International AIDS Conference in
Durban, South Africa. This analysis included 119 South
African women from the CAPRISA 004 trial, a Phase IIb
clinical trial assessing the effectiveness and safety of 1%
tenofovir vaginal gel for preventing HIV infection. Using
16S rRNA V1-V3 variable region primers, then
sequencing amplified DNA, 1368 species were identified
from cervicovaginal samples. A cluster analysis was used
to identify eight broad community state types (CSTs),
which differed from those described by Gosmann et al.
Community state types 1–3 were all dominated by
Lactobacillus species. In contrast, CSTs 4–8 were
dominated by species other than Lactobacillus, with
P. bivia defining CST4, and distinguishing CST4 from
other CSTs. Community state type 4 was associated with
an inflammatory vaginal cytokine profile and with HIV
acquisition. Women with high relative abundance of
P. bivia in vaginal samples were 19 times more likely to
have a pro-inflammatory vaginal cytokine profile
[adjusted odds ratio (aOR) 19.2, 95% CI 4.0–92.4,
P< 0.001], and nearly 13 times more likely to acquire
HIV (aOR 12.7, 95% CI 2.1–77.8, P¼ 0.006),
compared with other women.

To explore this association, P. bivia’s metagenome was
characterized. There was an enrichment of lipopolysac-
charide (LPS) biosynthesis, indicating production of this
immunostimulatory molecule, in women with CST4.
The increased inflammation associated with LPS is a
possible mechanism for increased HIV risk. To date, this
study has only been presented in a conference sympo-
sium, so it is not possible to fully characterize strengths
and limitations. Nonetheless, one important strength was
the pairing of epidemiological data showing an associa-
tion with laboratory analyses aimed at uncovering the
mechanism of increased HIV susceptibility. There were
also some limitations noted. First, it appears that there
were only 10 women in the Prevotella-dominant CST4,
resulting in wide confidence intervals, and potential for
selection bias. Second, it is not clear whether any
 Copyright © 2018 Wolters Kluwer H
adjustment was undertaken for sexual risk behaviors.
Third, the study population was restricted to younger
South African women. It is unclear if these results can be
generalized to other populations. Despite the limitations,
these data provide potentially important evidence of a
strong association between inflammation and P. bivia,
possibly mediated by LPS.

At the same conference, McClelland et al. presented a
nested case–control study of diverse populations of
women from six countries in Eastern and Southern
Africa, including female sex workers, pregnant and
postpartum women, and HIV-seronegative women in
discordant couples [78]. There were 87 vaginal micro-
biota samples from case women who seroconverted to
HIV and 262 samples from HIV-seronegative controls.
Deep sequencing of broad-range 16S rRNA gene PCR
products and highly sensitive taxon-directed qPCR assays
were used to characterize the vaginal microbiota. Women
who acquired HIV had greater vaginal bacterial
community diversity compared with women who
remained HIV-seronegative (mean Shannon Diversity
Index 1.3 versus 0.9, P¼ 0.02). Using qPCR, five
bacterial taxa showed significant associations with HIV
acquisition; Eggerthella species type 1, Gemella asacchar-
olytica, Leptotrichia/Sneathia spp., Megasphaera spp., and M.
hominis. These associations remained significant after
adjustment for age, pregnancy, contraceptive use, sex
partner number, sex frequency, and recent unprotected
intercourse. A strength of this study was inclusion of a
diverse population. In addition, the relatively large sample
size facilitated adjustment for multiple potential con-
founders. Data from both deep sequencing data and
qPCR assays were included, facilitating examination of
concentration-dependent associations between bacteria
and HIVacquisition. This study also had limitations. The
epidemiological analyses were not paired with data
exploring potential mechanisms linking vaginal bacteria
to HIV susceptibility. In addition, this study explored
associations with multiple bacterial taxa, and it is possible
that some associations were observed by chance.
Nonetheless, these data highlight potential biological
gradients by showing concentration-dependent associa-
tions between several types of bacteria and women’s risk
of HIV acquisition.
Mechanisms through which vaginal
microbiota may influence HIV
susceptibility

Numerous studies have focused on mechanisms through
which the vaginal microbiota may influence HIV
susceptibility. An exhaustive review of this literature is
beyond this article’s scope. Nonetheless, understanding
the possible mechanistic pathways is important for
establishing biological plausibility. Readers are directed
ealth, Inc. All rights reserved.
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to excellent recent reviews by Mirmonsef et al. [81],
Petrova et al. [82], Mirmonsef and Spear [83], Cone [84],
and Murphy and Mitchell [85], for detailed reviews of
mechanisms through which the vaginal microbiome may
influence HIV susceptibility. A brief summary of key
mechanisms is presented here.

Vaginal microbiota associated with bacterial vaginosis can
recruit mucosal immune cells. In Gosmann et al. [79],
women with diverse non-Lactobacillus-dominant com-
munities had 17-fold more activated CD4þ HIV target
cells compared with women with Lactobacillus crispatus-
dominant vaginal communities. The same laboratory
used transcriptional profiling to illustrate that epithelial
cells and antigen-presenting cells (APCs) sense high-
diversity vaginal communities associated with bacterial
vaginosis [80]. These APCs use Toll-like receptor-4
signaling to respond to LPS, which activates nuclear
factor kappa-light-chain-enhancer of activated B cells
(NF-kB), leading to inflammation and recruitment of
lymphocytes. Another recent study points to an
alternative mechanism. In this study of US women,
numbers of cervical gamma delta 1 (GD1) cells that were
protective against HIV were higher in women with
normal versus abnormal microbiota by Gram stain [86].
In contrast, vaginal GD2 cells, acting as targets for HIV
entry into cells, were associated with abnormal vaginal
microbiota.

Humoral immune mediators, including pro-inflamma-
tory chemokines and cytokines, have been studied as a
mechanism to explain the association between vaginal
dysbiosis and HIV acquisition. Abnormal vaginal micro-
biota (Nugent score 4–10) has consistently been
associated with higher levels of interleukin-1b (IL-1b),
a pro-inflammatory cytokine associated with toll-like
receptor (TLR) signaling and tissue damage [87–100].
Utilizing data from the CAPRISA 004 trial, cervicova-
ginal samples from 58 women prior to HIV seroconver-
sion were matched to 58 women who remained HIV-
negative [101]. This study showed higher concentrations
of interferon gamma inducible protein (IP-10), macro-
phage inflammatory protein-1alpha (MIP-1a), macro-
phage inflammatory protein-1beta (MIP-1b), and
interleukin-8 (IL-8) in women who seroconverted to
HIV compared with HIV-uninfected women. Addition-
ally, MIP-1a and MIP-1b were associated with more
diverse vaginal communities. These two chemokines,
as well as IP-10, are chemotactic for T cells, monocytes,
macrophages, and dendritic cells, all of which are
potential HIV target cells [102,103].

Since the 1990s, it has been evident that bacterial
vaginosis is associated with the presence of an HIV-
inducing factor (HIF) in vaginal secretions [104]. This
factor leads to increased HIV-1 replication in T cells and
monocytes by activating AP-1 and NF-kB [105,106].
Mycoplasma hominis, a vaginal bacteria species frequently
 Copyright © 2018 Wolters Kluwe
linked with bacterial vaginosis, has been significantly
associated with HIF [107].

Lactobacillus-dominant vaginal microbiotas have generally
been considered to reflect vaginal health, and have been
associated with decreased risk of HIV acquisition
[6,48,79]. Lactic acid, and associated low pH produced
by glycogen metabolism by Lactobacillus species, can
inactivate HIV [84,108,109]. A recent study also
documented significant increases in IL-1RA, an anti-
inflammatory cytokine, whenever human vaginal and
cervical epithelial cell lines were treated with lactic acid
[110]. This highlights a novel anti-inflammatory mecha-
nism by which lactic acid may impact HIV susceptibility.
In addition, some lactobacilli, including Lactobacillus
gasseri, may exert direct anti-HIV effects through
bacteriocins, antimicrobial compounds that kill other
microorganisms [83,111].

Disruption of physical barriers, including cervicovaginal
mucus and epithelium, may increase women’s HIV
susceptibility. Cervicovaginal mucus acts as a physical
barrier to HIV [112,113]. In addition, the virus may
diffuse more rapidly in cervicovaginal mucus with high
concentrations of L. iners or G. vaginalis [114]. In contrast,
there may be more virus trapping with L. crispatus-
dominated microbiota. In a recent study by Borgdorff
et al. [113], vaginal dysbiosis was associated with
cytoskeleton alterations, increased proteolytic activity,
and cell death, likely representing epithelial damage.
Do high-risk vaginal bacteria increase
women’s susceptibility to HIV infection?

In considering the question of whether vaginal micro-
biota influences women’s susceptibility to HIV infection,
it is useful to refer to a set of criteria first proposed by Hill
[115] in 1965, and used extensively in epidemiology since
that time. This list of conditions, often referred to as the
Hill criteria, includes strength, consistency, specificity,
temporality, biological gradient, plausibility, coherence,
experiment, and analogy (Table 2). The Hill criteria are
not a checklist to be fulfilled in their entirety to provide
proof of causation, but do offer a helpful framework for
examining causal inference.

Strength of association: multiple prospective studies and
meta-analyses estimate an �1.5-fold higher risk of HIV
acquisition with bacterial vaginosis compared with
normal vaginal microbiota. Diverse non-Lactobacillus-
dominant bacterial communities, higher relative abun-
dance of some bacteria, and higher quantities of some
bacteria, have been associated with increased risk of HIV
acquisition. Effect estimates for significant associations
range from an aOR of 2.59 (95% CI 1.26–5.34) for the
r Health, Inc. All rights reserved.
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Vaginal microbiota and HIV susceptibility Eastment and McClelland 693
highest concentrations of Leptotrichia/Sneathia spp. [78],
to an aOR of 12.7 (95% CI 2.1–77.8) with P. bivia [77].
Most estimates fall toward the lower end of this range.
Additional data will be essential to clarify the strength of
these associations.

Consistency: of the 15 prospective studies and meta-
analyses [4–8,28,29,56,57,73–75,116–118], all but one
species. These differences may be related to the biology of
the vaginal mucosa in different populations, methodo-
logical differences, or could have resulted by chance. In
general, there is high consistency in studies showing an
association between bacterial vaginosis, diverse vaginal
microbiota, and HIVacquisition. Further work is needed
to clarify the relationships between individual bacterial
taxa and HIV risk in different populations.

Specificity: the relationship between vaginal microbiota
and HIV is not specific, as bacterial vaginosis is not
required for HIV acquisition. Although there are few
molecular studies to date, it seems unlikely that a
particular bacterial community or species would be a
necessary precursor to HIV infection. Importantly,
specificity is not essential for determining the existence
of a causal relationship.

Temporality: numerous prospective studies have demon-
strated an association between bacterial vaginosis and
subsequent acquisition of HIV. In addition, all three
available molecular studies collected data on the vaginal
microbiome prior to or very shortly after HIV infection.

Biological gradient: prospective studies provide inconsis-
tent evidence for a biological gradient for increased HIV
risk with increasing Nugent score [8,28], or numbers of
Amsel criteria fulfilled [4]. There is some evidence from
recent molecular studies, that increasing vaginal bacterial
community diversity, relative abundance, and absolute
concentrations of some bacteria may be associated with
increased HIV risk.

Plausibility: numerous studies demonstrate possible
mechanisms through which the vaginal microbiome
could contribute to HIV susceptibility. Additional
research that more directly links vaginal bacteria to
mucosal markers of HIV susceptibility could further
strengthen this link.

Coherence: laboratory studies have primarily addressed
mechanisms to explain the association between vaginal
microbiota and increased HIV susceptibility. These types
of data would seem to pertain more directly to biological
plausibility than to coherence between laboratory studies
and epidemiological evidence. Future studies should aim
to more directly explore the hypothesis that vaginal
dysbiosis increases susceptibility. Unfortunately, there is
not a suitable animal model of the Lactobacillus-dominant
healthy human vaginal microbiota. As such, ex-vivo
 Copyright © 2018 Wolters Kluwe
infection of biopsy specimens from women with different
vaginal conditions might provide the strongest evidence
for coherence.

Experiment: there is some evidence that periodic
presumptive treatment (PPT) and suppression approaches
can reduce bacterial vaginosis [119–122], leading to more
optimal vaginal microbiota, increased frequency of
hydrogen-peroxide-producing Lactobacillus species colo-
nization [123], and reduced quantities of BVAB1,
BVAB2, A. vaginae, Leptotrichia/Sneathia spp., and
Megasphaera spp. [124]. However, no effective interven-
tions for reducing bacterial vaginosis or modifying the
vaginal microbiota have been evaluated in HIV-preven-
tion trials. Such trials, if undertaken in the era of effective
HIV prevention interventions including preexposure
prophylaxis (PrEP) and treatment of HIV-positive
partners, would likely require sample sizes in the tens
of thousands.

Analogy: the association between the vaginal microbiome
and women’s susceptibility to HIV infection represents a
unique biological relationship for which it is difficult
to identify a closely analogous system. The relationship
between bacterial vaginosis and other STIs has some
parallels. However, the mechanisms of susceptibility to
other STIs may not reflect the most important
mechanisms mediating HIV susceptibility.

In conclusion, current data fulfill some of the Hill criteria
for assessing whether the vaginal microbiome is causally
related to HIV susceptibility. Additional epidemiological
studies with prespecified hypotheses will be valuable in
establishing which relationships between individual
bacterial taxa and communities are consistent across
multiple studies and populations. As many of the current
microbiome studies include multiple comparisons, using
a global P value for the entire vaginal microbiota, and
delving deeper only if the overall P value is significant, or
using a false discovery rate, may help to reduce the
number of associations identified by chance.

Clinical trials of vaginal health interventions would
provide the gold standard of evidence, and could be
considered if the mechanistic data are sufficiently strong
and the proposed interventions can be shown to impact
the putative mechanisms driving HIV susceptibility.
Impact of the vaginal microbiome on
microbicide and oral preexposure
prophylaxis efficacy

In the past 10 years, there has been significant investment
in both topical and oral PrEP to reduce women’s HIV
risk. Of the five major trials, three have shown a benefit
r Health, Inc. All rights reserved.
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[125–127], with the other two citing low adherence as a
reason for null results [128,129]. Of the microbicide trials,
only the CAPRISA 004 trial demonstrated significant
efficacy of intravaginal tenofovir PrEP [125].

Three recent studies have examined how the vaginal
microbiome may impact topical and oral tenofovir-based
PrEP. The first of these included data from the CAPRISA
004 trial [125]. Women were randomized to vaginal
tenofovir 1% gel versus placebo. Cervicovaginal lavages
were analyzed from women prior to acquiring HIV
compared with samples from randomly selected HIV-
seronegative women [130]. Using a metaproteomic
analysis, 188 species were identified. Vaginal microbiomes
were classified as Lactobacillus-dominant or non-Lactoba-
cillus-dominant. There were no differences in demo-
graphics, sexual behaviors, clinical characteristics, or
adherence between women with these two vaginal
microbiome types. Women with Lactobacillus-dominant
vaginal microbiota showed significantly reduced risk of
HIVacquisition with vaginal tenofovir gel compared with
placebo (hazard ratio 0.39, 95% CI 0.20–0.83). In
contrast, women with a non-Lactobacillus-dominant
microbiota treated with tenofovir gel had no difference
in HIV acquisition compared with placebo (hazard ratio
0.82, 95% CI 0.40–1.65).

To explore the mechanism underlying these results,
tenofovir was inoculated in media with G. vaginalis,
L. iners, L. crispatus, and an abiotic control [130]. Mass
spectrometry illustrated that in vitro, G. vaginalis was
associated with a 67.4% depletion of tenofovir levels.
This dramatic effect was not present whenever media was
inoculated with L. iners, L. crispatus, or the abiotic control.
Thus, metabolism of tenofovir by G. vaginalis could
explain the findings of decreased efficacy of vaginal
tenofovir in women with non-Lactobacillus-dominant
microbiota. An abstract presented at the Conference on
Retroviruses and Opportunistic Infections (CROI) in
early 2017 by Hillier et al. [131] further illustrates this
point. Lower cervical tissue tenofovir levels were
observed in women receiving tenofovir 1% gel whenever
they had bacterial vaginosis diagnosed by Nugent score,
higher concentrations of G. vaginalis, and higher
concentrations of A. vaginae.

In contrast to topical tenofovir, the efficacy of oral PrEP
with tenofovir disproxil fumarate does not appear to be
affected by the vaginal microbiome [132]. Heffron et al.’s
study presented data from a secondary analysis from the
Partners PrEP study [127]. Efficacy of daily oral tenofovir
was the same for women with normal microbiota,
intermediate microbiota, and bacterial vaginosis by Gram
stain. Oral PrEP efficacy also did not differ by presence of
Gardnerella/Bacteroides morphotypes on Gram stain.

In summary, recent studies provide strong evidence that
the vaginal microbiome impacts the efficacy of topical
 Copyright © 2018 Wolters Kluwer H
PrEP, an effect not present with oral PrEP. These results
are likely to dramatically change the way vaginal
microbicides are developed and tested.
Current approaches for modulating the
vaginal microbiome

Current regimens for symptomatic bacterial vaginosis
provide modest cure rates with frequent recurrences
[26,27,133,134]. New approaches to control bacterial
vaginosis have included alternative drug regimens [135],
probiotics [136], biofilm disruptors [137–143], risk factor
modification (e.g. cessation of intravaginal practices)
[144,145], and suppressive regimens administered as PPT
and periodic directed treatment [119,120,123,146].
Many of these regimens have reduced bacterial vaginosis
recurrences. Less is known about such regimens’ impact
on individual bacterial taxa. One study found that oral
PPT with 2 g of metronidazole each month resulted in
more frequent Lactobacillus colonization [123], and
another found that monthly intravaginal metronidazole
PPT reduced concentrations of BVAB1, BVAB2. A.
vaginae, Leptotrichia/Sneathia spp., and Megasphaera spp.
measured using quantitative PCR assays [124]. However,
producing sustained changes in the vaginal microbiome
remains a challenge only partially addressed by current
regimens.
Conclusion

Prospective studies have consistently demonstrated an
association between bacterial vaginosis and increased risk
of HIV acquisition. Recently, data from studies using
molecular methods have led to the hypothesis that high-
risk vaginal microbial communities and the presence and
concentrations of key bacterial taxa may be more
predictive of women’s HIV risk than a bacterial vaginosis
diagnosis by traditional methods. One limitation of the
current literature is a lack of attention to the potential role
of vaginal fungi and viruses (other than herpes and human
papilloma viruses) in mediating HIV susceptibility in
women. In addition, recently presented and published
data examining associations between the vaginal micro-
biome and HIVacquisition have come from observational
studies, and may be most useful for generating new
hypotheses about how the vaginal microbiome influences
HIV susceptibility.

Given the high prevalence of vaginal dysbiosis, particu-
larly in African women, the question of whether vaginal
health interventions could reduce women’s susceptibility
to HIV infection is of great importance. Current research
priorities should include identifying the vaginal
ealth, Inc. All rights reserved.
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microbiota associated with increased risk, substantiating
mechanisms linking vaginal bacteria to mucosal HIV
susceptibility, and evaluating the efficacy of interventions
for interrupting these mechanisms. If such data are
sufficiently convincing, clinical trials of vaginal health
interventions should be considered. Although clinical trials
of new HIV prevention interventions will be challenging
in an era where other effective HIV prevention strategies
are available, such studies would provide the strongest
evidence to prove or disprove the presence of a causal
association, and could provide an important and novel
approach to HIV prevention in women.
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