

UW SUPPLY CHAIN TRANSPORTATION AND LOGISTICS

Alley Inventory and Truck Load/Unload Occupancy Study Urban Freight Lab Final 50': Goods Delivery System Research Project Task Order 4

Training Session - Winter 2018

Study Area

SDOT has engaged the Urban Freight Lab to identify the geospatial locations and features of alleyway infrastructure in One Center City.

The urban centers include:

- Downtown
- Uptown
- South Lake Union
- Capitol Hill
- First Hill

Four Data Collection Principles

The Urban Freight Lab adheres to four

principles when designing data collection approaches. To be widely used, the method must be:

- 1. Replicable;
- 2. Available at a reasonable cost;
- 3. Groundtruthed;
- 4. And have quality control measures built into each step.

Data collection Plan

- We work in teams of two
- Your assigned shift can be Monday through Saturday, anytime between 8:00 am and 5:00 pm, depending on your availability.
- Data collection will involve walking around city blocks looking for alleyways.
- We set short term goals with subareas.

Data Collection Tools

Data Collection App

Data Collection Tools: Integrated System

PFI Survey					Overview Design Analyze (Data)					
+		Party		Pix-the Ocean	CA NO CA		EUROPE	ASIA	Esri,	HERE, FAO, NOJ
PF1_Survey (20 feat	Date Of Survey	Time of survey	with the for the other offers the other	What is the survey id	internet for all on	waters to star even a st	What is the alleyway		GGPSDV_X	GGPSDV_Y
-1_10	Date Of Survey	Time or survey	of this survey location?	of on the hard copy map?		the street?	direction?	through a gate to access the infrastructure?	GISPSUV_X	GGPSDV_Y
b4ef170-ccc8-43d7- 890-o4c0d082d4o1	Jul 18, 2017	07:29	9	6	Street	Huh		No	-122.311432022876	47.67012973
66c14d7-bfe1-45a2- 451-b696538fc574	Jul 18, 2017	10:11	234	1	Street	E Denny Way		No	-122.331296635541	47.61867405
/87dde8-4cbd-4514- 453-37b2f9d0c369	Jul 18, 2017	10:42	234	2	Street	Harvard Ave		No		
2371a64-a471-4c6a- ccf-f237dd00ab/b	Jul 18, 2017	11:09	234	3	Street	Harvard Are		No	-122.321546422432	47.61837055

Security Protocol

UW letter and security vest

Seattle Shield Blast

SDOT website – Final 50 Feet Program

Alleyways' Extreme Points

Alleyways' Extreme Points - Access Points (1/2)

Located in the public right away with access to street.

Alleyways' Extreme Points - Access Points (2/2)

Alleyways' Extreme Points - Dead end (1/3)

Dead end Type 1: Ending at a to building outline.

Alleyways' Extreme Points - Dead end (2/3)

Driveway

Dead end Type 2: Ending at a driveway with access to street.

Alleyways' Extreme Points - Dead end (3/3)

Dead end Type 3: Ending at open property.

Alleyways' Extreme Points - Intersection

Intersection within the city block between:

- Two alleyways
- An alleyway and a street

Revising King County alleyway database

Question to be answer:

Is the alleyway shown on the base map?

17

T-Net layer

Extreme Point

Before entering

Within Alley

Selecting the survey start point

Extreme Point

Width of Extreme Point B

T-Net layer

If the alleyway exists in field, then:

- a. Compare the width of the alleway extremes UNLESS the extremes are (1) dead end ending at a building outline or (2) an intersection.
- a. Start the survey at the narrower extreme. For example:
 - /f width_A > width_B,

Before entering

Then **Point_B** = survey start point.

Within Alley

18

Features at the extreme point - Survey start point

We will collect :

- A. Geolocation
- B. Width within 30ft. Into the alley
- C. Street name closest to extreme point
- D. Apron features

Note: (depending on extreme point category)

T-Net layer

Extreme Point

Before entering

Within Alley

Limitations to survey within the alleyway

Safety Parameter

Obstructed alleyway

Note:

Don't enter the alley if any of the **team members feel uncomfortable**!

T-Net layer

Extreme Point

Before entering

Within Alley

20

Security Protocol within the alleyway

21

Note:

If any of the team members feel **uncomfortable at**

ANY point while collecting the features within the alley, get out of the alley!

If able, go to the second access point (i.e. the endpoint of the survey) to finish your data collection (unless the alley ends in a dead end).

T-Net layer Extreme Point Before entering Within Alley Extreme Point

Features within alleyways

We will collect:

- A. Narrower points and sections
- B. Parking facilities
- C. Main entrances to buildings
- D. Driveways
- E. Alleyway Length
- F. Pavement conditions
- G. Count of obstructions
- H. Presence of temporal obstructions

T-Net layer

Extreme Point

Before entering

Within Alley

22

A. Narrower points & sections

W = Width of Extreme Point B

23

T-Net layer

Extreme Point

Before entering

Within Alley

A. Narrower points - width restriction

A. Narrower sections - width restriction

A. Narrower points & sections - height restriction

Before entering

Obstructions that are:

• Width restrictions

T-Net layer

 Located within 16ft. from the ground

Extreme Point

Within Alley

A. Narrower points & sections - Types (1/2)

Transformer Equip.

Electric Panels

Fire escape

Projecting Lights

27

T-Net layer

Extreme Point

Before entering

Within Alley

A. Narrower points & sections - Types (2/2)

Signs

Bollards

Parking/ Commercial Vent intakes or exhaust

28

T-Net layer

Extreme Point

Before entering

Within Alley

B. Parking facilities - Types (1/2)

Parking garages

narling late

29

T-Net layer

Extreme Point

Before entering

Within Alley

B. Parking facilities - Types (2/2): Freight facilities

B. Parking facilities -Freight facilities

To link both databases, we will use readily available data:

Extreme Point

- Location (basemap)
- Facility ID number
- Pictures

T-Net layer

Data Collection Method: A 5 step survey

Step 1. Checking of King County database
Step 2. Alleyway's "Extreme Point"
Step 3. Before entering the alleyway
Step 4. Within the alleyway
Step 5. Alleyway's "Extreme Point"

Features at the extreme point - D. Apron

B. Parking facilities

Extreme Point

T-Net layer

Features to be collected:

- Geolocation
- Distance from start of alley

Within Alley

• Pictures

Before entering

34

C. Main entrances to buildings

35

T-Net layer

Extreme Point

Before entering

Within Alley

D. Driveways

36

T-Net layer

Extreme Point

Before entering

Within Alley

E. Alleyway Length

L = Alleyway total length

Extreme Point

T-Net layer

We will measure total length of alleyway with a measuring wheel

Within Alley

Before entering

37

F. Pavement Conditions

Pavement in bad conditions shows:

T-Net layer

Extreme Point

Before entering

Within Alley

G. Count of obstructions

Fire escapes		<u>Garbage bins</u> or cans		Garbage bins or cans for oil	
Γ-Net layer	Extreme Point	Before entering	Within Alley	Extreme Point	

H. Presence of temporal obstructions

<u>Debris</u>

Street Furniture

40

T-Net layer

Extreme Point

Before entering

Within Alley

Features at the extreme point - Survey endpoint

We will collect :

- A. Geolocation
- B. Width within 30ft. Into the alley
- C. Street name closest to extreme point
- D. Apron features

Note: (depending on extreme point category)

41

T-Net layer

Extreme Point

Before entering

Within Alley

Save the date!

• Friday, January 5:

Submit your Winter Quarter availability

• Before Monday, January 15:

Attend training session in field, specific time to be defined Attend training session in data cleaning session in office, specific time to be defined

• Before appointment of training in-field:

Self-review the materials of theoretical training session

Communication

City Block Round

Data collectors will do a city block round before starting any survey in a new city block. During the round, they will indicate the following information on the hard copy map:

- \rightarrow Access points width
- \rightarrow Access points location

Data Quality Process: In field

Keep track of the surveyed alleyways!

- Thoroughly inspect every city block in the assigned map and do not leave spaces behind where you did not walk
- Progressively fill the map with the alleyways collected in field

Always be aware of your location!

• Orient yourself and be confident about your location before starting a new survey

Be careful collecting the data!

- Correctly collect GPS readings
- Correctly collect the measuring wheel readings
- Collect clear and useful pictures, these are key for quality control.

Note: If you have any questions, refer to training materials or contact us

Data Quality Control: "Don'ts" of taking pictures (Weird angles)

Data Quality Control: "Don'ts" of taking pictures (No context)

Data Quality Control: "Don'ts" of taking pictures (Lack of clarity)

Data Quality Control: "Dos" of taking pictures (enough context)

Data Quality Control:Dos of taking pictures(important additional details)

Data Quality Process: In office

After every data collection shift one member of the team is responsible for the following task:

Task 1 - Review geopoints

- Extreme points
- Loading bays
- Parking facilities

Task B - Review remaining features collected of each survey.

Note: Data collectors will follow a Data quality process manual.

Data Quality Control: Online ESRI platform

New Map 📃 JOSE 🗸

