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Executive summary 

Introduction 

This report provides the details for the work conducted on the TravelAid project at the 
University of Washington, in conjunction with Washington State Transportation Center (TRAC), 
Washington State Department of Transportation (WSDOT), U.S. Department of Transportation 
(USDOT), and Federal Highway Administration (FHWA). The studies discussed, focus on the 
effectiveness of using variable message signs (VMSs) and in-vehicle traffic advisory systems 
(IVUs) on a mountainous pass (Snoqualmie Pass on Interstate 90 in Washington State) for 
changing driver behavior. As part of this project, variable message signs and variable speed limit 
signs have been placed along a 61 km segment of I-90 between North Bend, WA (milepost 33), 
and Cle Elum, WA (milepost 71). The study area is the region where I-90 passes over the 
Cascade mountains through Snoqualmie Pass. The signs, which were implemented during the 
winter of 1997-98, provide speed limit, weather, and roadway information to motorists with the 
intention of reducing the number and severity of accidents at this location. 

Objectives 

Variable message signs (VMSs), including variable speed limits, and in-vehicle traffic 
advisory system are expected to reduce speed, reduce the number of accidents, and reduce the 
severity of accidents that occur. It is not obvious that they do. The objectives of the TravelAid 
research project are to develop a research framework to accurately evaluate the effectiveness of 
such information systems. To that end, the speed profile of vehicles, their mean speed and the 
deviations from mean speed, was studied. VMSs may reduce speed but by doing so they may 
cause increased deviations from mean speed. Such an effect can be detrimental and can increase 
the frequency of accidents. The research project has also studied accident frequencies and 
accident severities. There are three basic parts to achieving this research goal: 

First, a picture of the before-conditions is formed, by studying the mean speeds, speed 
deviations, accident frequencies, and accident severities before the installation of the signs. 

Second, the probable effects of the information systems, variable message signs and in-
vehicle units, are studied in a controlled experiment using a driving simulator. 



 

Third, the after-conditions, after the installation of the variable message signs, must be 
studied to compare with the before-conditions. A study of the effects of the signs on the mean 
speed and speed deviation of vehicles in the area is a part of the project and has been completed. 

Short summary of project 

A model framework for studying accident frequencies and severities was developed. Models 
relating accident frequency and severity to roadway and environmental factors were developed. 
These models allow the study of how different factors affect accident frequency or severity. 
Comparable models based on data collected after the installation of VMSs can then be compared 
to these models to see what changes have occurred, and what factors were most affected by the 
VMSs. 

The driving simulator studies suggest that giving drivers messages that suggest the 
conditions ahead are good increases mean speed beyond the mean speed of drivers that don’t get 
information. However, when drivers received messages that suggested adverse conditions and 
reduced the speed limit, they obeyed and drove slower than drivers that didn’t get information. 
Another result from the driving simulator study is that drivers that get information have a 
tendency towards higher speed deviation, meaning greater variations in speed, than drivers that 
don’t get information. This can possibly increase the probability of accidents. 

The current signs only show messages during adverse conditions. This makes it harder to see 
the actual effect of the signs. Drivers are driving more slowly because of the adverse conditions, 
so the drop in speed is not necessarily because of the signs. A model framework was developed 
that untangles these effects and the results show that drivers that receive cautionary messages 
and a new lower speed limit do indeed slow down beyond what they would without such 
information. However, the study also shows that the effect does not last long after the signs stop 
appearing. Drivers soon pick up the pace and return to their desired speed. The signs may 
therefore contribute to an increase in risk during this acceleration zone after the signs stop. 

Future research must be performed to study the effects of the variable message signs on the 
accident frequencies and accident severities in the area. Without such a study an important part 
of the analysis of the effectiveness of the variable message signs is missing, and the key-
conclusions of the effectiveness of the program cannot be drawn. Such a study is needed to see if 
there is a difference between the before- and after-conditions, and to see if there is a significant 
increase in accident risk in the area where drivers accelerate to their desired speed after having 
temporarily slowed down because of the messages. 



 

Summary of results and implications 

The analysis of the historical accident data lead to a general model that can be used to 
examine accident frequency as a function of geometric and weather-related variables.  This 
model can be used to examine the effect of VMSs and IVUs on accident frequency by collecting 
accident data after these systems have been introduced and then estimating a model similar to the 
ones done in this research. The coefficients, or factors, in the model can then be compared to 
examine the effect of the VMSs and IVUs. If accident frequencies have changed, this method 
will also show why by showing which coefficients have been significantly changed.  This is 
important to ensure accuracy of the comparison of before and after data. It is also possible to 
perform an analysis of coefficient elasticities. The elasticity of a coefficient, tells by how many 
percent the outcome changes when the input is changed by 1%. This gives more information 
about the actual size of the effect of the VMSs and IVUs.  

Some of the general results of this research were that sections with grade exceeding 2% have 
a significantly higher number of accidents than flatter sections. Maximum rainfall and the 
number of rainy days significantly increase accident frequency. 

The historical accident data was also used in a model that analyses accident severity as a 
function of various geometric, weather and human factors. The model can be used to examine if 
the VMSs lead to a significant shift towards less severe accidents when it is compared with a 
comparable model using data collected after the installation of VMSs.  This can provide basis for 
research into changes of accident cost, which can lead to information regarding accident cost 
savings with the use of the VMSs. 

Speed data was collected at a single site and used to examine lane mean speeds and speed 
deviations from the mean before the introduction of VMSs and IVUs. Relationships between 
lane speeds and speed deviations were found and they were statistically valid.  Lane speed is 
affected by adjacent lane speed and the lane speed deviations are affected by adjacent lane speed 
deviations, the speed in the lane and the speeds in adjacent lanes.  This research shows that this 
method of modeling mean speeds is promising. Future research should explore variations in the 
geometric, seasonal, and weather variables that may vary between different sites.  Also, more 
microscopic data could be used to try to uncover dynamic effects in the traffic flow.  The study 
performed here offers generic information and it would be beneficial for planning purposes with 
the added understanding of cause-effect relationship between lane mean speed and lane speed 
deviations. 



 

Among the studies performed on the data from the simulation experiment was the modeling 
of mean speed and deviation by estimating an endogenous system of equations.  That study 
focused on the effect of geometric and socioeconomic variables on mean speed and deviation 
along a 12 mile stretch of a computer simulated version of I-90 at Snoqualmie Pass.  The effects 
of VMSs and IVUs were also tested.  The effect is seen through the variable speed limit set by 
the messages on the VMSs and IVUs.  The drivers with IVU only were found to have higher 
mean speeds than the other drivers.  They do change their speed when the IVU message informs 
of an upcoming snowplow but, still, have a higher mean speed than those without a system.  The 
drivers with VMSs only have higher mean speeds than those with neither system in the areas 
without snowplows but their mean speed is similar in the snowplow regions.  Drivers with both 
IVU and VMSs drive slower than the other drivers.  Their speed deviations where higher than 
for drivers with IVU only, VMS only, or drivers without a system.  This indicates that drivers 
put some trust in the system and drive faster when the system does not indicate danger than do 
drivers without a system, which must be on the lookout themselves.  It is interesting that the 
mean speed was lower for those with both IVU and VMSs and the deviation was highest for this 
group.  These results must be taken with a grain of salt, because they stem from a simulator 
study and the drivers know they will not be injured or harmed by reckless driving.  They also 
know there are no other vehicles on the road except for snowplows.  These results indicate that 
erroneous messages may prove to be more dangerous than no messages.  Further research into 
the effect of inaccurate messages on drivers is therefore needed.  These results also show that the 
VMSs and IVUs may increase speed deviation. This can lead to safety concerns, especially if the 
traffic stream is mixed, that is, made up of drivers without information systems and drivers with 
systems, because these two groups are likely to have different speed profiles and this may 
incrase accident risk. Further research into the effect of IVUs in a mixed traffic stream is 
therefore necessary. 

To further analyze the accident frequency and severity a model of reported speed reduction 
under adverse weather conditions was estimated by using survey data.  This study found that 
drivers reported driving at very diverse speeds under adverse conditions such as on wet or icy 
road.  It is hoped that the installation of VMSs and/or IVUs that set variable speed limits would 
limit this diversity and therefore increase safety. 

However, as was found by the previously mentioned simulation study the speed deviation of 
drivers using VMSs and/or IVUs was larger than for those without such a system.  There are two 
comments on this.  First, it is not the difference between drivers with IVUs and those without 
IVUs that is expected to be reduced, but rather, the speed deviation within the whole group of 
drivers using the system.  To find this a much larger sample of subjects must be used for it to be 



 

statistically valid to compare them to each other.  Another angle that might be taken to analyze 
this further would be to examine the mean speed and speed deviation on a smaller scale to isolate 
the speed between messages from the message areas.  Such research might answer the hypothesis 
that drivers with VMSs and/or IVUs drive with less speed deviation as a group on the sections 
between messages, but if there is a message giving a different speed limit in a section the speed 
deviation is increased for that section. 

The survey study found many relationships between the socioeconomic factors and the 
reported speed reductions.  One general conclusion was that drivers generally drive as fast as the 
law allows and give little consideration to road conditions.  The variable speed limits set by the 
VMSs and IVUs should therefore increase safety by setting the limits according to the current 
conditions.  This will, however, not work if drivers get the feeling that the VSLs are merely 
suggestions but not a legal limit that is enforced.  Enforcement is therefore likely to play a big 
part of the success of VSLs. 

The survey was also used to analyze whether drivers would use an IVU and what 
socioeconomic factors contribute to that decision.  It was found that perception of conditions 
played a big role.  Drivers indicated that they would generally only obey if they conditions 
warranted, especially for the command to put on chains.  Putting on chains is so onerous that 
drivers need more than an IVU telling them to put them on if they do not perceive their need.  
These results can then be compared with the results from a similar survey collected from the 
participants in the simulator study. 

In-service evaluation of variable message signs on mean speeds and speed deviations showed 
that the endogenous relationship between mean speed and speed deviation was significant and 
valid under ITS. The variable message signs (VMS) were shown to significantly reduce mean 
speed but they also significantly increased speed deviation. The increase in speed deviation can 
possibly work towards increasing accident frequencies at the VMS site and thereby tempering 
the effect of the lower mean speeds, which work to reduce accident severities and frequencies. 
The effect of the VMSs is not found to be significant at a site 10 km west of the VMS site. This, 
along with the simple aggregate results for average mean speeds and average speed deviation, 
suggests that drivers show compensatory behavior. The difference in average mean speed at the 
non-VMS site is small between the times when VMSs are on and off at the VMS site, and the 
lack of significance of the VMSs in the models at the non-VMS site support that. To achieve 
this, drivers must accelerate more quickly between the VMS site and the non-VMS site when the 
VMSs are on to compensate for their lower mean speed, as compared to when the VMSs are off. 



 

Compensatory behavior like this could increase accident frequencies in the area between 
the sites and reduce or negate the safety benefits of lower mean speeds when the VMSs are on. A 
separate study to examine this effect is necessary to fully understand the safety effects of the 
VMSs on I-90 at Snoqualmie Pass, Washington. 

Organization of report 

This report is separated into several Parts to reflect the work done at various stages of the 
project.  Chapter 1 provides an overview of the project scope and objectives.  After that, an 
analysis of accidents on the pass was conducted using historical accident data for the Snoqualmie 
Pass (Part I).  Several different accident models were estimated to evaluate accident frequencies 
(Chapter 2) and accident severity (Chapter 3).  Part II reviews the analysis of speed data over 
Snoqualmie Pass and reports specifically on lane-mean speeds and deviations (Chapter 4).  Once 
the historical data on the study site was collected and analyzed, it was time to assess potential 
users’ needs for variable message information and their willingness to use in-vehicle 
information. 

A survey was distributed and analyzed to explore these questions and findings are presented 
in Part III.  The survey is shown in Appendix A. In Part III, the survey is described (Chapter 5) 
followed by the econometric analyses of potential speed reductions for various weather 
conditions (Chapter 6).  A second set of analyses on the survey was then performed to look at the 
characteristics associated with drivers who would use an in-vehicle system as well as those who 
would not use the information provided by the in-vehicle unit (Chapter 7). 

Part IV provides the methodology and analysis of the results of a laboratory experiment on 
the use of an in-vehicle system (the Trafficmaster) and variable message signs (VMSs).  Since a 
driving simulator was used for this study, other simulator work is described in Chapter 8 to 
familiarize the reader with research done in the field. This is followed by the methodology 
followed in the driving simulator experiment (Chapter 9). The analysis of the data is separated 
into two chapters — the analysis of mean speed and deviation from the mean speed (Chapter 11), 
and the effectiveness of the systems over each 4.68 kilometer (or 3 mile) stretch (Chapter 12). 

Part V reports on recent research that has been performed after the installation of VMSs on I-
90 at Snoqualmie Pass, WA. The Part contains in Chapter 13 an analysis of the effect of VMSs 
on the relationship between mean speeds and speed deviations. 

The results are summarized in Part VI along with a discussion on research implications and 
future research. 
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Chapter 1 

Overview 

1.1 Background 

Freeway accidents are common phenomena in the United States and other parts of the world.  
The question of how to reduce the number and severity of accidents has prompted the use of 
highway patrol persons to enforce recommended speed limits; changes in highway design 
standards wherever possible to reduce curves and dramatic grades; and allocating resources to 
investigate the use of better information to drivers on road and weather conditions.  This research 
investigates the effect of the latter alternative.  Specifically, to determine if better information, 
provided in a driver’s vehicle will enable drivers to make better driving decisions. 

This research is consistent with the goals of the work being conducted under ITS (Intelligent 
Transportation Systems), formerly IVHS (Intelligent Vehicle-Highway Society of America).  
ITS is the field of study which involves the service, application and interaction of a group of 
advanced technologies designed to make our transportation systems operate more safely and 
efficiently.  In 1991, ITS was centered on the technological application aspects (i.e. ATIS, 
AVCS, ATMS, CVO, and APTS).  More recently, the focus has channeled toward 28 user 
services which are intended to encompass more travel related information that is not limited by a 
technological application, but rather, enhances the application (IVHS America, 1993).  Examples 
of the 28 user services under the ITS plan include pre-trip travel information, traveler services 
information, route guidance, and incident management.  This research focuses primarily on 
enroute driver information, and the technologies originally defined by ATIS, by providing 
information to drivers on roadway congestion, incidents, construction, and environmental 
hazards while they are in their vehicle. 

1.2 Problem statement 

On rural roads where geometric configurations are less than desirable, many motorists find 
themselves wondering what driving strategy would be best for their specific driving situations.  
Traffic information can provide drivers with knowledge about what to anticipate on the road on a 
given day and time.  However, the traffic information provided by general commercial mediums 
(i.e. advisory radios, commercial radios, and television) do not provide a complete picture for a 
driver’s individual trip.  In the search for real-time information for each driver’s needs, 
researchers are continually examining the use of in-vehicle and out of vehicle systems to assist 
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drivers in getting to their destinations, efficiently and safely.  In this report, these alternative 
methods for helping drivers are explored; by investigating the use of traffic information provided 
in and out of a driver’s vehicle. 

In an attempt to provide better information to drivers and reduce the risk of accidents in 
winter conditions, the Washington State Department of Transportation (WSDOT) in conjunction 
with USDOT has implemented the TravelAid Project. 

As part of this project, variable message and speed limit signs are placed along the 61 
kilometer segment of Interstate 90 between North Bend, Washington (milepost 33) and Cle Elum 
(Easton), Washington (milepost 71).  This is where I-90 passes over the Cascade mountains 
through Snoqualmie Pass.  The study area is shown on Figure 1.1.  The signs will be used to 
provide weather and roadway information to motorists in hopes that the number and severity of 
accidents will be reduced. 

 

Figure 1.1:  Map of study area. 

Snoqualmie Pass is an important link between the western and eastern parts of Washington 
state.  It is one of the most heavily traveled east-west routes, used by commercial vehicle 
operators, recreational drivers (i.e. skiers, and holiday travelers), and commuters.  The 
Snoqualmie Pass section of I-90 is prone to harsh weather conditions with fog and rain in the 
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summer and in the winter, ice and snow. These conditions make for severe and frequent 
accidents.  Past data have shown that the number of accidents increases dramatically over the 
winter months due to the severe weather conditions and geometric configurations of the 
mountainous pass (Larson et al., 1992). 

The use of intelligent transportation systems such as variable message signs and in-vehicle 
information systems, gives rise to concerns relating to the impacts it may have on vehicular 
safety.  While intelligent transportation systems have elements that are common to more 
traditional safety-oriented countermeasures, they present unique technological and human factors 
concerns that must be dealt with.  Addressing these additional concerns does not present an 
unusually difficult conceptual or methodological problem, but it does necessitate that 
consideration be given the wide-range of factors that may affect overall safety. 

The University of Washington has performed research to evaluate the project, which is 
funded by the Federal Highway Administration (FHWA) and USDOT.  The intent of the 
evaluation is described in the TravelAid evaluation plan.  The evaluation seeks to answer the 
following questions with regard to in-vehicle units (IVUs), variable message signs (VMSs), and 
variable speed limits (VSLs): 

 1. What impact do the IVUs, VMSs and VSLs have on the driver and driving task? 

 2. What impact do IVUs, VMSs and VSLs have on collision severities and type of 
collisions? 

 3. How effective are IVUs in terms of safety relative to VMSs and VSLs alone? 

 4. What would be the safety and operational impacts if all vehicles were equipped with 
IVUs? 

To answer these questions, field and laboratory data has been collected and analyzed using 
econometric techniques. The research has shown that IVUs have a significant impact on the 
average speed and the deviation from the mean speed. 

1.3 Summary 

This research report describes the studies that have been, and are being, conducted at the 
University of Washington.  There have been studies to better understand driver behavior and 
performance on Snoqualmie Pass before the implementation of the TravelAid project (see Morse, 
1995; Boyle, 1998). The historical accident frequency (see Shankar et al., 1995) and severity 
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(see Shankar et al., 1996) on Snoqualmie Pass and the factors that affect it have also been 
studied. The focus of these accident studies is on the non-behavioral determinants of accident 
risk, specifically roadway geometrics and weather conditions.  There has also been research into 
mean speed and speed deviations using loop detector data (see Shankar and Mannering, 1997) 
and data from a survey and a driving simulator (see Ulfarsson, 1997).  Simulator and survey data 
has also been used to analyze driver behavior in the presence of the TravelAid traffic advisory 
systems (see Boyle, 1998).  Finally, an in-service assessment of the impacts of variable message 
signs on mean speeds and speed deviations was also conducted (Ulfarsson, Shankar and Vu, 
2001).  The focus of this research was on assessing the marginal impact of variable message 
signs on mean speeds and speed deviations, and examining the spatial transferability of speed-
speed deviation relationships under ITS. 



 

Part I 

Historical Accident Analysis 
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To guide the evaluation and determine the ultimate effectiveness of IVUs, VMSs, and VSLs, 
a thorough understanding of the previous accident history of the study area is needed.  Details of 
our work to date are provided in the next two chapters. 

The section of Interstate 90 shown in Figure 1.1 experiences a high number of vehicular 
accidents as a result of challenging roadway geometrics (i.e. small horizontal curve radii and 
steep grades) and adverse weather conditions.  The climate in the vicinity of the Snoqualmie 
Pass summit is severe.  At an elevation of over 900 meters above sea level, the area receives an 
average of over 100 centimeters of rainfall and over 1700 centimeters of snowfall, annually.  
Snowfall occurs during every month except July and August.  During a large portion of the year, 
residual snow and ice accumulated on the ground contribute to adverse driving conditions.  
Factors that contribute to the accidents include driver behavior, geometric characteristics (e.g., 
grade and curve radii), weather-related variables (e.g., rainfall and snowfall, intensity of snowfall 
and rainfall), interactions between geometrics and weather elements, and seasonal effects such as 
traffic volume, precipitation and ambient temperature-related variations. 

The statistical analysis that we have undertaken to date focuses on the investigation of non-
behavioral determinants of accident occurrences, specifically roadway geometrics and weather 
conditions.  We present an appropriate methodology to establish an explicit relationship between 
geometric and weather-related elements and accidents.  In the next two chapters, we describe the 
analysis of accident frequencies and present the analysis of accident severities. 
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Chapter 2 

Accident frequencies 

2.1 Introduction 

The intent of this Chapter is to focus on the non-behavioral determinants of accident risk, 
specifically roadway geometrics and weather conditions.  The Chapter begins with a review of 
previous research on accident frequencies in terms of their relationship to geometric and 
weather-related elements.  On the basis of this review, we present an appropriate methodology to 
establish an explicit relationship between geometric and weather-related elements and accidents.  
This is followed by a description of available data and a discussion of model estimation results.  
Finally, a summary of model findings and implications is presented. 

2.2 Previous research 

Previous research, for the most part, has dealt with modeling relationships between accident 
occurrences and geometric elements.  Examples of this include the work of Wong and Nicholson 
(1992).  They observed that modifications to roadway geometrics were important because of the 
strong association between adverse geometric elements and high-accident locations.  This 
association has been confirmed in studies by Boughton (1975), National Cooperative Highway 
Research Program (1978), and the Federal Highway Administration (1982).  Other empirical 
relationships between vehicle accidents and highway geometrics have been studied through the 
use of statistical models to investigate accident involvement rate, accident probability, geometric 
design variables critical to safety, and the accident reduction potential of geometric 
improvements (National Cooperative Highway Research Program, 1978; Hammerslag et al., 
1982; Okamoto and Koshi, 1981; Miaou et al., 1991). 

In terms of the relationship between accidents and weather elements, a number of important 
studies have been conducted (Ivey et al., 1981; Jovanis and Delleur, 1981; Mori and Uematsu, 
1967; Snyder, 1974).  This past work studied the effect of rainfall and snowfall on accident 
occurrences and attempted to quantify the contribution of these environmental elements to 
increasing accident likelihoods.  Other types of methodologies have also been applied to the 
problem of accident analysis.  For example, risk-based approaches, applied to the prediction of 
wet-weather accidents, have also been documented (Brodsky and Hakkert, 1988) and, recently, 
the effect of winter pavement maintenance on accident rates has been investigated (Hanbali, 
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1992).  Finally, seasonal variations in weather elements coupled with corresponding variations in 
traffic volumes have been examined (Jones et al., 1991) in a multi-variate framework. 

Although past research work has provided insight into the effect of weather on accident rates 
and frequencies, efforts to investigate the interaction of weather and geometric elements, and 
their consequent impact on accident likelihoods, have been minimal.  The study of such 
interactions is important because it could shed light on the impact of weather on critical 
geometric design elements and serve as a guide in the design of roadway geometrics so as to 
minimize accident likelihoods in the presence of varying climatic conditions.  This concept 
contrasts with present roadway geometric design practice which applies a uniform nationwide 
standard in terms of assumed weather impacts on geometric design (Mannering and Kilareski, 
1990).  Presumably, much could be gained by adjusting this standard to account for weather 
conditions that deviate greatly from the norm. 

In addition to weather and geometrics, it may be argued that human factors contribute 
significantly to accident occurrences and hence warrant inclusion in the modeling effort.  
Previous research (Treat, 1980; Sabey and Taylor, 1980) indicates that human factors are 
involved in 95% of all traffic accidents, either alone or in combination with other factors.  
However, other research (Massie et al., 1993) tempers the criticism of research excluding human 
factors by pointing out that the human factors approach ignores the problem associated with 
classifying collisions and their related causes, be it human or otherwise.  The authors add that 
such an approach fails to address the issue of helping drivers avoid collisions.  Identification of 
geometric and weather-related factors and their interrelationship can be used to assist the driver 
in reducing the chances of a collision by offsetting the ignorance factor caused by unanticipated 
changes in roadway geometrics and their interrelation with adverse weather conditions.  

From a methodological perspective, attempts to model accident frequencies have varied from 
the use of least squares regression techniques to methods involving exponential distribution 
families including the Poisson and negative binomial models.  Previous research on Poisson and 
least squares (Jovanis and Chang, 1986; Joshua and Garber, 1990; Miaou and Lum, 1993) 
indicates the inappropriateness of least squares techniques to modeling of accident frequencies, 
and recommends the employment of the Poisson distribution.  The Poisson distribution, 
however, suffers from an important limitation, namely that the mean and variance are 
constrained to be equal.  Over-dispersion (variance greater than the mean) or under-dispersion 
(variance less than the mean) of data violates this constraint and leads to biased coefficient 
estimates.  A more general distribution, such as the negative binomial, has been employed in 
such situations (Engel, 1984; Lawless, 1987; Manton, Woodbury and Stallard, 1981) to relax this 
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constraint.  Negative binomial distributions have been employed frequently in physics, medical 
sciences and marketing.  Documented use of the negative binomial distribution in the field of 
traffic engineering includes applications in trip generation (Frisbie, 1980) and transportation 
economics (Hellerstein, 1991).  In terms of applying the negative binomial distribution to model 
accident occurrences, research has been conducted on accident proneness (Bates and Neyman, 
1952), accident migration (Maher, 1987; 1990), accident "blackspots" identification (Senn and 
Collie, 1988) and accident frequencies (Miaou, 1994; Maher, 1991; Poch and Mannering, 1994).  

The body of extant literature provides important methodological direction for our study of 
the interrelationship between roadway geometrics and weather and accident frequencies.  Details 
of this methodological direction are discussed in the following section. 

2.3 Methodology 

Count data are often modeled by assuming Poisson distributions (Cameron and Trivedi, 
1986).  The Poisson distribution is a useful starting point because; (1) it lends itself well to the 
modeling of count data by virtue of its discrete, non-negative, integer-distribution characteristics, 
and (2) can be generalized to more flexible distributional forms.  In terms of accident 
frequencies, in this study we will focus on modeling the number of accidents occurring on a 
specified section of roadway in a one month time period.  In such a case, the Poisson distribution 
gives  

P(nij ) = e−λ ij λij
nij / nij !, (2.1) 

where P(nij) is the probability of n accidents occurring on roadway section i in month j and λij is 

the expected number of accidents on roadway section i in month j.  Given a vector of geometric, 
traffic and weather data, λij can be estimated by the equation 

ln λij =Xijβ , (2.2) 

where X is a vector of geometric, traffic and weather data for roadway section i in month j and β 
is a vector of estimable coefficients.  As mentioned in our review of previous research, the 
Poisson distribution constrains the mean and variance to be equal, (i.e. E[nij] = Var[nij]).  As 

previously mentioned, estimation using a Poisson distribution violating this assumption (i.e. 
when data are overdispersed or underdispersed) results in biased estimates of β.  It is well 
known, based on the findings of many previous research efforts, that accident frequency data 
tend to be over-dispersed, with the variance being significantly greater than the mean.  
Consequently, the Poisson distribution can lead to erroneous coefficient estimates and erroneous 
inferences can be drawn.  To overcome this, the negative binomial distribution, which includes a 
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gamma-distributed error term, is appropriate because it relaxes the Poisson's mean-variance 
equality constraint.  The negative binomial model is derived by re-writing equation (2.2) as, 

ln λij = Xijβ + εij, (2.3) 

where εij is a gamma-distributed error term.  This results in the mean-variance relationship, 

Var[nij] = E[nij][1 + αE[nij]]. (2.4) 

If α is significantly different from zero, the data are over-dispersed or underdispersed.  If α is 
equal to zero the negative binomial reduces to the Poisson distribution. 

The resulting probability distribution under the negative binomial assumption is, 

P(nij ) =
Γ(θ + nij)
Γ(θ)nij!

uij
θ (1− uij)

nij , (2.5) 

where uij = θ/(θ+λij), θ = 1/α, and Γ(.) is a value of the gamma function.  Estimation of  λij can 

be conducted through standard maximum likelihood (ML) procedures (see Greene, 1993).  Using 
equation (2.5), the likelihood function (the product of probabilities) for the negative binomial is, 

L λij( ) =  
Γ θ + nij( )
Γ θ( )nij!

θ
θ + λij

 

  
 

  

θ
λij

θ + λij

 

  
 

  

nij

j =1

T

∏
i=1

N

∏ , (2.6) 

where T is the last month of accident data and N is the total number of roadway sections.  This 
function is maximized to obtain coefficient estimates for β and α. 

Careful attention must be paid to the appropriateness of the negative binomial distribution in 
the case of overdispersed data.  For example, equation (2.3) may hold while the distribution of 
nij conditioned on Xij may not be negative-binomial distributed.  In such a case, the coefficient 

estimates will be consistent though less efficient than those for the correct distribution.  
Importantly, the asymptotic variance-covariance matrix will be incorrect and likely 
underestimated.  However, in practice, this underestimation is not likely to affect substantive 
conclusions drawn from model estimation (see Lawless, 1987).  

In addition to maximum likelihood estimation procedures, other methods such as 
quasilikelihood, weighted least squares (McCullagh and Nelder, 1983), moment estimation 
techniques (Breslow, 1984) and regression-based estimation (Cameron and Trivedi, 1986; 1990) 
are available.  Examples of the application of the moment method and regression-based 
estimation in accident modeling indicates that these methods  should be used with caution 
(Miaou, 1994).  Indications from statistical research on the estimation of α, the dispersion 
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coefficient, suggest that for large samples (N > 20) the quasilikelihood and maximum likelihood 
methods perform best (Piegorsch, 1990). 

2.4 Empirical setting 

The study area consists of the 61 kilometer portion of I-90 described in the introduction to 
this report (see Figure 1.1).  This portion of Interstate 90 generally consists of a three-lane (3.66 
meter lanes) cross-section, in each direction, with 3.05 meter shoulders and a 104.6 km/h speed 
limit.  Virtually no variation in travel lane and shoulder widths exists in the study area. 

Data from a number of sources were gathered over the period from January 1988 to May 
1993.  Precipitation data were assembled from the Desert Research Institute and Western 
Regional Climate Center and the geometric attributes of the roadway and accident data were 
obtained from the Washington State Department of Transportation.  The available precipitation 
data consisted of information relating to monthly rainfall and snowfall including average 
monthly snowfall and rainfall, maximum daily snowfall and rainfall and number of snowy and 
rainy days per month.  Three weather stations located at Snoqualmie Falls, Stevens Pass and Cle 
Elum (all in Washington State near the study area) were used as the sources of climatic data.  
Weather data were assigned to sections based on their geographic proximity and elevation 
levels1. 

Geometric characteristics included: number of horizontal curves, number of horizontal 
curves underdesigned (those curves with design speeds less than 112.6 km/h, less than 96.5 
km/h, and less than 80.45 km/h), maximum and minimum horizontal radii, number of vertical 
curves and maximum and minimum grades. 

With this data in hand, the issue of dividing the study area into manageable sections of 
roadway must be addressed.  The existing literature addresses several important issues relating to 
roadway section length determination in a linear regression context (Okamoto and Koshi, 1989).  
The findings of these studies show that great care must be taken in determining roadway section 
lengths because of two model estimation concerns; (1) the possibility of heteroskedasticity (i.e. 

                                                 

1 As a result, several contiguous sections shared the same weather information (this can be seen in Table 2.1).  
Shared weather data raises the issue of serial correlation of model error terms.  Weather information shared by 
contiguous sections causes any shocks in data to propagate through sections common to that data, thereby 
causing spatial correlation.  To date, the effect of such spatial correlation has not been specifically investigated 
in a count data model context.  However, based on experiences in linear regression contexts, it can be 
reasonably assumed that spatial correlation could cause some loss of efficiency of parameter estimates.  Studies 
have shown that, in most practical contexts, this is not a major concern (Mannering 1995). 
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error terms are not identically distributed), and (2) the possibility of biased model coefficients.  
Heteroskedasticity, especially in the context of a negative binomial specification (as opposed to a 
Poisson specification), is an important issue due to the incorporation of the gamma-distributed 
error term. 

The most popular alternatives for determining roadway section lengths are the use of fixed-
length sections or homogeneous sections (i.e. sections with homogeneous geometric 
characteristics, see Miaou et al., 1991).  With regard to homogeneous sections (both in terms of 
geometrics and weather), several important problems arise.  One of these problems is that 
roadways with numerous horizontal curves and grades tend to produce sections that are less than 
1 kilometer in length (i.e. to ensure homogeneity in geometrics).  This can result in locational 
error problems because accidents, in most states, are locationally reported to the nearest milepost 
(1.609 kilometers).  Potential bias resulting from such accident-reporting locational error is 
clearly undesirable. 

Homogeneity of weather data presents a different problem.  Weather data, by virtue of their 
geographic characteristics, usually encompass much larger areas and, if allowed to govern 
section lengths, are likely to result in long geometrically diverse sections, thus violating 
geometric homogeneity. 

Finally, the unequal length of sections that will result from the homogeneity requirement 
may exacerbate potential heteroskedasticity problems (i.e. unequal sample sizes, see Mannering, 
1995) and lead to a loss in estimation efficiency.  The resulting increase in the standard errors of 
model coefficients could lead the analyst to draw erroneous inferences with regard to the effects 
of model covariates. 

The disadvantages of using fixed-length sections, relative to homogeneous sections, are far 
less severe.  In fact, most potential disadvantages can be overcome by accounting for the non-
homogeneity of geometric and weather-related variables by including detailed measures of the 
variability across sections in the model specification (e.g., number of curves, maximum grade 
and number of underdesigned curves, and so on).  If such data are available, there is little need to 
constrain the analysis to homogeneous sections.  Moreover, fixed-length sections may offer other 
advantages such as being able to mitigate the effects of the accident migration which is a 
phenomenon involving the migration of accidents to a different portion of a hazardous roadway 
section after corrective measures have been taken on some other portion of the roadway (see 
Boyle and Wright, 1984; McGuigan, 1985; Maher, 1987).  If one were to use geometrically 
homogeneous sections, it would be exceedingly difficult to account for the effect that changes in 
accident likelihoods on one section would have on others (due to accident migration).  However, 
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the use of fixed-length, non-homogeneous sections accounts for the possibility of accident 
migration, to some extent, because the migration across the homogeneous "sub-sections" that 
comprise the fixed length section is internalized. 

As a result of the above discussion, the sections considered in this study were determined to 
be fixed, equal-length sections.  Thus, accident frequencies and associated geometric and 
weather data were compiled along ten sections, of equal length, over the 61 kilometer study area 
(i.e. each section is 6.1 kilometers in length).  Accident frequencies and roadway geometrics for 
both roadway directions (eastbound and westbound) were used1.  A total of 2,225 reported 
accidents occurred in the study area between January 1988 and May 19932.  Accidents were 
sorted by year and month and integrated with geometric and monthly weather data into one 
database.  The consolidated database, after accounting for some missing weather data (which 
resulted when weather stations were not functioning due to mechanical failures) consisted of 464 
observations with some sections experiencing zero accidents in some months3.  The implicit 
specification of accident frequency per month as the dependent variable allows the modeling of 
seasonal variations in traffic volumes, ambient temperature and other environmental data such as 
daylight duration. 

Table 2.1 summarizes the averages of the variables measured in this study.  Mean section 
accident frequency per month was 3.26 (Figure 2.1 shows average per-month accident 
frequencies by section) with an observed monthly minimum of zero and maximum of 28 (the 
observed monthly variance was 16.32).  Other values worthy of note include the high number of 
horizontal curves on the ten sections.  The twelve horizontal curves in section 6 (sections 6 and 7 
are near the summit) suggests complex geometrics in the area (i.e. about two horizontal curves 
per kilometer).  Also the average monthly snowfall, observed to be 145.78 centimeters in 

                                                 

1  Interstate 90 has divided cross-sections with different grades and horizontal curve attributes in three of the ten 
study sections.  By combining both east and west directions, we constrain the β's to be the same.  An empirical 
test of this assumption revealed that this constraint is statistically valid. 

2  In this analysis we include only those accidents reported to the Washington State Highway Patrol (WSP).  
Although this section of highway is heavily patrolled by WSP, it is likely that some minor accidents are never 
reported. 

3 Note that our data has repeated observations from the same section of roadway.  That is, each section produces 
as many as 12 observations (corresponding to 12 months) per year.  Such data raises the possibility of error 
term correlation among observations produced by the same section, with observations from the same section 
sharing unobserved factors that may impact accident likelihoods (e.g., a scenic distraction).  A likely 
consequence of such correlation is some loss in efficiency of coefficient estimates.  However, research by 
Mannering and Winston (1991) indicates that the efficiency loss from this source is small, particularly if 
section-specific constants are included in the model specification (as will be the case in this study). 
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sections 5-8, is quite high and reflects the severe climate resulting from the relatively high 
elevation. 

Table 2.1:  Sample summary statistics (section averages). 

 Section number 

Variable 1 2 3 4 5 6 7 8 9 10 

Accident frequency (per 
month) 

1.80 2.25 1.66 2.49 7.81 8.35 5.92 4.15 2.81 2.86 

Number of curves with a 
design speed less than 128.7 
km/h 

1 3 1 3 1 5 9 2 8 2 

Number of curves with a 
design speed less than 96.5 
km/h 

0 1 1 0 1 4 6 2 7 1 

Number of curves with a 
design speed less than 80.5 
km/h 

0 0 0 0 1 1 1 0 0 0 

Number of horizontal curves 
in section 

8 8 10 9 10 12 10 9 10 4 

Maximum horizontal curve 
radius in section (m) 

3030 3636 909 3030 1515 3030 695 1736 1736 1818 

Minimum horizontal curve 
radius in section (m) 

636 595 595 606 333 333 347 347 347 788 

Number of vertical curves in 
section 

7 8 9 10 8 5 16 7 15 5 

Maximum grade in section 5.00 3.00 1.76 3.63 5.29 4.22 2.00 2.60 3.83 5.00 

Minimum grade in section 0.03 0.27 0.14 0.46 3.29 0.67 0.43 0.08 0.20 0.74 

Average monthly rainfall 
(cm) 

5.01 5.01 5.01 5.01 8.70 8.70 8.70 8.70 1.93 1.93 

Maximum daily rainfall in 
the month (cm) 

2.73 2.73 2.73 2.73 5.28 5.28 5.28 5.28 1.40 1.40 

Number of rainy days in the 
month 

1.09 1.09 1.09 1.09 2.11 2.11 2.11 2.11 0.56 0.56 

Average monthly snowfall 
(cm) 

1.70 1.70 1.70 1.70 145.78 145.78 145.78 145.78 8.5 8.5 

Maximum daily snowfall in 
the month (cm) 

1.28 1.28 1.28 1.28 27.65 27.65 27.65 27.65 3.30 3.30 

Number of snowy days in 
the month 

0.20 0.20 0.20 0.20 10.31 10.31 10.31 10.31 1.24 1.24 
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Figure 2.1:  Average monthly accident frequencies on the 10, 6.1 kilometer sections. (Sections 
numbered sequentially from West to East in the study area). 

2.5 Model estimation 

The negative binomial estimation of section-accident frequencies is presented in Table 2.2.  
This table shows that all variables are of plausible sign with reasonably high statistical 
significance.  Table 2.2 shows that the majority of independent variables specified in this model 
positively affect accident frequency indicating a likelihood in increase in frequency with 
increasing variable values.  The number of curves variable provides some insight into potential 
geometric hazards.  The number of curves with design speeds between 96.5 km/h and 128.7 
km/h appears to have a greater effect (0.117) than those designed under 96.5 km/h (0.046).  The 
higher coefficient value for higher design-speed curves is likely capturing the tendency of 
drivers to slow down for curves with low design speeds due to a combination of the visual effect 
of the curve and speed reduction signs usually found in those locations.   

Grade appears to have a strong positive effect on accident frequency, although in a stepwise, 
as opposed to a continuous, manner.  In comparison to those sections with grades less than 2 
percent, those with maximum grades exceeding 2 percent will experience a significant increase 
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in accident frequency.  Intuitively, this captures the effect of speed differentials that play a 
significant role in accident occurrences, although, to some extent, the presence of climbing lanes 
offsets the detrimental impact of grades especially those impacts caused by slow-moving heavy 
vehicles.  In the present context, however, a geometric variable accounting for climbing lane 
effects was not found to be significant because there is little variation in this variable across 
sections.  A review of the data showed that any vertical grade reasonably long (longer than 2 
kilometers) and exceeding 2 percent had a climbing lane. 

Maximum rainfall played a significant, positive role in accident occurrences.  Employed as 
an indicator variable, it captures not only the effect of intensity of rainfall and potential 
hydroplaning of vehicles but also may be capturing the effects of exposure and pavement 
condition.  For example, the pavement surface is likely to remain wet or icy during the night or 
early morning when daily rainfall exceeds 2.54 centimeters. 

The number of rainy days played a significant, positive role in accident occurrences.  This 
variable appears to capture exposure effects such as exposure to wet pavements and lower 
visibility effects.  More interestingly, given the fact that the Seattle area generally experiences 
intermittent rainfall throughout the year, drivers may be inclined to pay less attention to the risk 
of an accident during rainy weather.  The number of rainy days variable could possibly be 
playing a surrogate role for increased accident risk arising from driver complacency. 

Maximum daily snowfall intuitively captures the positive effect that snow plays in accident 
occurrences.  Maximum snowfall exceeding 5.08 centimeters, employed as an indicator variable, 
appears to account for traction and lane-marking-related problems caused by increasing snow 
depth on the pavement.  In combination with grades, as evidenced by the interaction term, it 
positively impacts accident frequency.  This illustrates the dangerous combination of traction, 
lane-markings and speed differentials.  In addition, it also suggests that the effect of climbing 
lanes could likely be annulled by the obliteration of lane markings on snow-covered pavements.  
In the presence of under designed horizontal curves, the snowfall variable portrays a stronger 
effect than the grade interaction by virtue of its higher coefficient. 

The section location indicator variable shows that the middle portion of the study corridor 
(sections 5, 6, 7, and 8, which include the summit and the immediate area surrounding it) is 
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associated with lower accident rates with all other factors held constant1.  This is likely the result 
of changes in driver behavior, with drivers becoming more cautious as they gain elevation and 
approach/depart from the Snoqualmie Pass Summit. 

                                                 

1 Note that this does not imply that these sections of the study area have lower overall accident rates (see Figure 
2.1).  It only indicates that these sections have lower than expected accident rates when the accumulated effects 
of geometrics and weather have been taken into account. 
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Table 2.2:  Negative binomial estimation results (total section accident frequency). 

Variable Estimated 
coefficient 

t-statistic p-value 

Number of horizontal curves designed between 96.5 km/h 
and 128.7 km/h 

0.117 2.437 0.015 

Number of horizontal curves designed below 96.5 km/h 0.046 2.205 0.027 

Maximum grade in section indicator (1 if greater than 2%, 
0 otherwise) 

0.133 2.748 0.006 

Maximum rainfall indicator (1 if greater than 2.54 
centimeters on any given day in the month, 0 otherwise) 

0.209 1.401 0.161 

Number of rainy days in the month 0.018 1.975 0.048 

Rainfall-Curve interaction indicator (1 if maximum 
rainfall greater than 2.54 centimeters on any given day in 
the month and at least one horizontal curve has a design 
speed less than 96.5 km/h, 0 otherwise) 

0.184 1.239 0.215 

Maximum daily snowfall in the month 0.033 2.231 0.026 

Snowfall-Grade interaction indicator (1 if maximum 
snowfall greater than 5.1 centimeters on any given day in 
the month and grade greater than 2%, 0 otherwise) 

0.291 1.930 0.053 

Snowfall-Curve interaction indicator (1 if maximum 
snowfall greater than 5.1 centimeters on any given day in 
the month and at least one horizontal curve has a design 
speed less than 96.5 km/h, 0 otherwise) 

0.387 2.137 0.032 

Section location indicator (1 if  section number is 5, 6, 7 
or 8, 0 otherwise) 

-0.466 -1.812 0.070 

Year of occurrence indicator (1 if 1988, 0 otherwise) 0.273 2.330 0.020 

Year of occurrence indicator (1 if 1990, 0 otherwise) -0.167 -1.410 0.159 

α (dispersion coefficient) 0.418 8.463 0.000 

Number of observations 464   

Log-likelihood at zero 

Log-likelihood at convergence 

-2193.39 

-970.93 

  

ρ2 0.56   

 

The year 1988 was found to positively affect accident frequencies.  Although normal 
precipitation levels were observed during this year, the positive coefficient value captures 
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unobserved effects such as unusually cold ambient temperatures resulting in ice-covered 
pavements and construction-related effects such as lane closures1. 

The year 1990, in a similar manner, was specified as an indicator variable.  The negative 
effect of this variable seems to account for some decrease in traffic volumes as well as extra 
caution used by drivers in the presence of adverse driving conditions created by abnormally high 
levels of precipitation that occurred during the year. 

Finally an examination of ρ2 (0.52) for the model indicates a good statistical fit, while the 
dispersion coefficient, α, was estimated to be significantly different from zero (t = 8.463) 
indicating over dispersion of data, a phenomenon that can not be handled by a Poisson 
distribution2.  

Other issues worthy of note in the estimation context pertain to the impact of weather-related 
variables on pertinent variables such as traffic volume, temperature and daylight time.  The high 
level of significance of the weather-related variables coupled with their interaction with 
geometric variables suggests that they capture seasonal trends in traffic volume, temperature and 
daylight time as well3.  The significance of weather-related variables and their use as surrogates 
for traffic volumes is corroborated in previous research (Jones et al., 1991). 

It should also be noted that we tried to include a variety of other interactions between two 
variables and among three or more variables in our model (e.g., rainfall exceeding 2.54 
centimeters on any given day in the month, at least one horizontal curve with less than 96.5 km/h 
design speed, and a grade greater than 2 percent).  However, all such variables produced 
statistically insignificant coefficients and were thus excluded from our final specification. 

                                                 

1 It should be noted that since I-90 is a captive corridor with few alternate routes to/from Eastern Washington, 
construction activities did not cause significant decreases in traffic volumes in the study corridor . 

2 It is interesting to note that several variables that were found to be significant in a Poisson specification of our 
model turned out to be insignificant under the negative binomial assumption.  This occurred because the 
Poisson specification underestimated coefficient variances due to the inherent overdispersion of data.  Variables 
found significant in the Poisson but insignificant in the negative binomial included average daily rainfall for the 
month, number of snowy days in the month, average snowfall in the month and curve radii. 

3 The absence of traffic volume, temperature, and other variables in the model raises the possibility of a model 
specification error (i.e., an omitted variables bias).  To test for this we used a series of month indicator variables 
(e.g., January, February, etc.) and time of year variables (e.g., winter, summer, spring, and autumn).  These 
variables are highly correlated with traffic volumes (and their seasonal variation), temperature variations, and 
other possible omitted variables.  These indicator variables were all statistically insignificant, suggesting the 
possible omitted variables bias is not playing a significant role in our model. 
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Elasticities of independent variables were estimated to determine the impact of those 
variables on accident frequency.  Elasticities can be roughly interpreted as the percentage change 
in the average frequency of accidents λij due to a one percent change in the independent 
variable.  Elasticity of accident frequency λij, with respect to xijk (the kth independent variable 

for section i in month j) is defined as,  

Ex ijk

λij  =  
∂λij

λij

⋅
xijk

∂xijk

. (2.7) 

Using equations (2.3), and (2.7) gives, 

Ex ijk

λij  =  βxijk  , (2.8) 

where β is the coefficient corresponding to covariate xijk. 

With equation (2.8), elasticities of λij for each section observation were computed and 

sample averages were then estimated.  Note that the elasticities of indicator variables are not 
meaningful, so only the elasticities of continuous variables are presented in Table 2.3. 

Table 2.3 provides some interesting insights.  For example, a 1 percent increase in the 
number of rainy days in a month causes a 0.26 percent increase in accident frequencies.  
Similarly, a 1 percent increase in the maximum daily snowfall in a month results in a 0.10 
percent increase in accident frequencies.  This suggests that, at least for these two variables, 
accident likelihoods may be more sensitive to rain than snow.  However, these are not the only 
snow/rain variables in the model (i.e. indicator variables are not included in Table 2.3) and, as 
will be shown, indicator variables that show an interaction between climatic conditions and 
roadway geometrics have a large impact on accident frequencies. 

Table 2.3:  Accident frequency elasticity estimates. 

Elasticity with respect to: Value 

Number of rainy days in the month 0.2624 

Maximum daily snowfall in the month 0.1012 

Number of horizontal curves designed between 96.5 km/h and 128.7 km/h 0.1346 

Number of horizontal curves designed below 96.5 km/h 0.0968 
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Finally, it is also important to point out that all variables shown in Table 2.3 are inelastic 
(elasticity less than unity).  This suggests that, while the effect of these variables on accident 
frequencies is statistically significant, they may be nearing thresholds where accident frequencies 
have relatively low sensitivity to any changes in the explanatory variables. 

To gather some understanding of the relative importance of the indicator variables included 
in the model, a numerical computation can be performed to provide an idea of the relative effect 
of indicator variables on average accident frequency.  This is accomplished by using a ratio of 
coefficients.  For example, the average accident frequency λij for section i in month j can be said 

to increase 14.0% (e0.133/e0), if the maximum grade on the section is raised to exceed 2%, 
assuming the error terms are independent of xij and remain unchanged.  Table 2.4 presents the 

change in the average accident frequency caused by threshold changes in the indicator variables. 

Table 2.4 shows that snowfall-horizontal curve and snowfall-grade indicators have a large 
effect on accident frequencies (47.3% and 33.8% respectively).  Rainfall indicators also strongly 
impact accident frequencies.  These findings underscore the importance of accounting for 
weather/geometric interactions when assessing accident likelihoods. 

2.6 Implications of findings 

The proposed model accounts for plausible and intuitive geometric and weather-related 
factors that influence accident frequencies.  Specifically, the model offers insight into the 
combined effect of weather and geometric elements through interaction variables.  The 
employment of indicator-type interaction variables allows designers to determine thresholds of 
geometric variables, such as maximum grade, beyond which their interaction begins to 
significantly affect accident frequencies. 

The findings of this research have significant implications for highway design standards.  
Current standards establish geometric design criteria on the basis of pavement-tire interactions 
on wet pavements.  Our findings show that, in order to reduce accident likelihoods in areas that 
frequently experience adverse weather, the basis of establishing design criteria should be 
expanded beyond wet-pavements.  Specifically, great effort should be expended to avoid steep 
grades and horizontal curves with low design speeds in areas with adverse weather.  Intuitively, 
this seems obvious, but our model provides a method of quantifying the impacts of these 
geometric characteristics.  For example, for our study area, eliminating all horizontal curves with 
a design speed less than 96.5 km/h on a roadway section that experiences at least 5.1 cm of 
snowfall, one or more days in a month, can reduce the monthly accident frequency by 47.3% 
(see Table 2.4).  Although our model results are site-specific, a more global application of our 
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approach could serve as a basis for a cost-benefit analysis that could guide geometric design 
policy more effectively than the current wet-pavement approach1. 

Table 2.4:  Percentage change in accident frequencies due to indicator variables. 

 
Variable 

Percentage Change in 
mean accident 
frequency, λij 

Maximum grade in section indicator (1 if greater than 2%, 0 otherwise) 14.2 

Maximum rainfall indicator (1 if greater than 2.54 centimeters on any given 
day in the month, 0 otherwise) 

23.2 to 48.1a 

Rainfall-Curve interaction indicator (1 if maximum rainfall greater than 2.54 
centimeters on any given day in the month and at least one horizontal curve 
has a design speed less than 96.5 km/h, 0 otherwise) 

20.2 

Snowfall-Grade interaction indicator (1 if maximum snowfall greater than 5.1 
centimeters on any given day in the month and grade greater than 2%, 0 
otherwise) 

33.8 

Snowfall-Curve interaction indicator (1 if maximum snowfall greater than 5.1 
centimeters on any given day in the month and at least one horizontal curve 
has a design speed less than 96.5 km/h, 0 otherwise) 

47.3 

Section location indicator (1 if  section number is 5, 6, 7 or 8, 0 otherwise) -32.3 

Year of occurrence indicator (1 if 1988, 0 otherwise) 31.4 

Year of occurrence indicator (1 if 1990, 0 otherwise) -15.4 
a It is assumed that the change in one indicator variable will not be accompanied by a simultaneous change in 

any other variable with the exception of the interaction variables.  For example, a change in the maximum 
monthly rainfall variable (to greater than 2.54 cm) does not affect the location dummy.  However, by virtue 
of the monthly rainfall's interaction with horizontal curves, maximum rainfall could have an additive effect 
because it could influence two variables.  This explains the percentage range shown for maximum rainfall. 

In terms of using our model results to evaluate the proposed use of variable message signs, 
variable speed-limit signs and in-vehicle signing to warn drivers of weather and traffic-related 
dangers in the study corridor, a comparison of our "before" estimation results (as shown in Table 
2.2) can be made with similar estimations conducted using data collected after the signing 
system has been implemented. A series of likelihood ratio tests can be conducted to test for 

                                                 

1 A more global application would be a negative binomial accident frequency model estimated with roadway 
sections that had widely varying geometric, traffic flow, and access control characteristics (as opposed to the 
comparatively homogeneous sections used in this study).  Such an application would likely find that variables 
such as lane widths, shoulder widths, peak hour traffic volumes, daily traffic volumes, percentage of trucks, 
type of road indicators (i.e., urban freeway, rural arterial, etc.), and type of interchange/intersection indicators, 
play a role in the frequency of accident occurrence. 
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overall coefficient stability (between before and after data) and individual coefficient stability 
can be evaluated on estimated coefficients such as grade, snowfall, snow-grade interactions, 
snow-horizontal curve interactions, and the various rainfall variables (see Mannering et al., 1994 
for an application of such coefficient stability tests). The finding of statistically significant 
instability in coefficients could then be attributed to the variable message/speed-limit signing 
and the in-vehicle signing systems.  Such an analysis is important because we are not simply 
testing for differences in before and after accident frequencies, but isolating the true causality of 
these differences by controlling for the complex interaction between geometrics and weather 
conditions.  A more simplistic comparison of before and after data could easily lead to erroneous 
conclusions.  For example, one could conclude that the signing system was ineffective in 
reducing accidents but slight variations in weather between before and after data could be 
masking the system's effectiveness. 

Finally, in addition to being able to determine whether or not the proposed signing system 
was effective in reducing accident frequencies, an analysis of changes in coefficient elasticities 
and the magnitudes of indicator variables will allow us to more precisely isolate the effectiveness 
of the signing system.  For example, we may be able to specifically state that the signing system 
mitigated the adverse effects high snowfall on grades greater than 2 percent.  Such specificity is 
needed to make definitive statements regarding ITS technologies. 

2.7 Accident frequency models 

In addition to modeling overall accident frequency on highway sections  (i.e. as 
demonstrated above) separate regressions of specific accident types will also provide valuable 
information.  Separate regression models have the potential for providing greater explanatory 
power relative to a single, overall frequency model because separate models allow coefficient 
estimates to vary by the type of accident.  Intuitively, such variation is seems reasonable.  For 
example, we would expect a steep grade to have a different effect on the likelihood of an 
overturn accident than it would on a rear-end accident. 

To evaluate the impacts of geometrics and weather on specific accident types, models were 
estimated for accidents classified as, sideswipes, rear-end, parked vehicles, fixed object, 
overturns, and same direction (all others).  Estimation results for these models are presented in 
Tables 2.5-10.  All models were negative binomial regressions except the overturn accident 
frequency model which was a Poisson regression (i.e. statistically the overturn data were not 
over dispersed). Interpretations of the results shown in Tables 2.5 through 2.10 are then 
presented. 
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Table 2.5:  Negative binomial estimation results monthly section "sideswipe" accident 
frequency. 

Variable Estimated 
coefficient 

t-statistic p-value 

Constant -2.772 -4.011 0.000 

Number of horizontal curves designed below 96.5 km/h 0.102 1.977 0.048 

Lowest horizontal curve radius in section (meters) 0.01027 1.104 0.269 

Number of rainy days in the month -0.019 -1.132 0.258 

Maximum rainfall indicator (1 if greater than 2.54 
centimeters on any given day in the month, 0 otherwise) 

0.959 3.910 0.000 

Number of snowy days in the month 0.029 1.290 0.197 

Snowfall-Grade interaction indicator (1 if maximum 
snowfall greater than 5.1 centimeters on any given day in 
the month and grade greater than 2%, 0 otherwise) 

0.930 3.869 0.000 

Year of occurrence indicator (1 if 1988, 0 otherwise) 0.483 2.013 0.044 

α (dispersion coefficient) 0.396 1.420 0.155 

Number of observations 464   

Log-likelihood at zero 

Log-likelihood at convergence 

-498.78 

-298.14 

  

ρ2 0.40   

 

Variable: Number of horizontal curves designed between 96.5 km/h and 128.7 km/h 

Finding: Tendency to increase same direction (all others) and fixed object collisions 

This finding suggests that curves under designed between 96.5 km/h and 128.7 km/h do not 
create the visual impact on drivers to decrease speeds.  The result is an increase in both lane 
violations (resulting in vehicular collisions) and vehicles running off the roadway and colliding 
with fixed objects.  From a severity viewpoint, fixed object collisions are more likely to result in 
serious injuries than vehicular collisions in the same direction.  Consideration should then be 
given to upgrading marginally under designed curves (96.5 km/h to 128.7 km/h) if fixed object 
collisions show increasing trends at certain locations. 
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Table 2.6:  Negative binomial estimation results monthly section "rear-end" accident frequency. 

Variable Estimated 
coefficient 

t-statistic p-value 

Constant -4.368 -5.346 0.000 

Number of horizontal curves designed below 96.5 km/h 0.080 1.679 0.093 

Maximum grade in section 0.310 2.211 0.027 

Maximum grade in section indicator (1 if greater than 2%, 
0 otherwise) 

1.271 1.732 0.083 

Maximum rainfall on any given day in the month -0.381 -1.902 0.057 

Number of rainy days in the month -0.048 -1.741 0.082 

Average daily rainfall in any given month 0.149 2.324 0.020 

Rainfall-Curve interaction indicator (1 if maximum 
rainfall greater than 2.54 centimeters on any given day in 
the month and at least one horizontal curve has a design 
speed less than 96.5 km/h, 0 otherwise) 

0.983 3.309 0.001 

Maximum daily snowfall in the month (1 if maximum 
snowfall greater than on 5.1 centimeters on any given day 
in the month) 

3.468 3.215 0.001 

Snowfall-Grade interaction indicator (1 if maximum 
snowfall greater than 5.1 centimeters on any given day in 
the month and grade greater than 2%, 0 otherwise) 

-1.964 -2.382 0.017 

Snowfall-Curve interaction indicator (1 if maximum 
snowfall greater than 5.1 centimeters on any given day in 
the month and at least one horizontal curve has a design 
speed less than 96.5 km/h, 0 otherwise) 

-1.707 -2.262 0.023 

Section location indicator (1 if  section number is 5, 6, 7 
or 8, 0 otherwise) 

0.815 2.408 0.016 

Section location indicator (1 if  section number is 5, 6, 7 
or 8, 0 otherwise) 

0.815 2.408 0.016 

Section location indicator (1 if  section number is 5, 6, 7 
or 8, 0 otherwise) 

0.815 2.408 0.016 

Year of occurrence indicator (1 if 1988, 0 otherwise) 0.747 2.797 0.005 

Year of occurrence indicator (1 if 1989, 0 otherwise) 0.762 2.908 0.004 

α (dispersion coefficient) 0.910 3.023 0.002 
(Continued) 
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Table 2.6:  Negative binomial estimation results monthly section "rear-end" accident frequency. 
(Continued). 

Number of observations 464   

Log-likelihood at zero -544.59   

Log-likelihood at convergence -310.84   

ρ2 0.43   

 

Table 2.7:  Negative binomial estimation results monthly section "parked vehicle" accident 
frequency. 

Variable Estimated 
coefficient 

t-statistic p-value 

Constant -3.290 -5.523 0.000 

Number of horizontal curves designed below 96.5 km/h -0.167 -1.741 0.082 

Maximum rainfall indicator (1 if greater than 2.54 
centimeters on any given day in the month, 0 otherwise) 

0.906 2.274 0.023 

Maximum daily snowfall (1 if greater than 5.1 centimeters 
on any given day in the month, 0 otherwise) 

2.500 3.705 0.000 

Snowfall-Grade interaction indicator (1 if maximum 
snowfall greater than 5.1 centimeters on any given day in 
the month and grade greater than 2%, 0 otherwise) 

-1.381 -2.294 0.022 

Year of occurrence indicator (1 if 1988, 0 otherwise) 0.629 1.385 0.166 

Year of occurrence indicator (1 if 1989, 0 otherwise) 1.273 3.179 0.001 

Spring/Summer month indicator (1 if April, May, June, 
July or August, 0 otherwise) 

-0.819 -1.607 0.108 

α (dispersion coefficient) 1.505 2.375 0.018 

Number of observations 464   

Log-likelihood at zero -487.54   

Log-likelihood at convergence -177.51   

ρ2 0.64   
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Table 2.8:  Negative binomial estimation results monthly section "fixed object" accident 
frequency. 

Variable Estimated 
coefficient 

t-statistic p-value 

Constant -2.156 -5.515 0.000 

Number of horizontal curves designed between 96.5 km/h 
and 128.7 km/h 

0.154 1.957 0.050 

Number of horizontal curves designed below 96.5 km/h -0.130 -2.737 0.006 

Number of horizontal curves in section 0.285 5.032 0.000 

Maximum rainfall indicator (1 if greater than 2.54 
centimeters on any given day in the month, 0 otherwise) 

0.423 1.932 0.053 

Number of rainy days in the month 0.023 1.821 0.069 

Rainfall-Curve interaction indicator (1 if maximum 
rainfall greater than 2.54 centimeters on any given day in 
the month and at least one horizontal curve has a design 
speed less than 96.5 km/h, 0 otherwise) 

-0.507 -2.144 0.032 

Maximum snowfall indicator (1 if greater than 5.1 
centimeters on any given day in the month, 0 otherwise) 

0.654 3.198 0.001 

Number of snowy days in the month 0.050 2.604 0.009 

Section location indicator (1 if  section number is 1, 2, 3 
or 4, 0 otherwise) 

-1.431 -4.349 0.000 

Section location indicator (1 if  section number is 5, 6, 7 
or 8, 0 otherwise) 

-1.017 -3.257 0.001 

Year of occurrence indicator (1 if 1988, 0 otherwise) 0.283 2.206 0.027 

Spring/Summer month indicator (1 if April, May, June, 
July or August, 0 otherwise) 

-0.294 -2.081 0.037 

α (dispersion coefficient) 0.282 3.078 0.002 

Number of observations 464   

Log-likelihood at zero 

Log-likelihood at convergence 

-845.42 

-610.79 

  

ρ2 0.28   
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Table 2.9:  Poisson estimation results monthly section "overturn" accident frequency. 

Variable Estimated 
coefficient 

t-statistic p-value 

Constant -3.288 -7.961 0.000 

Average spacing of horizontal curves in section (meters) 0.00784 4.636 0.000 

Lowest horizontal curve radius in section (meters) -0.00461 -2.857 0.004 

Maximum rainfall indicator (1 if greater than 2.54 
centimeters on any given day in the month, 0 otherwise) 

0.692 3.030 0.002 

Rainfall-Curve interaction indicator (1 if maximum rainfall 
greater than 2.54 centimeters on any given day in the 
month and at least one horizontal curve has a design speed 
between 96.5 km/h and 128.7 kilometers per hour, 0 
otherwise) 

-0.727 -2.952 0.003 

Number of snowy days in the month 0.039 2.264 0.023 

Snowfall-Curve interaction indicator (1 if maximum 
snowfall greater than 5.1 centimeters on any given day in 
the month and at least one horizontal curve has a design 
speed between 96.5 km/h and 128.7 kilometers per hour, 0 
otherwise) 

0.970 4.771 0.000 

Section location indicator (1 if  section number is 1, 2, 3 or 
4, 0 otherwise) 

2.260 4.119 0.000 

Year of occurrence indicator (1 if 1988, 0 otherwise) 0.465 2.868 0.004 

Number of observations 464   

Log-likelihood at zero 

Log-likelihood at convergence 

-509.17 

-368.75 

  

ρ2 0.28   

 

Variable: Number of horizontal curves in section 

Finding: Tendency to increase same direction (all others) and fixed object collisions 

This finding suggests two separate phenomena.  Vehicular collisions in the same direction 
tend to increase on sections as the number of horizontal curves increase because speeds on 
curves do not decrease enough to avoid lane violations.  The fact that fixed object collisions tend 
to increase with the total number of curves in a section indicates the increased likelihood of fixed 
objects, such as guardrails, being present on sections with more curves.  The presence of such 
objects prevents a more severe type of accident, such as a vehicle overturn, from occurring.  The 
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caveat stemming from this finding is that it is preferable to design longer but fewer horizontal 
curves where the terrain makes construction of straight sections impossible. 

Table 2.10:  Negative binomial estimation results monthly section "same direction (all others)" 
accident frequency. 

Variable Estimated 
coefficient 

t-statistic p-value 

Constant -4.007 -7.819 0.000 

Number of horizontal curves designed between 96.5 km/h 
and 128.7 km/h 

0.471 3.381 0.001 

Maximum grade in section  0.344 2.939 0.003 

Rainfall-Curve interaction indicator (1 if maximum 
rainfall greater than 2.54 centimeters on any given day in 
the month and at least one horizontal curve has a design 
speed less than 96.5 km/h, 0 otherwise) 

0.787 3.857 0.000 

Maximum daily snowfall (1 if greater than 5.1 centimeters 
on any given day in the month) 

2.923 7.128 0.000 

Snowfall-Grade interaction indicator (1 if maximum 
snowfall greater than 5.1 centimeters on any given day in 
the month and grade greater than 2%, 0 otherwise) 

-0.901 -2.218 0.027 

Snowfall-Curve interaction indicator (1 if maximum 
snowfall greater than 5.1 centimeters on any given day in 
the month and at least one horizontal curve has a design 
speed between 96.5 km/h and 128.7 km/h, 0 otherwise) 

-1.232 -3.338 0.001 

Spring/Summer month indicator (1 if April, May, June, 
July or August, 0 otherwise) 

-0.805 -2.881 0.004 

Year of occurrence indicator (1 if 1988, 0 otherwise) 0.577 2.253 0.024 

Year of occurrence indicator (1 if 1989, 0 otherwise) 0.412 1.647 0.100 

α (dispersion coefficient) 0.562 2.524 0.011 

Number of observations 464   

Log-likelihood at zero 

Log-likelihood at convergence 

-540.84 

-307.04 

  

ρ2 0.43   

 

Variable: Average spacing of horizontal curves in section 
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Finding: Tendency to increase overturn collisions 

This finding uncovers an effect of roadway geometrics that was not distinguishable in the 
overall accident frequency model.  The very significant t-statistic (4.636) indicates the 
significant effect that spacing of horizontal curves in a section has on driver speeds.  Intuitively, 
if curves are spaced farther apart, vehicular speeds are likely to climb as a result of lower caution 
being exhibited by drivers.  Consequently, there is a greater risk of an overturn if curves are 
spaced farther apart in a section.  Careful attention should be paid to the application of corrective 
measures in this regard.  The obvious interpretation is to decrease the spacing of curves to 
decrease the frequency of overturn accidents; however, it would appear counterintuitive to 
physically locate curves nearer as a countermeasure.  The surrogate action is to place more 
advance warning signs in sections with longer curve spacing.  By placing more advance warning 
signs and strategically locating them, the spacing of curves in the driver's mind is subliminally 
altered. 

Variable: Lowest horizontal curve radius in section 

Finding: Tendency to increase sideswipe collisions and decrease overturn collisions 

The lowest horizontal radius suggests the type of terrain the section is located in.  Sections 
with higher minimum radii could lull the driver into lane violations that result in sideswipes.  
However, low radii curves are usually associated with winding sections of highway which 
decrease the likelihood of gathering sufficient speed for an overturn accident. 

Variable: Maximum grade in section 

Finding: Tendency to increase rear-end and same direction (all others) collisions  

This finding suggests several processes stemming from the presence of grades in a section.  
Between any two sections, the section with the steeper maximum upgrade will experience a 
greater number of rear-end and other same direction accidents.  In addition, rear-end accidents 
will increase substantially if the maximum grade exceeds 2% in that section.  Both effects are 
explained by speed differentials occurring due to the impact of grades.  The impact of grades is 
reversed in the presence of downgrades.  Between any two sections, the section with the steeper 
maximum downgrade will experience fewer rear-end and other same direction accidents, 
presumably from lower speed differentials.  Much of the effect of the higher braking distance on 
downgrades appears to be offset by the visual impact of brake lights warning drivers of the 
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potential slowing of vehicles ahead.  In contrast, drivers are unlikely to use brakes on an upgrade 
which eliminates a critical warning sign of speed reductions. 

Variable: Maximum rainfall on any given day in the month 

Finding: Tendency to increase sideswipe, parked vehicle, fixed object and overturn 
collisions and decrease rear-end collisions  

This result reflects some interesting phenomena affecting driver behavior and the driving 
task.  Accidents resulting from the loss of steering control, such as lane violations and running-
off-the-roadway, are expected to increase in occurrence with increases in maximum daily 
rainfall.  Maximum rainfall indicates the intensity of rainfall and how that results in water 
puddles forming in wheel ruts in the pavement.  The presence of such puddles contributes to 
vehicle hydroplaning and also excessive lateral drag resulting in lane violations and off-roadway 
accidents.  On the other hand, as intensity of rainfall increases visibility decreases and drivers 
maintain greater headways paying more attention to the driving task.  Much of this attention is 
focused on the vehicle ahead and quite likely much less is paid to the area of peripheral vision.  
This overcompensation on vehicle headways reduces rear-end accident risks but increases other 
accident types. 

Variable: Average daily rainfall in the month 

Finding: Tendency to increase rear-end collisions  

This likely is an outgrowth of a seasonal effect that is descriptive of pavement condition.  As 
opposed to maximum rainfall on any given day in the month, this variable captures the loss of 
traction due to wet pavements.  An increase in average daily rainfall is indicative of a more 
prolonged wet-month weather effect.  Drivers are less likely to pay attention to prolonged effects 
as opposed to short-term effects such as thunderstorms.  In addition, as mentioned in the 
discussion of the overall model, the Seattle area receives rainfall for a large portion of the year 
on an intermittent basis.  Drivers in the region may be less likely to acknowledge the hazards of 
wet pavements. 

Variable: Number of rainy days in the month 

Finding: Tendency to decrease sideswipe and rear-end collisions and increase fixed object 
collisions 
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It is speculated that the findings relating to this variable can be partially attributed to drivers 
reducing their speed in the presence of other vehicles during rainy periods (so much so that some 
types of vehicle collisions actually decrease).  The positive coefficient for fixed object collisions 
suggests that this possibility of cautious driving behavior during rainy conditions does not 
transfer to all driving situations 

Variable: Maximum snowfall on any given day in the month 

Finding: Tendency to increase rear-end, same direction (all others), parked vehicle, and 
fixed objects collisions 

This finding illustrates a number of consequences associated with intensity of snowfall.  Loss 
of traction, visibility, and obliteration of lane markings act individually or in combination to 
increase the likelihood of accident types such as rear-end and other collisions in the same 
direction as well as collisions with parked vehicles and fixed objects.   

Variable: Number of snowy days in the month 

Finding: Tendency to increase sideswipe, fixed object and overturn collisions 

This variable could be capturing a number of effects.  For example, the loss of traction, 
obliteration of lane markings, and seasonal trends in weather and temperature could all be 
reflected in the significance of this variable.   

Variable: Snowfall-Grade Interaction 

Finding: Tendency to decrease sideswipe, rear-end, other collisions in the same direction 
and parked vehicle collisions 

The coefficients of the interaction between snowfall and grade on rear-end accidents, other 
vehicular collisions in the same direction and parked vehicle accidents (as shown in tables 2.6-
2.8) appear counterintuitive.  However, a closer examination of the estimation results shown in 
tables 2.6-2.8 indicates that the net effect of snowfall and grade is to increase the frequency of 
these accident types, a conclusion also drawn from the positive coefficient of the snowfall-grade 
interaction variable for sideswipe collisions.  In order to illustrate the net positive effect of 
snowfall-grade interaction on rear-end collisions, it is observed in Table 2.6 that the coefficient 
of the maximum daily snowfall variable is 3.468 which implies that when the daily maximum in 
any given month exceeds 5.1 centimeters rear-end accident frequencies are expected to increase 
32-fold (e3.468 ).  In the presence of a significant interaction with grade on the section, (i.e. when 
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maximum grade in the section exceeds 2%) this 32-fold compounding effect is tempered to 4.5-
fold (e (3.468−1.964) ) by the negative coefficient (-1.964) of the interaction between snowfall and 
grade.  This is a very intuitive occurrence indicating that the compounding effect of snowfall is 
not as severe when grades exceed 2%, quite possibly due to the presence of climbing lanes on 
upgrades and driver caution on downgrades.  Examination of the snowfall-grade coefficient in 
other relevant accident types indicates a similar pattern.  Corrective action then appears to be the 
construction of climbing lanes in areas where snowfall intensity is severe (exceeding 5.1 
centimeters a day) and grades exceed 2%. 

Variable: Snowfall-curve interaction 

Finding: Tendency to increase rear-end, other collisions in the same direction and overturn 
collisions 

This finding is similar to those described previously for the interaction between snowfall and 
grade.  The net effect of snowfall on curves is tempered in the presence of under designed curves 
(< 128.7 km/h), presumably due to warning signs and driver caution.  Corrective action to 
mitigate the impact of snowfall appears to be the installation of warning signs in advance of 
under designed curves advising drivers of poor traction and slower speeds. 

Variable: Rainfall-curve interaction 

Finding: Tendency to increase rear-end and other collisions in the same direction, and 
decrease fixed object and overturn collisions 

It is likely that this variable is capturing complex interactions among roadway and geometric 
conditions and driver behavior.  To be able to speculate further on the nature of these findings, 
additional data on other roadway types (e.g., non-freeways) is necessary.  This would allow us to 
isolate the effect of rainfall-curve interactions by providing greater variance in the data. 

Variable: Spring/Summer month indicator 

Finding: Tendency to decrease same direction-all others, parked vehicle and fixed object 
collisions 

This indicates primarily the effects of seasonal trends such as daylight duration, ambient 
temperature.  These are important determinants of accidents such as vehicular collisions in the 
same direction and collisions with parked vehicles and fixed objects.  The finding illustrates the 
impact of pavement conditions, such as black ice, as well as visibility.  It should be noted that 
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the "Spring/Summer" indicator was found to significantly decrease accident frequencies in spite 
of increased exposure due to the higher traffic volumes typically observed during the spring and 
summer months.   

Variable: Year of occurrence indicator 

Finding: Tendency to increase all accident types 

This finding indicates that some unobserved effects (e.g., ice accumulation on the pavement, 
and within-day temperature variations) were more severe during the subject year than usual, thus 
tending to increase the likelihood of an accident. 

Variable: Section location indicator 

Finding: Tendency to increase rear-end and overturn collisions, but decrease fixed object 
collisions 

Section location indicators capture unobserved factors attributable to specific locations 
within the corridor.  Such unobserved factors could include visual distractions and other 
attributes of the highway section that are difficult to quantify. 

In summary, note that the coefficient estimates presented in these tables show that there are 
significant differences in the magnitudes of the coefficient estimates (and in some cases the signs 
of the coefficient estimates) among different accident types.  The results of these separate 
accident frequency models can be used in the same way as the overall accident frequency model.  
That is, to evaluate the effectiveness of highway design improvements and ITS systems in 
reducing specific types of accidents. 

2.8 Conclusions 

This research presents an appropriate model to explore the frequency of occurrence of 
accidents on the basis of a multi-variate analysis of geometrics and weather-related effects.  A 
negative binomial model of overall accident frequency is estimated along with models of the 
frequency of specific accident types.  Interactions between weather and geometric variables are 
proposed as part of the model specifications and the results of the analysis uncover important 
determinants of accident frequency.  By accounting for interactions between weather and 
geometric elements, this research offers insight into possible strategies that could be undertaken 
to counter the adverse effects of weather.  This research also presents an important basis for a 
comprehensive before and after analysis of the effectiveness of safety improvements (e.g., ITS).  
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In particular, the approach presented herein can be used to thoroughly evaluate the safety 
impacts of variable-message/speed-limit signs, in-vehicle units, and other ITS technologies.  
Such evaluations will serve as a cornerstone to justify future ITS expenditures. 
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Chapter 3 

Accident severities 

3.1 Introduction 

In measuring the impact of an ITS on overall vehicular safety, it is important to establish 
defensible safety-measurement criteria.  Past safety-related research has shown that the 
frequency and severity of accidents are two such measurement criteria.  In the previous Chapter 
we addressed accident frequencies as they relate to ITS.  This Chapter will deal exclusively with 
accident severities. 

The Chapter begins with a discussion of the proposed methodological approach.  This is 
followed by a description of the study area and the data used in model estimation.  We then 
present model estimation results and a detailed discussion of our findings and their implications 
for accident severity analysis.  The Chapter concludes with a summary and directions for future 
research. 

3.2 Previous research 

Previous research on accident severity has been diverse and provided important 
methodological and behavioral insights.  Several accident-severity studies conducted have 
examined particular severity types such as fatalities (Shibata and Fukuda, 1994) or concentrated 
on crashes involving certain vehicle types such as trucks (Golob et al., 1987; Alassar, 1988).  
Other studies have concentrated on enforcement issues and their impact on fatal vehicular 
crashes related to alcohol and seat belt use (see for example Evans, 1986b, 1990; Holubowycz et 
al., 1994).  Such studies have placed a heavy emphasis on the impact of human factors in 
determining accident severity.  However, other elements, such as highway design and 
environmental conditions, while not receiving the extensive attention given to human factors, 
have also been recognized as important determinants of accident severity (see Mercer, 1986; 
Massie et al., 1993).  Overall, past research has provided important insights into the range of 
factors that influence accident severity. 

From a methodological standpoint, a variety of approaches have been employed to study 
accident severity.  Using logistic regression techniques, Jones and Whitfield (1988) modeled 
severity risk as a function of anthropometric measures, car mass, age of driver and restraint 
system use.  Logistic regression was also employed in a study of driver fatalities to model the 
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probability of fatalities conditioned on the occurrence of an accident (Lui et al., 1988).  
However, the study used a limited number of variables such as driver age, gender, impact points, 
vehicle crash severity, restraint system use and car mass.  Other important aggravating factors 
such as inclement weather, location of accident (for example, whether the accident occurred on a 
curve, or off the road) were omitted.  Other studies have employed multivariate time-series 
approaches to successfully develop predictive models of accident severity (Lassarre, 1986).  
Evans (1986a) employed a double-pair comparison approach to examine how occupant 
characteristics affect fatality risk.  Still other methodologies such as headway-based severity 
analysis (Glimm and Fenton, 1980), bivariate probit analysis (Hutchinson, 1986) and 
discriminant analysis (Shao, 1987) have been used.  The latter methodologies, especially the 
probit and discriminant analyses, allow the researcher to model severity in terms of thresholds.  
These threshold approaches are consistent with the general categorization of accident severity as 
being either property damage only, possible injury, evident injury, or disabling injury/fatality. 

The present study attempts to extend the empirical and methodological contributions of 
previous work by developing a predictive model of accident severity that can be used to evaluate 
the safety-related impacts of ITS and other safety-related countermeasures.  In so doing, we will 
address highway design and environmental issues, along with human factors, in a multivariate 
context using a nested-multinomial logit approach.  The empirical focus of our work will be a 
rural section of interstate 90 in Washington State, which is scheduled to have a ITS operational 
in Autumn 1996.1  The section of highway selected is roughly 61 km in length and is located 50 
km east of Seattle.  The highway is a high-accident area due to its complex roadway geometrics 
and adverse climatic conditions (it crosses the Cascade mountain range).  This research proposes 
to study past accident severities on this highway in an effort to establish a basis from which the 
safety effectiveness of the forthcoming ITS can be evaluated.  This work follows our previous 
effort on accident frequencies (Shankar et al., 1995).  In combination with models of accident 
frequencies, the severity models presented in this Chapter will enable us to provide a complete 
assessment of the possible safety impacts of the forthcoming Interstate-90 ITS 

                                                 

1 This ITS will consist of a series of variable message signs (warning drivers of adverse weather and traffic 
conditions), variable speed limit signs (that will change the speed limits in response to climatic and traffic 
conditions), and equipping several hundred vehicles with in-vehicle climate and traffic condition warning 
devices. 
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3.3 Methodology 

We begin by developing a conditional model of accident severity (i.e. conditioned on the fact 
that an accident has occurred).1  Severity of an accident is specified to be one of four discrete 
categories: 1) property damage only, 2) possible injury, 3) evident injury, and 4) disabling injury 
or fatality.2  Given these four discrete categories, a statistical model that can be used to 
determine the probability of an accident having a specific severity level can be derived.  We start 
the derivation with the following probability statement, 

Pn(i) = P(Sin ≥ SIn)  ∀ I ≠ i, (3.1) 

where Pn(i) is the probability that accident n is severity i, P denotes probability and Sin is a 

function of covariates that determine the likelihood of accident n being severity i (I is the set of 
possible severities).  To estimate this probability, a function defining the severity likelihoods 
must be specified.  We use a linear form such that, 

Sin = βiXn + εin , (3.2) 

where Xn is a vector of measurable characteristics that determine the severity (e.g., driver age, 

driver gender, highway design attributes, prevailing weather conditions, vehicle type, use of seat 
belts, and so on), βi is a vector of estimable coefficients, and εin is an error term that accounts for 
unobserved factors influencing accident severity.  The term βiXn in this equation is the 
observable component of severity determination because the vector Xn contains measurable 
variables (e.g., highway design attributes at the location of accident n), and εin is the unobserved 

portion.Given equations (3.1) and (3.2), the following can be written, 

Pn(i) = P(βiXn + εin ≥ βIXn + εIn)  ∀ I ≠ i, (3.3) 

or, 

Pn(i) = P(βiXn - βIXn ≥ εIn - εin)  ∀ I ≠ i. (3.4) 

                                                 

1 For a statistical model of the likelihood of an accident occurring, the reader is referred to our earlier work on 
accident frequencies (Shankar, Mannering, and Barfield, 1995). 

2 The determination of this severity is made by the officer at the scene of the accident and reported on the 
Washington State accident report forms.  Also note that accidents are classified based on the most severe 
consequence of the accident.  For example, an accident resulting in both injury and death will be classified as a 
fatality accident.  In addition, it must be noted that total number of classified accidents reported is less than or 
equal to the number of individual severities since, for example, an injury accident may result in more than one 
person being injured. 
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With equation (3.4), an estimable severity model can be derived by assuming a distributional 
form for the error term.  A natural choice would be to assume that this error term is normally 
distributed.  Such an assumption results in a probit model.  However, probit models are 
computationally difficult to estimate (see Ben-Akiva and Lerman, 1985).  A more common 
approach for models of this type is to assume that εin's are generalized extreme value (GEV) 

distributed.1  The GEV assumption produces a closed form model that can be readily estimated 
using standard maximum likelihood methods.  It can be shown (McFadden, 1981) that the GEV 
assumption produces the simple multinomial logit model, 

Pn i( ) =  exp βiXn[ ] exp β IXn[ ]
I

∑
, (3.5) 

where all variables are as previously defined and the vector βi is estimable by standard maximum 

likelihood methods.Unfortunately, the simple multinomial logit model presented in equation 
(3.5) can lead to serious specification problems because this particular form requires us to 
assume that the unobserved terms (εin's) are independent from one severity type to another.  This 

is not likely to be the case because some of the severity types are likely to share unobserved 
terms and thus be correlated.  For example, property damage only and possible injury accidents 
may share unobservables such as internal injury or effects associated with lower-severity 
accidents.  In the presence of shared unobservables, the logit formulation will erroneously 
estimate the coefficient vector and severity probabilities.  To circumvent this problem, a more 
generalized form of the severity probabilities can be derived from the GEV distribution.  This is 
referred to as a nested logit model and has the following form (see McFadden, 1981), 

Pn i( ) =  exp βiXn +  ΘiLin[ ] exp βiXn +  Θi LIn[ ]
I

∑ , (3.6) 

Pn j | i( ) =  exp β j |iXn [ ] exp β J |iXn [ ]
J

∑ , (3.7) 

Lin =  ln exp βJ |iXn  ( )
J

∑ 
  

 
  , (3.8) 

                                                 

1 Discriminant analysis is another alternative to the approach that we have selected to model accident severity 
(Shao 1987).  However, several studies have shown (see for example Press and Wilson 1978), that logit-based 
modeling approaches (which include the GEV approach) are superior to discriminant analysis for classification 
primarily because of the violation of the assumption of normality of disturbances in discriminant analysis.  
Presence of non-normal variables such as qualitative variables (dummy variables) in classification studies 
causes such a violation.  In the present study, several qualitative variables, as will be shown, play significant 
roles in the determination of accident severity. 
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where Pn(i) is the unconditional probability of accident n having severity i (e.g., evident injury), 
Pn(j|i) is the probability of accident n having severity j conditioned on the severity being in 

severity category i (e.g., the probability of having property damage only or possible injury given 
that there was no evident injury), J is the conditional set of severity categories (conditioned on i) 
and I is the unconditional set of severity categories, Lin is the inclusive value (log sum) which is 

interpreted as the expected value of the attributes that determine severity probabilities in severity 
category i, Θi is an estimable coefficient which must have a value between zero and one to be 

consistent with the model derivation (see McFadden, 1981). 

The structure of the nested logit model eliminates the adverse consequences of shared 
unobservables because logit models determine probabilities using the difference in functions 
defining severity (i.e. the Sin's in equation (3.2)).  Thus when a logit nest contains only those 

severity levels that share unobserved effects, the unobserved effects will cancel in the 
differencing and thereby preserve the assumption of independence needed to derive the model.  
We will discuss estimation concerns relating to this model and show its suitability for analyzing 
accident severities in the model estimation section of this Chapter.  For further information on 
the derivation and application of nested logit models the reader is referred to Ben-Akiva and 
Lerman (1985), Train (1986) and Mannering and Winston (1985, 1991, 1995). 

3.4 Empirical setting 

In collecting data on the 61 kilometer study section of I-90, six data categories were 
specified; 1) individual accident data from the Washington State Department of Transportation 
(WSDOT), 2) weather data, 3) geometric data, 4) pavement surface data, 5) vehicle data and 6) 
driver-related data.  For the purposes of classifying roadway geometric data, the study area was 
segmented into 10 equal 6.1 kilometer sections (see Shankar et al., 1995).  Important accident 
data included information on primary identified causes, most severe consequence of the accident, 
time of day of accident, accident location with respect to the traveled way (on or off the 
roadway, whether the accident occurred on a curve or straight section or a grade, roadway 
illumination information, types of roadside objects involved in collision, and accident type).  
Weather data included whether or not the accident occurred during rainy, snowy, or foggy 
conditions.  The geometric data included (for the section of highway in which the accident 
occurred) radii of horizontal curves, vertical grades, number of horizontal and vertical curves per 
kilometer, percentage length of horizontal curves.  Pavement surface data included information 
on whether the accident occurred on icy, snowy, wet or dry pavement.  Vehicle data included 
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information on number and type of vehicles, restraint system1 used by driver and occupants at 
the time of the accident, ejection status of occupants (i.e. whether or not occupants have been 
ejected from the vehicle) and number of occupants in each vehicle.  Driver-related data included 
information on driver sobriety at the time of accident, and driver ages and gender. 

Accident data for the five-year period between 1988 and 1993 was used to estimate accident 
severities.  A total of 1,505 individual vehicular accidents2 reported during this period were used 
in this study, with 1,020 of those accidents resulting in property damage only.3  Out of the 
remaining 485 accidents, 10 were fatality collisions, 63 evident injury and 208 disabling injury 
collisions.  Table 3.1 provides additional information on the distribution of severity by important 
variables such as daytime/night, sobriety, accident location (horizontal curve as opposed to a 
straight section), and number of vehicles involved in the collision. 

3.5 Model estimation 

To estimate the nested logit model specified in equations (3.6-8), we use a sequential 
estimation procedure.  In this procedure, the lower conditional level of the nest (equation (3.7)) 
is estimated as a simple multinomial logit (MNL) model using standard maximum likelihood 
methods and the estimated coefficients are used to compute the inclusive value of that level (i.e. 
Lin in equation (3.8)).  The next step involves estimating the higher level nest treating it as a 

simple MNL form but conditioning it on the estimated coefficients of the lower nest.  This is 
done by introducing the computed value of Lin for the lower nest as an explanatory variable.  All 

possible nested structures (which examine possible correlation among the unobserved effects of 
various severity levels) were considered.  Statistically, as measured by likelihood ratio tests, the 

                                                 

1 Although this information is subject to bias based on when the reporting officer arrives at the scene, uncertainty 
about restraint system use significantly diminishes in the case of injury-related accidents in which subjects are 
incapacitated to the extent of being unable to remove their restraint systems.  In the case of property damage 
and possible injury accidents, the significance of restraint system use is minimal.  In this context, it must be 
noted that uncertainty about restraint system use generally results in information on restraint system use being 
coded “restraint system use not known”. 

2 A total of 2,225 individual accidents were reported for the 65-month period between January 1988 and May 
1993.  However, weather data corresponding to 720 accidents was not available because of equipment failure or 
faulty operation.  Also, it is important to note that our data were obtained only from reported accidents.  It is 
likely that many accidents (particularly those that are minor in severity) may go unreported.  This means that 
our accident sample is not a random sample of all accidents.  Fortunately this will have a minimal impact on 
model estimation results.  In fact, all coefficients will be correctly estimated with the exception of the constant 
terms.  If the number and severity of unreported accidents were known, the three constant terms reported in this 
paper could be adjusted by a simple calculation and no additional estimation would be necessary (see Ben-
Akiva and Lerman (1985) for details on such stratified-sample adjustments). 

3 As mentioned previously, accident classification is based on the most severe consequence of the accident. 
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structure shown in Figure 3.1 proved to be the correct model form.1  This nesting indicates that 
the property damage only and possible injury severity levels shared unobserved terms that would 
have caused a serious model specification error had a simple multinomial logit model been 
estimated (as shown in equation (3.5)). 

Table 3.1:  Accident severity distribution by key variables. 

 Severity frequencies 

Accident 
Conditioning Variable 

 
Property 
Damage 

 
Possible 
Injury 

 
Evident 
Injury 

 
Disabling 

Injury 

 
Fatality 

Daylight (excluding 
dawn and dusk) 

 
609 

 
135 

 
31 

 
126 

 
6 

Night 353 53 27 64 3 

Drunk-Driving 31 1 2 9 2 

Sober Driving 989 203 61 199 8 

Horizontal Curve 410 76 25 88 8 

Straight Section 610 128 38 120 2 

Single-vehicle collision 587 99 44 128 5 

Two-vehicle Collision  
377 

 
91 

 
16 

 
67 

 
4 

Multi-vehicle Collision 
(greater than two 
vehicles) 

 

56 

 

14 

 

3 

 

13 

 

1 
 

Maximum likelihood estimation results are presented in Tables 3.2 and 3.3.  Table 3.2 
presents the estimation of the lower nest (property damage only and possible injury)2 and Table 

                                                 

1 We also tested this specification for possible correlation among unobservables using the specification test 
developed by Small and Hsiao (1985).  The tests showed that this specification does not have statistically 
significant specification error. 

2 Possible injury accidents (which may seem a somewhat vague category) are determined at the scene by 
Washington State troopers using well-defined, uniformly taught identification procedures.  Our testing of 
various model structures suggests that this is a unique severity category and must be considered separately (i.e., 
even though the accident will eventually be classified as an injury or property damage only accident). 
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3.3 shows the estimation of the overall model of accident severity (upper nest).  The inclusive 
value coefficient of 0.4153 with its t-statistic of 2.6391 suggests that shared unobservables 
significantly present between property damage only and possible injury alternatives.1  Both 
models resulted in good statistical fits,2 with the lower level of the nest showing a ρ2  of 0.39 and 
the overall model a ρ2 of 0.52. 

 

Evident
 Injury

Disabling
Injury

Possible
 Injury

Property
Damage Only

No Evident Injury

  Fatality
or

 

Figure 3.1:  Nested structure of accident severities. 

                                                 

1 If no correlation between these unobserved terms was present, the coefficient value would not be significantly 
different from one.  When the coefficient value of the inclusive value term is equal to one, the nested logit 
structure reduces to the simple multinomial structure as shown in equation 3.5. 

2 ρ2 is defined as 1-[L(β)-L(0)] where L(β) is log-likelihood at convergence and L(0) is initial log-likelihood 
when all parameters are set to zero.  A modified form of ρ2  is the adjusted ρ2 that takes into account the 
number of parameters included and is given by 1-[(L(β)-K)/L(0)], where K is the number of parameters.  The 
adjusted ρ2  for the two models were determined to be 0.38 and 0.50 respectively. 
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Table 3.2:  Estimation of property damage and possible injury probabilities conditioned on the 
occurrence of a non-injury accident. 

Variable Estimated 
coefficient 

t-statistic 

Constant (specific to property damage alone) 3.1950 5.19 

Overturn accident indicator (1 if accident type was “single-vehicle 
overturn”, 0 otherwise; specific to possible injury) 

1.3993 3.49 

Rear-end accident indicator 1 (1 if accident type was “rear-end” 
accident and occurred on wet pavement, 0 otherwise; specific to 
possible injury)  

0.4351 1.00 

Rear-end accident indicator 2 (1 if accident type was “rear-end” 
accident and involved exactly two vehicles, 0 otherwise; specific to 
possible injury) 

1.3415 5.00 

Percentage of horizontal curve length per kilometer of roadway 
(specific to possible injury) 

0.0141 1.37 

Number of horizontal curves per kilometer of roadway (specific to 
possible injury) 

0.4931 1.94 

Illumination indicator (1 if surroundings were dark with no street 
lights present,  
0 otherwise; specific to property damage) 

0.3271 1.72 

Sideswipe accident indicator (1 if accident type was “sideswipe”  
involving more than two vehicles, 0 otherwise; specific to possible 
injury) 

1.2686 1.74 

Same-direction accident indicator (1 if accident type was “same-
direction” involving more than two vehicles, 0 otherwise; specific to 
possible injury) 

1.0640 2.07 

Fixed object accident indicator (1 if accident type was “fixed object”, 
0 otherwise; specific to possible injury) 

1.0597 3.14 

Icy pavement indicator (1 if accident occurred on icy pavement and 
involved only one vehicle, 0 otherwise; specific to property damage 
alone) 

0.5323 2.11 

Single-vehicle collision indicator (1 if accident involved one vehicle, 
0 otherwise; specific to property damage) 

0.6490 1.91 

Number of observations 1224  

Log-likelihood at zero -848.41  

Log-likelihood at convergence -518.40  

ρ2  0.39  
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Table 3.3:  Estimation of overall nested logit model of accident severity probabilities 

Variable Estimated 
coefficient 

t-statistic 

Constant (specific to evident injury) -2.8468 -3.53 

Constant (specific to disabling injury/fatality) -2.4882 -4.78 

Angle accident type indicator (1 if accident type is “angle”, 0 
otherwise; specific to evident injury and disabling injury/fatality) 

1.5813 1.97 

Overturn accident type indicator (1 if accident type is “overturn”, 0 
otherwise; specific to disabling injury/fatality) 

0.5192 2.24 

Speeding indicator 1 (1 if “exceeding posted speed” was primary 
cause, 0 otherwise; specific to evident injury) 

0.9640 1.72 

Speeding indicator 2 (1 if “exceeding reasonable safe speed for 
conditions” was primary cause, 0 otherwise; specific to evident injury) 

-0.8855 -2.57 

Speeding indicator 3 (1 if “exceeding reasonable safe speed for 
conditions” was primary cause, 0 otherwise; specific to disabling 
injury/fatality) 

-0.3160 -1.69 

Restraint system use indicator (1 if a restraint system was not in use by 
at least one driver involved in collision, 0 otherwise; specific to 
evident injury and disabling injury/fatality) 

0.6376 2.72 

Occupant ejection indicator (1 if any occupant was partially or totally 
ejected, 0 otherwise; specific to evident injury) 

2.0070 3.78 

Gender of driver (1 if all drivers involved in collision were male;  
0 otherwise; specific to disabling injury/fatality) 

1.0008 2.12 

Percentage of horizontal curves per kilometer of roadway (specific to 
evident injury and disabling injury/fatality) 

0.0302 3.39 

Number of horizontal curves per kilometer of roadway (specific to no 
evident injury and disabling injury/fatality) 

0.7204 1.93 

Curve-sobriety interaction (1 if accident occurred on a horizontal 
curve and at least one driver involved was identified as “had been 
drinking and alcohol-impaired,” 0 otherwise; specific to disabling 
injury/fatality) 

1.2755 2.31 

Snow-covered pavement indicator 1 (1 if accident occurred on snow-
covered pavement, 0 otherwise; specific to evident injury) 

-0.9450 -2.51 

Snow-covered pavement indicator 2 (1 if accident occurred on snow-
covered pavement, 0 otherwise; specific to disabling injury/fatality) 

-0.5310 -2.86 

Vehicle-mass difference indicator (1 if accident involved collision of a 
single truck and a single passenger car, 0 otherwise; specific to evident 
injury and disabling injury/fatality) 

0.5214 1.83 

(Continued) 
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Table 3.3:  Estimation of overall nested logit model of accident severity probabilities. 
(Continued) 

Variable Estimated 
coefficient 

t-statistic 

Accident location indicator 1 (1 if accident occurred off the road, 0 
otherwise; specific to evident injury) 

1.2054 3.81 

Accident location indicator 2 (1 if accident occurred off the road, 0 
otherwise; specific to disabling injury/fatality) 

0.5118 2.54 

Age-sobriety interaction (1 if all drivers involved in accident were 
older than 55 years and at least one driver involved was identified as 
“had been drinking and alcohol-impaired,” 0 otherwise; specific to 
evident injury) 

1.6541 1.34 

Night-time-pavement interaction (1 if accident occurred at night and 
on icy pavement, 0 otherwise; specific to evident injury and disabling 
injury/fatality) 

0.2475 1.00 

Fixed-object-horizontal curve interaction (1 if accident type was 
“fixed-object” and occurred on a horizontal curve, 0 otherwise; 
specific to disabling injury/fatality) 

0.4580 1.99 

Fixed-object-icy pavement interaction (1 if accident type was “fixed 
object” and occurred on icy pavement, 0 otherwise; specific to no 
evident injury) 

0.5606 2.21 

Inclusive value of property damage and possible injury (Lin, specific 
to no evident injury) 

0.4153 2.64 

Number of observations 1505  

Log-likelihood at zero -1653.4  

Log-likelihood at convergence -802.3  

ρ2  0.52  

 

Turning first to the coefficient estimates of the lower nest (i.e. property damage only and 
possible injury conditioned on the accident having no evident injuries) we find that all variable 
coefficients included in the specification are statistically significant and have plausible signs.  
The implications of each of the coefficient estimates is discussed below. 

Variable: Overturn accident indicator 

Finding: Greater probability of possible injury relative to property damage only 
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The “single-vehicle” overturn accident indicator’s positive coefficient indicates a greater 
likelihood of possible injury than property damage only.  This shows that single-vehicle 
accidents with no evident injury tend to be more severe in nature. 

Variable: Wet-pavement rear-end accident indicator 

Finding: Greater probability of  possible injury relative to property damage only 

This variable captures the effect of rear-end accidents occurring in rainy weather.  Such 
weather conditions make vehicles in front more difficult to see and increase the distance required 
to stop.  It may also be argued that inclement weather may lower driver speeds and reduce risk of 
possible injury to a statistically insignificant level.  However, intermittent and light rainfall, in 
spite of making the pavement wet and slippery, may not be dense enough to significantly lower 
driver speeds.  The rear-end accident indicator may be capturing the effect of higher-than-
expected vehicle speeds at the time of impact. 

Variable: Two-vehicle rear-end accident indicator 

Finding: Greater probability of possible injury relative to property damage only 

While the previous finding reflects rear-end accidents in general, this variable captures the 
effect of two-vehicle collisions only.  This coefficient is highly significant, statistically, 
indicating that injury, though not evident such as disabling, may be internalized to a greater 
extent than previously thought in such collisions.  It is speculated that one important factor 
relating to the high significance of this variable could be the dissipation of kinetic energy and 
momentum per vehicle.  The lower the number of vehicles involved, the greater the impact on 
each vehicle, thus increasing the likelihood of internal injuries, such as whiplash, which would 
be coded at the scene of the accident as a possible injury .  The significantly higher coefficient 
(1.415 versus 0.4351 for the previous variable) corroborates the effect of inclement weather on 
driver speeds. 

Variable: Percentage of horizontal curve length per kilometer of roadway 

Finding: Greater probability of possible injury relative to property damage only 

This variable captures the effect of terrain on the severity of an accident with no evident 
injuries.  The high proportion of horizontal curves was found to increase the likelihood of a 
possible injury accident. 
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Variable: Number of horizontal curves per kilometer of roadway 

Finding: Greater probability of possible injury relative to property damage only 

This variable further confirms the finding offered by the curve-length variable.  A greater 
number of curves on a particular section of roadway, although in some cases a speeding-
deterrent, will affect steering control and reduce sight distance and thus be more likely to result 
in a possible injury collision. 

Variable: Illumination indicator 

Finding: Night-time conditions with no street lights present increase the probability of 
property damage only 

This variable is likely an artifact of roadway design practices.  Since the most dangerous 
portion of the road are the likely to be illuminated, we would expect a positive correlation 
between the absence of illumination and the likelihood of a property damage only accident. 

Variable: Sideswipe accident indicator 

Finding: Greater probability of possible injury relative to property damage only in multi-
vehicle accidents 

This variable (sideswipes involving more than two vehicles) primarily captures the exposure 
to possible injury.  If the number of vehicles involved in a sideswipe accident exceeds two, the 
exposure increases in terms of number of occupants involved in the accident.  Thus the greater 
likelihood of a possible injury.  This variable may also be capturing the level of severity 
generally associated with this type of accident. 

Variable: Same-direction accident indicator 

Finding: Greater probability of possible injury relative to property damage only in multi-
vehicle accidents 

This variable (same direction accidents involving more than two vehicles) further illustrates 
the exposure, in terms of the number of occupants likely to be involved in the accident, that was 
also attributed to the sideswipe accident indicator.  The finding is consistent with previous 
findings on the relationship of possible injury to increased exposure. 

Variable: Fixed-object accident indicator 
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Finding: Greater probability of possible injury relative to property damage only 

This variable is consistent with intuition which suggests that given that an accident resulted 
in no evident injuries, there is a greater probability of suffering possible injury from collisions 
with fixed objects.  It must be noted that this applies only to accidents resulting no evident 
injuries. 

Variable: Icy pavement indicator 

Finding: Greater probability of property damage only relative to possible injury 

This finding suggests that for single-vehicle accidents that occur on icy pavements, property 
damage will occur with greater probability than possible injury.  This finding is consistent with 
previous conclusions on exposure in terms of number of vehicles involved and illustrates the 
effect of icy conditions.  While icy pavement conditions hinder braking and steering control, 
they also tend to lower vehicle speeds.  This effect reduces the risk of possible injury and limits 
the severity of an accident to property damage only. 

Variable: Single-vehicle collision indicator 

Finding: Greater probability of property damage only relative to possible injury 

This finding corroborates earlier observations that fewer involved-vehicles increase the 
likelihood of property damage only.  It also provides an important severity measure for accidents 
involving only one vehicle. 

We now turn our attention to the estimation results of the overall model as presented in Table 
3.3.  The interpretation of coefficient estimates is provided below. 

Variable: Angle accident type indicator 

Finding: Greater probability of evident injury or disabling injury/fatality than no evident 
injury1 

In a freeway corridor, angle accidents can occur when a leading vehicle is turned sideways 
positioning it at angle to the flow of following traffic, thereby making severe collisions more 

                                                 

1 As mentioned previously, no evident injury accidents include property damage only and possible injury where 
possible injury is typically a minor injury that is not evident at the scene of the accident. 
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likely.  Angle accident indicators may also be acting as surrogates for factors such as black ice 
which are not strictly observed due to weather data limitations. 

Variable: Overturn accident indicator 

Finding: Greater probability of evident injury or disabling injury/fatality 

This finding corroborates the finding documented for “single-vehicle” overturn effects in the 
lower level model.  After correcting for single-vehicle effects which are incorporated in the no 
evident injury category, we observe that overturns result in a greater probability of evident injury 
or disabling injury/fatality.   

Variable: Speeding indicator 1 (exceeding posted speed limit) 

Finding: Greater probability of evident injury relative to no evident injury or disabling 
injury/fatality 

This finding isolates the effect of speeding over posted speed limits on accident severity.  
Current knowledge and intuition suggest that speeding is a primary cause in severe accidents 
such as those resulting in disabling injury/fatality.  However, there are associated factors such as 
number of curves in a section, sobriety and age which confound the effects of speed.  Controlling 
for these factors may uncover specific effects of speed in isolation.  In the present model, we 
control for all such factors (as discussed below) and isolate the effects of speed. 

Variable: Speeding indicators 2 and 3 (exceeding safe speed for prevailing conditions) 

Finding: Greater probability of no evident injury relative to evident injury or disabling 
injury/fatality 

This finding illustrates an important distinction in the effects of high and low speeds in that it 
examines the impact of low speeds on severity.  By examining speed-related effects in accidents 
where exceeding the posted limit was the primary cause, we essentially restrict the population of 
accidents related to speed to above the speed limit (104 kilometers per hour).  The variable under 
discussion examines the effect of speeds over the range of possible speeds below the speed 
limit.1  As mentioned previously, several factors interact in association with speed and aggravate 

                                                 

1 It must be noted that once speeds exceed the posted limit, speeding indicator 1 overrides speeding indicator 2 as 
the primary cause from a reporting perspective.  Hence, speeding indicators 1 and 2 split the accident 
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its effect.  For speeds under the posted limit but exceeding reasonable speeds for prevailing 
conditions, aggravating factors typically include weather-related variables such as pavement 
surface conditions, age, and grade or curve-related factors.  As discussed in a later section, we 
control for these factors and isolate the effect of exceeding safe speeds for prevailing conditions.  
Isolating the effect of safe speeds indicates that at lower speeds, it is more likely that the accident 
will have no evident injury.  This finding1 illustrates the importance of a more comprehensive 
model specification for providing better insights into underlying processes. 

Variable: Restraint system use indicator 

Finding: Greater probability of evident injury or disabling injury/fatality relative to no 
evident injury if at least one driver did not use a restraint system at the time of  
the accident 

This finding is in agreement with other studies (Evans, 1986b).  An interesting observation 
was that separating the restraint system used by driver and passengers did not yield significantly 
different coefficients for passengers.2 

Variable: Occupant ejection indicator 

Finding: Greater probability of evident injury relative to no evident injury or disabling 
injury/fatality 

This finding indicates that after controlling for factors such as overturn collisions or run-off-
the road accidents, ejection of the occupant (partial or total) will result in a greater likelihood of 
evident bodily injury as opposed to death or disabling injury.  This variable accounts, along with 
the restraint system use indicator, for factors such as structural integrity of the vehicle and door 
failures on impact. 

                                                                                                                                                             
population into “above speed limit” and “below speed limit” sub-populations.  This segmentation provides 
unique insights into the impacts of speeds because the effects of these two speed categories are quite different. 

1 The parameters for safe speed were specified initially for the evident injury and disabling injury/fatality 
alternatives simultaneously.  By so doing, we constrain the β’s to be the same for both alternatives.  We 
removed this constraint and specified the β’s separately for the alternatives.  Relaxing the constraint allowed us 
to conclude the impact of safe speed with respect with evident injury was statistically different from that 
associated with disabling injury/fatality. 

2 The statistically insignificant parameter for passenger restraint possibly indicates very high collinearity between 
driver and passenger restraint system use.  In addition, when accident types such as rear-ends, angle and 
sideswipes are explicitly accounted for in the specification,  rear-seat passenger injury is largely accounted for. 
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Variable: Gender of driver 

Finding: Greater probability of disabling injury/fatality relative to no evident injury or 
evident injury if the accident involved all male drivers 

This finding suggests that male drivers may be inherently greater risk takers and that risk is 
compounded by the exposure factor in multi-vehicle collisions when all drivers are male.   

Variable: Percentage of curve length per kilometer of roadway 

Finding: Greater probability of evident injury or disabling injury/fatality than no evident 
injury 

This finding is consistent with the earlier finding on the same variable in the no evident 
injury model (as shown in Table 3.2).  The finding implies that curve-length percentage 
increases the likelihood of an injury on a roadway section by possibly affecting the driving task 
and driver behavior. 

Variable: Number of horizontal curves per kilometer of roadway 

Finding: Greater probability of no evident injury or disabling injury/fatality relative to 
evident injury 

This variable illustrates that evident injury is a less likely consequence as the number of 
curves per kilometer increases.  This may be because some drivers' natural reaction is to slow-
down when faced with many curves in close proximity, thus decreasing the likelihood of injury 
accidents. 

Variable: Curve-sobriety interaction 

Finding: Greater probability of disabling injury/fatality relative to no evident injury or 
evident injury 

This variable captures the aggravating impact of curves on drunk driving.  From a design 
perspective, this is an important finding because it presents opportunities for highway engineers 
to mitigate circumstances that aggravate drunk driving effects.  A drunk driver’s lack of control 
is particularly critical on horizontal curves resulting in lane violations and ensuing multi-vehicle 
collisions or severe run-off-the road impacts.   
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Variable: Snow-covered pavement indicators1 

Finding: Greater probability of no evident injury relative to evident injury or disabling 
injury 

This finding indicates the impact of seasonal2 as well as location-specific effects on accident 
severity.  The presence of snow on the pavement at the time of the accident may indicate a 
general caution observed by drivers.  If an accident were to still occur, the greater caution 
exercised by drivers helps mitigate the severity of an accident by reducing the effect of 
aggravating factors such as speed.  On the other hand, presence of snow may also capture the 
higher observed frequency of “parked vehicle” accidents (i.e. disabled vehicles or those vehicles 
parked to put chains on) which tend to be property damage only.  Lane obliteration may cause 
lane violations and ensuing collisions such as sideswipe and same direction accidents which 
were observed to be milder in severity. 

Variable: Vehicle-mass difference indicator 

Finding: Greater probability of evident injury or disabling injury/fatality relative to no 
evident injury 

This variable captures the effect of truck-passenger car collisions on accident severity in two-
vehicle accidents.   By isolating two-vehicle collisions, we truly capture vehicle-mass difference 
effects, as opposed to a combination of vehicle-mass and exposure-related effects that would be 
present in multivehicle collisions involving more than two vehicles. 

Variable: Accident location indicators 

Finding: Greater probability of evident injury or disabling injury/fatality relative to no 
evident if the accident occurred off the road 

This variable captures the impacts of off the road accidents due to roadside features such as 
ditches and embankments.  Such features tend to cause an injury.  The findings indicate that the 

                                                 

1 As Table 3.3 shows, the β’s for the evident injury and disabling injury/fatality categories were estimated 
unconstrained (i.e. separate coefficients for each severity category) and found to give statistically superior 
results relative to the constrained case (as measured by a likelihood ratio test). 

2 Seasonal effects capture, in addition to direct weather effects, factors such as traffic volume.  Reduced traffic 
volumes during the months of November through March reduces the likelihood of multi-vehicle accidents.  
Indirectly, this accounts for exposure. 
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likelihood of evident injury is significantly greater than disabling injury/fatality in off-the-road 
collisions.  Accounting explicitly in the specification for specific accident types such as 
overturns, which typically occur in off-the-road collisions, allows us to isolate the impact of the 
off-the-road coefficient for disabling injury/fatality severities.1 

Variable: Age-sobriety interaction 

Finding: Greater likelihood of evident injury relative to disabling injury/fatality or no 
evident injury 

This variable provides insight into an important two-way interaction that has not been 
investigated prior to this study.  Age and sobriety have long been identified to play separate but 
significant roles in accident occurrences and severities.  Several studies (Jonah, 1986; Mayhew 
et al., 1986) have shown that older drivers are less prone to risk taking than younger drivers.  
Coupled with this, the risk of crash involvement of older drivers is also reduced due to greater 
driving experience.  In addition, it has also been noted that alcohol-related impairment in driving 
is greater among older drivers.  Given that an accident occurs, the combination of these factors 
results in injury accidents that are not as severe as disabling/fatality collisions.  Being less likely 
to take risk and having greater driving experience seems to offset the greater impairment in 
driving that alcohol causes in older drivers, at least in terms of severity.  However, the effect that 
such factors have on overall accident frequency is an open question that is not addressed in this 
study. 

Variable: Night-time-pavement condition interaction 

Finding: Greater likelihood of evident injury or disabling injury/fatality relative to no 
evident injury 

This variable models the effect of night-time conditions and icy pavements on accident 
severities.  In the event an accident occurred under such conditions, the positive coefficient of 
this variable with respect to evident injury and disabling injury/fatality indicates the influence of 
temperature-related and seasonal factors on driving.  The importance of this interaction term 
stems from the compounding effect that night-time conditions have on driver behavior under icy 

                                                 

1 Off-the-road coefficients for evident injury and disabling injury/fatality were estimated separately.  By doing 
so, the parameter for disabling injury/fatality was determined to be significantly lower than that for evident 
injury indicating that run-off-the-road by themselves are more likely to cause evident injury than disabling 
injury/fatality.  It is in the presence of collisions such as vehicle overturns that the likelihood of disabling 
injury/fatality is enhanced. 
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conditions.  It may be argued that the propensity of accidents occurring in icy weather could be 
lower during night because of increased caution among drivers; however, given that an accident 
occurs, the severity is likely to be high.  This higher severity may be impart caused by slower 
driver-reaction times which tend to be significantly slower at night.1 

Variable: Fixed-object-horizontal curve interaction 

Finding: Greater probability of disabling injury/fatality relative to evident injury or no 
evident injury 

This interaction term accounts for the impact of roadside features on accident severities on 
horizontal curves.  The finding underscores the importance of roadside design on horizontal 
curves. 

Variable: Fixed-object-icy pavement interaction 

Finding: Greater probability of no evident relative to evident injury or disabling 
injury/fatality 

This variable further corroborates, as mentioned previously, the impact of speed on the 
severity of fixed-object collisions.  Icy weather acts as a deterrent to speeding, and as a result the 
consequence of fixed-object collisions are likely to be less severe.  Again, this finding does not 
relate to the frequency of such collisions which could be expected to be higher under such 
conditions. 

In addition to examining the impact of key variables on accident severity, elasticities of 
important design variables were also examined.  Elasticity is the measure of the percentage 
change in the probability of a specific severity level for a unit percentage change in an 
independent variable.  It is generally computed as a point-measure for continuous variables.2  An 
elasticity greater than unity in absolute value indicates that the dependent variable is elastic with 
respect to the subject independent variable.  The elasticities of overall accident severity 

                                                 

1 The element of surprise and emergency response are important factors affecting driver reaction times.  Several 
studies (Triggs and Harris 1982; Olson 1989; Hooper and McGee 1983; Taoka 1982) have evaluated driver 
reaction times under varying conditions and for different age groups, and concluded that night-time reaction 
times could be significantly higher than daytime values.  The significance of the night-time-pavement 
interaction term presents a surrogate factor for reaction time, and illustrates the importance of potentially 
challenging highway geometrics. 

2 Elasticities over a larger range of independent variable values are misleading when computed using this 
formula.  In addition, elasticities for indicator variables which have binary values of 0 or 1 are meaningless. 



56 

 

probability with respect to curve-length percentage and number of horizontal curves per 
kilometer of roadway were computed to be -0.2704 and -0.9017 respectively.  Intuitively this 
says that a 1 percent increase in the percentage of horizontal curve length per kilometer will 
result in a 0.2704 percent increase in the likelihood of an accident being evident injury or 
disabling injury/fatality.  Also, a 1 percent increase in the number of horizontal curves per 
kilometer will result in a 0.9017 percent increase in the probability of the accident resulting in no 
evident injury or disabling injury/fatality.  While both elasticities are less than 1, the elasticity 
computation provides interesting insight into the comparative importance of these two variables 
in determining accident severity. 

3.6 Conclusions 

The study provides a framework for estimating accident severity likelihood conditioned on 
the occurrence of an accident.  It was concluded that a nested logit model which accounted for 
shared unobservables between property damage and possible injury accidents provided the best 
structural fit for the observed distribution of accident severities.  This represents an important 
step in the methodological evaluation of ITS with respect to accident safety.  By developing a 
probabilistic model that contains several important variables representing geometric, weather, 
and human factors we have shown that ambiguity and bias stemming from confounding effects 
in a partially specified model can be eliminated.  In addition, this research provides suggestive 
results by its use of variables such as curve-sobriety interaction and curve-pavement surface 
interaction.  Specifically, it suggests that ITS may be an effective means of compensating for 
adverse design, human factors, and weather conditions.  A well designed ITS could significantly 
improve the driving task in the presence of adverse factors such as alcohol, inclement weather, 
and complex roadway geometrics.  A significant shift in the distribution of accident severities 
toward milder accidents in combination with lower accident frequencies (Shankar et al., 1995) 
will provide a basis for ITS evaluation.  Further research which links the severity model to 
models of accident severity cost is needed to assess the potential and extent of savings in 
accident cost. 



 

Part II 

Analysis of Speed Data 
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This Part presents analysis of speed and vehicle classification data that is available from the 
three loop detectors installed in the study area.  These loop detectors are 16 ft dual loop detectors 
and are installed by lane.  They collect data in 8 speed classifications (<15mph, 15-25, 26-35, 
36-45, 46-55, 56-65, 66-75, >75mph) and in 4 vehicle classifications (based on the length of 
vehicles).  The speed stations are located (see Figure 1.1) at mile markers 46, 52, and 63 (for 
reference the study area starts at mile marker 33 and ends at mile marker 71, increasing from 
west to east). 

Variations in speed were studied by using standard multiple regression techniques and by 
developing speed models for different classes of vehicles.  To be able to isolate the impact of 
TravelAid on vehicle speeds, we must control for the effect of traffic volumes, as well as 
climatic, and time-of-day effects (i.e. night and day).  In addition, when the system is 
operational, we will have a complete record of VMS messages (type and time) and changes 
VSLs.  This data will be used to assess the system's effect on speeds by vehicle class.  The 
analysis of the before data, collected in Winter 1994-95, is presented in the following Chapter. 
With a before and after comparison, similar to the one discussed above for accident frequencies 
and severities, we will be able to isolate the exact impact of TravelAid on the observed 
distributions of speeds. 
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Chapter 4 

Modeling lane-mean speeds and deviations 

4.1 Introduction 

Prior speed-flow relationship studies have focused on single-regime or multi-regime 
functional relationships that were generally univariate or bivariate in nature.  Linkages between 
speed and flow were generally studied over different traffic density ranges.  Engineering 
intuition suggests that such approaches offer only a limited understanding of the underlying 
processes governing speed-flow relationships.  Particularly in the context of intelligent 
transportation systems (ITS) where the use of technological components will likely result in 
fundamental shifts of assumed speed-flow relationships.  In the presence of ITS, it is important 
that the causality underlying the processes affecting traffic speed-flow relationships and 
consequently safety be uncovered, because systemic affects associated with such technologies 
are potentially wide-ranging and often simultaneous. 

The Chapter begins by discussing previous research and by providing a description of the 
data-collection site.  This is followed by an overview of the modeling approach, estimation 
technique and the presentation of model-estimation results.  Finally, conclusions and 
recommendations are provided. 

4.2 Previous research 

Prior theories and empirical validations have established speed-flow relationships that are 
unidirectional and regime-based (see for example, Greenshields, 1935; Edie, 1961; May and 
Keller, 1968).  Suggestions on structural modeling (i.e. a simultaneous equations approach), with 
its potential to provide an improved understanding of the interrelationships among the 
contemporaneous influences of lane-mean speeds, lane-speed deviations, environmental 
conditions, geometric elements, vehicle-types, and temporal and seasonal factors, have been 
conceptual for the most part.  Instead, significant effort has been focused on the use of 
independent ordinary or non-linear least squares estimation (see for example Easa and May, 
1980).  Use of independent regression equations that separately estimate speed and flow-related 
parameters without accounting for the contemporaneous correlation of the disturbances will 
cause the respective estimated parameters to be biased and inconsistent (Greene, 1993).  Apart 
from the specification aspects mentioned above relating to the causal modeling of traffic speed 
and flow, little evidence is available on modeling frameworks that simultaneously incorporate 
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the influence of environmental, geometric, temporal and traffic-flow factors.  Some efforts in 
this area have focused on the impact of weather (Ibrahim and Hall, 1994) and geometrics 
(Iwasaki, 1991), while others have focused on the temporal variations in traffic flow (see for 
example Brilon and Ponzlet, 1996). 

The attempt of this research is to combine the need for a complete model that is 
comprehensive in factors identified in previous research with the need for an estimation 
framework that is structural in nature.  It should be noted here that the focus of the research is on 
the structural relationship between lane-mean speeds (i.e. time-mean speeds) and related lane-
speed deviations and the traffic characteristics, environmental conditions, and temporal and 
seasonal factors.  As such, the investigation will focus on the contemporaneous inter-
relationships at a given location in a given time period. 

4.3 Empirical setting 

The specific study area of this research is on I-90 in the Cascade mountains with an elevation 
975 meters above sea level.  The climate is harsh with an average of 215 centimeters of rainfall 
and 1140 centimeters of snowfall annually.  In general, this portion of I-90 has significant 
variations in speeds (i.e. high lane-speed deviations), due to the combined impact of vehicle mix, 
inclement weather, seasonal effects (e.g., variations in traffic volume, precipitation, and ambient 
temperatures), and challenging roadway geometrics.  These speed variations significantly 
contribute to the likelihood and severity of accidents on this portion of I-90 (see Shankar et al., 
1995, 1996). 

4.4 Modeling approach 

Our intent is to develop a model of mean speeds and speed deviations (measured over some 
time interval) for each lane of a multilane roadway.  Turning first to lane-mean speeds, from a 
structural point of view, it is important to note that the mean speed in each lane will not only be a 
function of traffic characteristics in the lane, but also a function of the mean speeds in the 
adjacent lanes.  This suggests an equation system in which lane-mean speeds are determined 
simultaneously across the roadway’s lanes.  In a similar fashion, speed deviations in each lane 
will be dependent on speed deviations in adjacent lanes.  Lane-speed deviations will also be a 
function of the lane’s mean speed and the mean speeds in adjacent lanes.  Because of this 
interrelationship, lane-speed deviations must also be determined in a simultaneous equation 
system with mean speeds entering the equation system in a recursive fashion. 



61 

 

The structural equation system for lane-mean speeds and lane-speed deviations can be 
written as follows:  For lane-mean speeds, over some time interval, the equation system is, 

u  =   +   X  +   Z  +   u   +  

u  =  +   X +   Z +   u   +  
                                              
                                              

u  =  +   X +   Z +   u  +  n n n n n n n n n

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

α β λ θ ε

α β λ θ ε

α β λ θ ε

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 (4.1) 

where un is the mean speed in lane n, Xn is a vector of exogenous variables influencing the mean 
speed in lane n, Zn is a vector of endogenous variables influencing the mean speed in lane n (i.e. 
traffic flow characteristics that may be influenced by lane-mean speeds such as proportion of 
total roadway traffic in the lane), un  is a vector of mean speeds in lanes adjacent to lane n, αn, 
βn, λn, and θn are vectors of estimable coefficients, εn is a disturbance term.  Similarly, lane-
speed deviations, over some time interval, can be written as,1 
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⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 (4.2) 

where σn is the standard deviation of speed in lane n, Vn is a vector of exogenous variables 
influencing the standard deviation of speed in lane n, Yn is a vector of endogenous variables 
influencing the standard deviation of speed in lane n (i.e. traffic flow characteristics that may be 
influenced by lane-speed deviations such as proportion of total roadway traffic in the lane), un  
is a vector of mean speeds in lane n and in other lanes, σ n  is a vector of the standard deviation 
of speeds in lanes adjacent to lane n, ρn, ηn, τn, γn, and ωn are vectors of estimable coefficients, νn 
is a disturbance term. 

To estimate equations (4.1) and (4.2), three-stage least squares (3SLS) is appropriate.  This 
approach allows for simultaneous estimation of coefficients using information from the equation 

                                                 

1 Note that our equations model lane-speed deviations as dependent variables which are functions of lane-mean 
speeds.  The reverse relationships between lane-mean speeds and lane-speed deviations is not specified.  This is 
there is no basis for assuming lane-mean speeds are influenced by speed deviations.  This was borne out during 
some preliminary estimation runs that found lane-speed deviations to be statistically insignificant when 
included in Equation 4.1. 
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system.  By so doing, it ensures that coefficient estimates are generally more efficient 
(asymptotically) than alternative simultaneous-equation estimation approaches such as the 
indirect least-squares (ILS), two-stage least squares (2SLS), and limited-information maximum 
likelihood (LIML).1  An alternative estimation approach is full-information maximum likelihood 
(FIML), but because the asymptotic variance-covariance matrices of FIML and 3SLS can be 
shown to be equal, the choice of 3SLS is acceptable.  The 3SLS estimation procedure is 
conducted by first getting two-stage least squares (2SLS) estimates of the equation system which 
are calculated using instruments (endogenous variables regressed against all exogenous 
variables).  The 2SLS estimates are then used to estimate the equation system’s disturbances 
which are subsequently used to estimate the contemporaneous variance-covariance matrix of 
disturbances.  Finally, generalized least-squares (GLS) is applied to estimate model coefficients 
using the estimated contemporaneous variance-covariance matrix of disturbances as a basis.  See 
Greene (1993) for a complete description of the procedure. 

To model lane-mean speeds and lane-speed deviations at this location, data were collected 
using magnetic loop detectors.  Interstate 90, at this location, is a three-lane divided freeway in 
each direction with the eastbound alignment on a 1.5 percent upgrade and the westbound 
alignment on a 2.5 percent downgrade.  Eastbound and westbound traffic data were collected by 
lane.  Data on spot speeds by lane, vehicle classification by lane, were gathered in the fall of 
1994 and the winter, spring and summer months of 1995.  Speed data were collected in speed 
bins of 10 miles per hour, aggregated over one hour.2  Classification of vehicle types was based 
on four wheelbase classes of up to 26, 26 to 39, 39 to 65, and 65 to 114 feet.  Lane-by-lane data 
were collected for spot speeds and vehicle classifications in both eastbound and westbound 

                                                 

1  The 3SLS procedure is more efficient than single-equation methods such as ILS, 2SLS, and LIML, when the 
variance-covariance matrix is not diagonal.  This will be the case when there is contemporaneous correlation 
among disturbance (i.e., the unobserved factors affecting mean speed in one lane are correlated with those 
unobserved factors that affect mean speed in other lanes).  If these unobserved factors are not correlated (i.e., 
the case of a diagonal variance-covariance matrix), it can be readily shown that 3SLS reduces to 2SLS. 

2  Aggregation of speed data over one hour is likely to mask some underlying variation in the speed distribution; 
however, the level of detail that is afforded at micro-speed data such as 5-second or 20-second data is not likely 
to significantly alter the structure of the cause-effect relationship between speed and speed deviation.  Any 
additional insight into the cause-effect relationship could stem from the stochasticity of peak hour flows.  As 
will be demonstrated later, the stochasticity of peak hour flows and its impact on speed-speed deviation 
relationships will be captured adequately by indicator variables acting as surrogates for peak hour phenomena 
thus eliminating potential omitted variable biases.  The authors do acknowledge that micro-speed data does 
provide insight into merge and weave phenomena and shock-wave-related incremental impacts on traffic flow 
continuums, but point out that the use of such data is different, namely to investigate “resulting conditions” 
stemming from inconsistencies in traffic flow.  
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directions.  Table 4.1 shows computed lane-mean speeds and lane-speed deviations by lane using 
one hour time periods. 

Table 4.1:  Summary of lane-mean speeds and lane-speed deviations. 

 Hourly Grouped Speeds 

 Grouped Lane-Mean Speed (miles per 
hour) 

Grouped Lane-Speed Deviation (miles 
per hour) 

Eastbound       

Location Mean Minimum Maximum Mean Minimum Maximum 

Right Lane 70.193 31.250 76.760 7.164 4.440 16.150 

Middle Lane 75.612 32.580 79.820 5.548 3.780 13.860 

Left Lane 78.012 34.880 90.000 4.858 0.000 21.680 

Westbound       

Location Mean Minimum Maximum Mean Minimum Maximum 

Right Lane 72.986 40.470 79.430 7.000 4.580 15.640 

Middle Lane 76.441 43.570 81.940 5.756 3.000 14.210 

Left Lane 78.830 40.000 86.670 5.310 0.000 28.720 
 

Tables 4.2 and 4.3 show the results of the 3SLS estimation of grouped lane-mean speeds at 
the study location.  Tables 4.4 and 4.5 show the results of the 3SLS estimation of grouped lane-
speed deviations.  For estimation purposes, the logarithm of the lane-mean speed was used as the 
dependent variable in the lane-mean speed model system.  As seen in the tables, exogenous 
variables significantly determining lane-mean speed and lane-speed deviation include time-of-
day, time-of-week, and seasonal, indicators.  Vehicle mix and the distribution of traffic across 
the lanes were also found to be significant determinants of lane-mean speed and lane-speed 
deviation.1  All estimated coefficients were found to be of plausible sign.  For the eastbound 
direction, the system R2  for the lane-mean speed model was 0.8629 and 0.3288 for the lane-
speed deviation model.  For the westbound direction, system R2  was 0.9232 and 0.3087 for the 

                                                 

1  For estimation purposes these variables were instrumented (see description in Tables 4.2-5) because of possible 
endogeneity.  This is because changes in lane-mean speeds and/or lane-speed deviations can affect the 
distribution of traffic flow over the lanes.  Thus changing values in the dependent variable could change values 
in the independent variable, which is violation of least-squares assumptions.  Not correcting for this will result 
in biased and inconsistent coefficient estimates. 
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lane-mean speed and lane-speed deviation models, respectively.  The interpretation of the 
estimation results is provided below. 

4.5 Estimation of mean speeds 

The models of mean speed in the eastbound and westbound directions can be seen in Tables 
4.2 and 4.3, respectively. 
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Table 4.2:  Three-stage least squares estimation of grouped lane-mean speeds for eastbound I-
90. 

Variable* Estimated 
coefficient 

t-statistic 

Equation 1:  Logarithm of Right-Lane Mean Speed (Dependent 
Variable) 

  

Constant -0.1106 -2.6503 

Lane traffic flow indicator (1 if traffic flow in right lane is less than 75 
vehicles per hour, 0 otherwise) 

0.0021 2.7372 

Truck percentage in right lane -0.0292 -15.2267 

High truck flow in right lane (1 if hourly truck flow is greater than 100 
vehicles per hour, 0 otherwise) 

0.0030 6.8196 

Relative truck flow indicator 1 (1 if truck percentage in right lane 
exceeds 60% and total traffic flow in right lane is less than 50 vehicles 
per hour, 0 otherwise) 

0.0047 5.8343 

Relative truck flow indicator 2 (1 if truck percentage in right lane is less 
than or equal to 20% and total traffic flow in right lane exceeds 200 
vehicles per hour, 0 otherwise) 

0.0034 5.3791 

Logarithm of middle-lane mean speed 1.0107 104.7271 

Time-of-day indicator 1 (1 if hour of observation is between midnight 
and 6:00 AM, 0 otherwise) 

-0.0030 -3.3621 

Seasonal indicator 1 (1 if it is winter, 0 otherwise) -0.0021 -3.5543 

Seasonal indicator 2 (1 if it is spring, 0 otherwise) -0.0010 -2.7644 

Time-of-week indicator (1 if it is weekend, 0 otherwise) 0.0104 8.7886 

Time-of-day indicator 2 (1 if it is PM peak hour, 0 otherwise) 0.0018 3.7352 

Time-of-day indicator 3 (1 if it is AM peak hour, 0 otherwise) -0.0014 -2.7911 

Number of observations 2233  

R-squared 0.9072  

Corrected R-squared 0.9067  
(Continued) 
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Table 4.2:  Three-stage least squares estimation of grouped lane-mean speeds for eastbound I-
90. (Continued) 

Variable* Estimated 
coefficient 

t-statistic 

Equation 2:  Logarithm of Middle-Lane Mean Speed (Dependent 
Variable) 

  

Constant 0.3628 12.0474 

Logarithm of right-lane mean speed 0.4257 59.2642 

Logarithm of left-lane mean speed 0.4960 80.9855 

Hourly traffic flow in middle lane  -0.000014 -10.2548 

Lane use distribution between middle lane and right lane (ratio of flows 
in middle lane to right lane) 

-0.0010 -4.2564 

Time-of-day indicator 4 (1 if it is night-time, 0 otherwise) -0.0030 -3.5560 

Time-of-week indicator (1 if it is weekend, 0 otherwise) -0.0072 -13.2349 

Number of observations 2233  

R-squared 0.9022  

Corrected R-squared 0.9019  

Equation 3:  Logarithm of Left-Lane Mean Speed (Dependent Variable)   

Constant -0.6949 -12.0579 

Truck percentage in left lane 0.0057 2.1422 

Lane distribution between left lane and middle lane (ratio of flows in 
middle lane to right lane) 

0.0050 3.1882 

Logarithm of middle-lane mean speed 1.1671 87.7616 

Time-of-day indicator 4 (1 if it is night-time, 0 otherwise) 0.0050 3.0050 

Number of observations 2233  

R-squared 0.7961  

Corrected R-squared 0.7958  

System R-squared 0.8629  
* Variables in italics are instrumented because of possible endogeneity.  This is done by regressing the variable 

against exogenous variables and using the regression-predicted values for the 3SLS estimation.  Variables in 
bold are endogenous and part of the simultaneous equation estimation.  Finally, trucks are defined as vehicles 
with wheelbases exceeding 65 feet.   
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Table 4.3:  Three-stage least squares estimation of grouped lane-mean speeds for westbound I-
90. 

Variable* Estimated 
coefficient 

t-statistic 

Equation 1:  Logarithm of Right-Lane Mean Speed (Dependent 
Variable) 

  

Constant -0.4308 -14.3947 

Truck percentage in right lane -0.0144 -9.2982 

High truck flow in right lane (1 if hourly truck flow is greater than 100 
vehicles per hour, 0 otherwise) 

0.0017 2.7649 

Logarithm of middle-lane speed 1.0895 157.8630 

Seasonal indicator 1 (1 if it is winter, 0 otherwise) 0.0012 2.5684 

Time-of-week indicator 1 (1 if it is weekend, 0 otherwise) 0.0046 4.8303 

Time-of-day indicator 3 (1 if it is AM peak hour, 0 otherwise) -0.0013 -2.5191 

Number of observations 2230  

R-squared 0.9472  

Corrected R-squared 0.9470  

Equation 2:  Logarithm of Middle-Lane Mean Speed (Dependent 
Variable) 

  

Constant 0.1919 7.7056 

Logarithm of right-lane mean speed 0.4539 62.1349 

Logarithm of left-lane mean speed 0.5047 66.5657 

Hourly traffic flow in middle lane  -0.000015 -9.5357 

Lane use distribution between middle lane and right lane (ratio of flows 
in middle lane to right lane) 

-0.0012 -4.4492 

Time-of-day indicator 4 (1 if it is night-time, 0 otherwise) -0.0036 -5.1740 

Time-of-week indicator (1 if it is weekend, 0 otherwise) -0.0030 -6.6528 

Number of observations 2230  

R-squared 0.9454  

Corrected R-squared 0.9452  
* Variables in italics are instrumented because of possible endogeneity.  This is done by regressing the variable 

against exogenous variables and using the regression-predicted values for the 3SLS estimation.  Variables in 
bold are endogenous and part of the simultaneous equation estimation.  Finally, trucks are defined as vehicles 
with wheelbases exceeding 65 feet.   
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(Continued) 

Table 4.3:  Three-stage least squares estimation of grouped lane-mean speeds for westbound I-
90. (Continued). 

Variable* Estimated 
coefficient 

t-statistic 

Equation 3:  Logarithm of Left-Lane Mean Speed (Dependent Variable)   

Constant -0.1134 -2.6376 

Hourly traffic flow in left lane  0.000035 6.3908 

Lane distribution between left lane and middle lane (ratio of flows in 
middle lane to right lane) 

0.0040 2.6966 

Logarithm of middle-lane mean speed 1.0321 104.1540 

Time-of-day indicator 4 (1 if it is night-time, 0 otherwise) 0.0067 4.6959 

Number of observations 2230  

R-squared 0.8797  

Corrected R-squared 0.8795  

System R-squared 0.9232  
* Variables in italics are instrumented because of possible endogeneity.  This is done by regressing the variable 

against exogenous variables and using the regression-predicted values for the 3SLS estimation.  Variables in 
bold are endogenous and part of the simultaneous equation estimation.  Finally, trucks are defined as vehicles 
with wheelbases exceeding 65 feet.   

a) Equation 1 (right lane)1 

Variable: Lane traffic-flow indicator (flows less than 75 veh/h) 

Finding: Positively affects lane-mean speeds in the eastbound direction 

This finding is intuitive in that it illustrates driver tendency to drive the allowable safe speed 
under near free-flow conditions.  Under near free-flow conditions, the visual constraints posed 
by the presence of adjacent vehicles are removed thereby allowing lane-mean speeds to increase 
significantly beyond normal operating speeds (around the speed limit.)  The effect appears to be 
significant in the eastbound direction only and it is likely that the downgrade effect for the 

                                                 

1  The lanes are defined as right, middle, and left relative to the direction of travel. 
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westbound direction annuls the significance of low volumes on lane-mean speeds in the right 
lane. 

Variable: Truck percentage in right lane1 

Finding: Negatively affects lane-mean speeds in both directions 

This finding reflects the impact of truck percentage on speed-flow distributions.  Under 
general conditions, with no constraints on flow levels and accounting for the effect of all other 
factors, increasing truck percentage will tend to decrease lane-mean speeds.  However, as will be 
illustrated in the following discussions, certain truck percentage-flow combinations will create 
desirable conditions for traffic flow. 

Variable: High truck flow in right lane 

Finding: Increases right-lane mean speeds in both directions 

This finding suggests that when truck flow in the right lane exceeds a threshold of flow, lane-
mean speeds will increase as a result of a combination of factors.  Truck drivers driving in high 
truck volumes tend to “draft” taking advantage of the relatively greater uniformity of vehicle 
type in the lane.  This finding is consistent with the truck equivalency factors presented in the 
U.S. Highway Capacity Manual (Transportation Research Board 1994). 

Variable: Relative truck flow indicators  (truck percentage exceeding 60% and total traffic 
flow less than 50 veh/h or truck percentage less than or equal to 20% and total 
lane flow exceeding 200 veh/h) 

Finding: Increases lane-mean speeds in the eastbound direction 

This finding is illustrative of the significance of the impact of vehicle mix on traffic flow 
distribution.  Under low or near free-flow conditions but with a high percentage of trucks, or 
under higher volume conditions but with a relatively low percentage of trucks, lane-mean speeds 
are found to increase because of the uniformity of vehicle type.  The non-uniform range that 
consists of flow-mix combinations of 50-150 veh/h and truck percentages of 20% to 60% is 
likely to cause the most detrimental impact on lane-mean speeds, as evidenced by the general 
finding on truck percentage.  This finding is based on flows observed in the “flat portion” (i.e. 

                                                 

1  Trucks are defined as vehicles with wheelbases exceeding 65 feet. 
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the low-flow portion) of the classic speed-flow curve.  As congestion increases, it is likely that 
the effect of vehicle mix by lane might cause a redistribution of lane use by vehicle type.  The 
effect appears to be significant in the eastbound direction only and it is likely that the downgrade 
effect for the westbound direction annuls the significance of these effects on lane-mean speeds in 
the right lane. 

Variable: Adjacent lane-mean speed (middle lane) 

Finding: Increasing middle-lane speeds increases right-lane mean speeds in both directions 

This variable captures the endogenous lateral cause-effect relationships between adjacent 
lane speeds.1  As will be evidenced in subsequent discussions, adjacent lanes tend to positively 
affect traffic speeds.  The underlying process this factor captures is the need to drive faster to 
merge into adjacent lanes and also the psychological impact faster traffic in the adjacent lane has 
on drivers. 

Variable: Time-of-day indicator (midnight to early morning) 

Finding: Negatively impacts right-lane mean speeds 

This finding represents selection effects of drivers choosing the right lane for travel in the 
morning.  Drivers who tend to use the right lane under free-flow conditions, as expected in the 
midnight to early morning hours, usually consist of slower passenger-car drivers or truck drivers.  
This portion of the population tends to have lower travel speeds. 

Variable: Seasonal indicators (winter, spring) 

Finding: Tend to decrease right-lane mean speeds in the eastbound direction and increase 
right-lane mean speeds in the westbound direction 

These variables capture the effect of weather on right-lane operations.  Particularly in this 
area of I-90 where snow and associated inclement conditions occur in winter and early spring, 
right lanes tend to operate at lower speeds due to vehicle chaining requirements and the 
deterrence of adverse driving conditions in the eastbound direction.  The westbound direction 
seems to experience anomalous effects, however, but this is likely an artifact of the data, 

                                                 

1 Note that only the immediately adjacent lane has a statistically significant impact on lane speeds (i.e., the left-
lane speeds were not fount to affect right-lane speeds). 
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especially the positive effect of winter coupled with no significant effect for Spring.  The artifact 
of the data potentially arises from the location of the speed detectors.  The westbound direction 
detectors are situated in the end portion of the “chain-up” zone for crossing the Cascade 
mountain range.  Therefore speed data collected at the location represent a self-selected sample 
of vehicles whose speed distributions remain relatively unaffected by “chain-up zone” 
requirements. 

Variable: Time-of-week indicator (weekend) 

Finding: Tends to increase right-lane mean speeds in both directions 

This variable represents the near free-flow conditions that exist on weekends, in addition to 
capturing the effect of uniformity of traffic mixes.  Truck traffic in weekend periods is minimal 
and as evidenced before, with greater vehicle type uniformity, right-lane mean speeds are 
expected to increase. 

Variable: Time-of-day indicators (PM and AM peak hours) 

Finding: Right-lane speeds increase during the PM peak hour in the eastbound direction 
and decrease during the AM peak hour in the eastbound and westbound directions 

This peak hour variable captures the effect of several factors such as commute direction and 
vehicle mix uniformity.  Westbound I-90 carries commuter traffic in the morning peak hour, and 
little or no commuter traffic occurs in the eastbound direction.  In addition, freight movement is 
greater during the morning peak hour than in the evening peak hour.  The combination of these 
factors leads to greater uniformity of vehicle mix in the evening peak hour and more mixed flow 
in the morning peak hour.  The lack of a significant PM peak hour effect in the westbound 
direction is likely an artifact of the data, and in generic situations likely will play a significant 
role in both directions. 

b) Equation 2 (middle lane) 

Variable: Adjacent lane-mean speeds (left and right lanes) 

Finding: Increasing adjacent lane speeds increase middle-lane mean speeds in both 
directions 

This variable corroborates the finding on endogenous lateral cause-effect relationships 
between adjacent lane speeds.  The finding on the greater impact of left lane operations further 
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affirms our conclusion that differential lane speeds are critical to the analysis of the overall speed 
distribution. 

Variable: Hourly traffic flow in middle lane 

Finding: Tends to negatively impact middle-lane speeds in both directions 

This finding is consistent with flow-speed relationships observed in other empirical studies.  
Given that truck-related factors were not found to significantly affect middle-lane speeds, this 
finding indicates that as flow in the middle lane (as opposed to the right lane) increases it 
represents the gradual approach to congestion, and the consequent decrease in speeds. 

Variable: Lane use distribution between middle and right lanes (ratio of middle- to right-
lane flows) 

Finding: Increase in ratio decreases middle-lane speeds in both directions 

This finding illustrates the effect of congestion and the declining choice of the middle lane as 
a passing lane as a result of increasing congestion.  As congestion levels are approached, the use 
of the middle lane changes from a passing lane to a capacity lane.  Consequently, driver behavior 
appropriately reflects a tendency to slow down under increasing flows. 

Variable: Time-of-day indicator (night-time) 

Finding: Tends to decrease middle-lane speeds in both directions 

This finding is consistent with the intuitive expectation that night-time conditions present 
more challenges to the driving task, and hence cause drivers to slow down. 

Variable: Time-of-week indicator (weekend) 

Finding: Tends to decrease middle-lane speeds in both directions 

As opposed to a positive impact on right-lane speeds, weekend effects tend to decrease 
middle-lane speeds.  Although this finding appears counter-intuitive, when viewed within a free-
flow regime context, it appears tenable.  During weekends, when near free-flow conditions exist, 
lane usage is not governed by the need to pass, but by arbitrary choice.  Vehicles that use the 
middle lanes in weekend periods therefore in general are not speeding to pass, as opposed to a 
weekday situation.  As a result, it is not unusual to expect slower moving vehicles in the middle 
lane. 
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c) Equation 3 (left lane) 

Variable: Truck percentage in left lane 

Finding: Increasing truck percentage increases left-lane speeds in eastbound direction 

This finding illustrates the primary effect of a passing lane on cross-sectional flow-speed 
relationships when from a capacity standpoint.  A higher truck percentage in the left lane reflects 
truck drivers’ tendencies to pass slower traffic in order to accelerate up the steeper grade that is 
immediately upstream of the eastbound direction.  The geometric constraints oncoming terrain 
poses to truck drivers causes this phenomenon.  The westbound direction experiences no 
significant effect due to the significant downgrade that exists. 

Variable: Lane use distribution between left and middle lanes (ratio of left to middle lane 
flows) 

Finding: Increase in ratio increases left-lane speeds in both directions 

This finding illustrates that as traffic flows in the middle and right lanes approach thresholds 
where lane speeds have to decrease to maintain safe operations, the use of the left lane as a 
passing lane increases thereby attracting faster drivers. 

Variable: Adjacent lane-mean speeds (middle lane) 

Finding: Increasing adjacent lane speeds increase left-lane mean speeds in both directions 

This variable corroborates the finding on endogenous lateral cause-effect relationships 
between adjacent lane speeds.  The finding on the isolated impact of middle lane operations is 
consistent with our findings on the impact of middle lane operations on right-lane mean speeds. 

Variable: Time-of-day indicator (night-time) 

Finding: Increases left-lane speeds in both directions 

This finding appears counter-intuitive, but provides interesting insight into drivers’ 
perception of lane usage by time-of-day.  Under night-time conditions, the use of the middle lane 
as a passing lane declines in favor of the left lane for drivers who tend to drive significantly 
faster than the average driver.  Thus the night-time factor captures aggressive driving behavior 
and the locational occurrence of such behavior in a cross-sectional context. 
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4.6 Estimation of speed deviations 

The models of speed deviations in the eastbound and westbound directions can be seen in 
Tables 4.4 and 4.5, respectively. 

Table 4.4:  Three-stage least squares estimation of grouped lane-speed deviations for eastbound 
I-90. 

Variable* Estimated 
coefficient 

t-statistic 

Equation 1: Right-Lane Speed Deviation (Dependent Variable)   

Constant 34.5707 7.6989 

Speed Deviation in middle lane 0.1996 2.5356 

Logarithm of right-lane mean speed** 3.6272 2.6788 

Logarithm of middle-lane mean speed** -10.1006 -10.0808 

Time-of-day indicator 1 (1 if hour of observation is between midnight 
and 6:00 AM, 0 otherwise) 

0.2384 3.4834 

Time-of-day indicator 2 (1 if it is PM peak hour, 0 otherwise) -0.0917 -1.4435 

Seasonal indicator 1 (1 if it is winter, 0 otherwise) -0.2234 -4.3246 

Time-of-week indicator (1 if it is weekend, 0 otherwise) -0.2969 -5.8715 

Truck-to-passenger car flow ratio -0.1238 -7.8162 

Number of observations 2233  

R-squared 0.2959  

Corrected R-squared 0.2934  

Equation 2: Middle-Lane Speed Deviation (Dependent Variable)   

Constant 34.6818 10.6756 

Speed Deviation in right lane -0.0516 -1.3422 

Speed Deviation in left lane 0.3791 13.6739 

Logarithm of right-lane mean speed** -31.0753 -11.7211 

Logarithm of middle-lane mean speed** 11.2859 8.9724 

Logarithm of left-lane mean speed** 12.0551 5.0897 

Time-of-week indicator (1 if it is weekend, 0 otherwise) 0.4592 8.0088 
* Variables in italics are instrumented because of possible endogeneity.  This is done by regressing the variable 

against exogenous variables and using the regression-predicted values for the 3SLS estimation.  Variables in 
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bold are endogenous and part of the simultaneous equation estimation.  Finally, trucks are defined as vehicles 
with wheelbases exceeding 65 feet.   

** Lane-mean speeds are instrumented variables in the speed deviation system.  Predicted values from the lane-
mean speed system were used in this 3SLS estimation. 

(Continued) 

Table 4.4:  Three-stage least squares estimation of grouped lane-speed deviations for eastbound 
I-90. (Continued). 

Variable* Estimated 
coefficient 

t-statistic 

Seasonal indicator 1 (1 if it is winter, 0 otherwise) -0.1081 -2.3134 

Time-of-day indicator 1 (1 if hour of observation is between midnight 
and 6:00 AM, 0 otherwise) 

0.2430 6.1934 

Time-of-day indicator 2 (1 if it is PM peak hour, 0 otherwise) -0.1829 -3.5588 

Number of observations 2233  

R-squared 0.3598  

Corrected R-squared 0.3572  

Equation 3: Left-Lane Speed Deviation (Dependent Variable)   

Constant 22.9298 3.5773 

Speed Deviation in middle lane 1.0753 10.3436 

Logarithm of middle-lane mean speed** -29.5472 -13.8764 

Logarithm of left-lane mean speed** 24.0178 11.6909 

Passenger car percentage -1.0800 -2.4323 

Seasonal indicator 1 (1 if it is winter, 0 otherwise) 0.6884 6.5079 

Time-of-day indicator 2 (1 if it is PM peak hour, 0 otherwise) 0.4557 3.3125 

Number of observations 2233  

R-squared 0.3285  

Corrected R-squared 0.3267  

System R-squared 0.3288  
* Variables in italics are instrumented because of possible endogeneity.  This is done by regressing the variable 

against exogenous variables and using the regression-predicted values for the 3SLS estimation.  Variables in 
bold are endogenous and part of the simultaneous equation estimation.  Finally, trucks are defined as vehicles 
with wheelbases exceeding 65 feet.   



76 

 

** Lane-mean speeds are instrumented variables in the speed deviation system.  Predicted values from the lane-
mean speed system were used in this 3SLS estimation. 

Table 4.5:  Three-stage least squares estimation of grouped lane-speed deviations for westbound 
I-90. 

Variable* Estimated 
coefficient 

t-statistic 

Equation 1: Right-Lane Speed Deviation (Dependent Variable)   

Constant -0.5669 -0.3505 

Speed Deviation in middle lane 0.8431 37.1615 

Logarithm of right-lane mean speed** 9.7616 9.7441 

Logarithm of middle-lane mean speed** -9.0162 -8.7505 

Time-of-day indicator 1 (1 if hour of observation is between midnight 
and 6:00 AM, 0 otherwise) 

-0.1023 -2.0570 

Time-of-week indicator (1 if it is weekend, 0 otherwise) -0.1552 -3.8241 

Number of observations 2230  

R-squared 0.3965  

Corrected R-squared 0.3951  

Equation 2: Middle-Lane Speed Deviation (Dependent Variable)   

Constant 2.1069 08975 

Speed Deviation in right lane 1.1797 31.0057 

Speed Deviation in left lane -0.0332 -1.6305 

Logarithm of right- lane mean speed** -12.3373 -3.6331 

Logarithm of middle-lane mean speed** 9.5426 7.1049 

Logarithm of left-lane mean speed** 1.6071 0.5003 

Time-of-week indicator 1 (1 if it is weekend, 0 otherwise) 0.1856 3.5658 

Seasonal indicator 1 (1 if it is winter, 0 otherwise) 0.0380 1.5280 

Time-of-day indicator 1 (1 if hour of observation is between midnight 
and 6:00 AM, 0 otherwise) 

0.1429 2.4480 

* Variables in italics are instrumented because of possible endogeneity.  This is done by regressing the variable 
against exogenous variables and using the regression-predicted values for the 3SLS estimation.  Variables in 
bold are endogenous and part of the simultaneous equation estimation.  Finally, trucks are defined as vehicles 
with wheelbases exceeding 65 feet.   
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** Lane-mean speeds are instrumented variables in the speed deviation system.  Predicted values from the lane-
mean speed system were used in this 3SLS estimation. 

(Continued) 

Table 4.5:  Three-stage least squares estimation of grouped lane-speed deviations for westbound 
I-90. (Continued). 

Equation 2 (continued)   

Number of observations 2230  

R-squared 0.3460  

Corrected R-squared 0.3436  

Equation 3: Left-Lane Speed Deviation (Dependent Variable)   

Constant 29.3353 5.8855 

Speed Deviation in middle lane 0.3794 5.2335 

Logarithm of middle-lane mean speed** -33.2354 -15.0579 

Logarithm of left-lane mean speed** 26.9555 11.1272 

Seasonal indicator 1 (1 if it is winter, 0 otherwise) 0.4621 4.2952 

Number of observations 2230  

R-squared 0.2682  

Corrected R-squared 0.2669  

System R-squared 0.3087  
* Variables in italics are instrumented because of possible endogeneity.  This is done by regressing the variable 

against exogenous variables and using the regression-predicted values for the 3SLS estimation.  Variables in 
bold are endogenous and part of the simultaneous equation estimation.  Finally, trucks are defined as vehicles 
with wheelbases exceeding 65 feet.   

** Lane-mean speeds are instrumented variables in the speed deviation system.  Predicted values from the lane-
mean speed system were used in this 3SLS estimation. 

a) Equation 1 (right lane) 

Variable: Speed deviations in middle lane 

Finding: Middle-lane deviation positively affects speed deviation in right lane in both 
directions 

This variable captures the lateral lane effects across the roadway.  However the impact 
includes the car-following response effect (not expected in adjacent lane speed effects) due to 
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lane changes that adjacent-lane deviations bring.  Greater deviations in the middle lane indicate 
to drivers in the right lane more opportunities, although intermittent, for lane changing than a 
lower deviation would.  Hence, the car-following driver response in the right lane is 
simultaneously being influenced by the opportunity for lane changing which causes the sub-
conscious effect of higher fluctuation in in-lane speeds. 

Variable: Lane-mean speeds1 

Finding: Right-lane mean speeds positively affect right-lane speed deviations while 
middle-lane mean speeds negatively affect right-lane speed deviations 

This finding is intuitive and consistent with the relationships drawn in previous studies 
between the coefficient of dispersion and mean speeds (see for example May, 1990).  The 
negative impact of middle-lane speeds on right lane deviations indicates that drivers tend reduce 
their deviations as adjacent lane speeds go up in order to make their lane changing operations 
safer. 

Variable: Time-of-day indicators (early morning and PM peak) 

Finding: Early morning effects cause an increase in right-lane deviations in the eastbound 
direction while PM peak hour effects cause a decrease in right-lane speed 
deviations in the eastbound direction.  In the westbound direction early morning 
effects cause a decrease in right-lane deviations while PM peak hour effects are 
insignificant. 

The “midnight to early morning” variable, as discussed previously in its effects on lane 
speeds, captures driver response under near-free-flow conditions.  Depending on whether it is an 
upgrade or a downgrade, driver response in car following is expected to change.  In the 
eastbound direction, where a significant upgrade follows the loop detector locations, deviations 
tend to increase in the most-used lanes during that time of day, namely, the right and middle 
lanes.  In contrast, the downgrade in the westbound direction collapses the speed distribution and 
has a downward effect on speed deviations in general.   

In the PM peak hour, traffic flow increases to levels that warrant use of the middle and left 
lanes from a capacity standpoint, and coupled with the greater uniformity in vehicle mix, the net 
effect on speed deviations in the right lane is a decline.  That this effect was not found to be 

                                                 

1  Lane-mean speeds are instrumented variables in the speed deviation system.  Predicted values from the lane-
mean speed system were used in this 3SLS estimation. 
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significant in the westbound direction is explained by lack of significant commuter traffic in that 
direction at the location being considered.  In fact, any commute-related effects in the westbound 
direction is marginally captured by the “early morning” variable which, as mentioned previously, 
has a negative impact on right-lane speed deviations. 

Variable: Seasonal indicator (winter)1 

Finding: Winter effects tend to decrease speed deviations in the eastbound direction 

Winter effects capture the effects of driver behavior under inclement conditions.  Although 
speeds tend to decline under inclement conditions, driver behavior is altered to the extent that 
significantly more attention is paid to the driving task.  Drivers tend to maintain constant 
headways, and minimize lane changing operations.2  The net effect of such behavior is an 
associated decline in right-lane deviations.  It is also important to note that the “chain-up” zone 
occurs upstream of the eastbound direction, causing additional constraints on traffic dispersion.  
In the westbound direction, due to the fact that the detectors are downstream of the “chain-up” 
zone, such constraints are minimal.  Nevertheless, the finding on the westbound effects of the 
season variables may merely be artifacts of the data for other reasons. 

Variable: Time-of-week indicator (weekend) 

Finding: Decreases right-lane speed deviations in both directions 

The finding on this variable illustrates selectivity in the driving population that chooses the 
right lane on weekends.  As mentioned previously, perhaps, this class of drivers not only 
maintain lower speeds but also lower deviations because they are risk averse. 

Variable: Truck-to-passenger car ratio 

Finding: Decreases right-lane speed deviations in the eastbound direction with no 
significant effect in the westbound direction 

                                                 

1  In the absence of microscopic weather data, lateral lane effects are captured by the seasonal indicator.  While 
this does not cause an omitted variable bias, real-time microscopic weather information will provide interesting 
insights into the impacts of factors such as precipitation versus snow pileup, and rainfall versus pavement 
drainage on driver behavior. 

2 Such behavior is more prevalent amongst drivers who choose to use the right and middle lanes.  On the 
contrary, as will be evidenced later in the discussion of weather effects on left-lane speed deviations, the self-
selection of riskier drivers in left lanes will likely cause an increase in speed deviations. 
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Increasing truck-to-passenger car ratio effects reiterate the impact of vehicle-mix uniformity 
and “truck drafting phenomena” on reduction of speed deviations.  In the presence of significant 
upgrades, there is self-selection of the right lane by heavier traffic.  In the presence of a 
downgrade, as evidenced in the westbound direction, this need is not compelling. 

b) Equation 2 (middle lane) 

Variable: Speed deviations in right and left lanes 

Finding: Right-lane deviations negatively affect middle-lane speed deviations while left-
lane speed deviations have a positive impact in the eastbound direction.  In the 
westbound direction, the effects are opposite 

The finding on these variables are consistent with the unobserved effects due to grades as 
presented in previous discussions.    

Variable: Lane-mean speeds 

Finding: Right-lane mean speeds have a negative impact on middle-lane speed deviations 
while middle- and left-lane mean speeds have positive impacts in both directions 

Higher right-lane mean speeds indicate that the vehicle-to-vehicle interaction in the traffic 
flow continuum is smoother with drivers experiencing a decreased need for lane changing.  
Consequently speed deviation in the middle lane is affected inversely with the lane change need.  
The positive impact of middle- and left-lane speeds on in-lane deviations appears aberrational 
and inconsistent with previous findings  However, it is likely capturing the flux in driver 
selectivity in the middle lane.  Middle-lane users are arguably the most diverse in terms of their 
inherent driving natures, and hence may have a fundamental tendency to vary their speeds more.  
Consequently in situations where in-lane or left-lane speeds increase, drivers may be increasing 
their speeds in order to change to the left lane or that traffic volumes are quite below capacity.1 

Variable: Time-of-week indicator (weekend) 

Finding: Increase in on middle-lane speed deviations in both directions 

                                                 

1 In the westbound direction, the effect of left-lane speed is statistically insignificant (t-statistic = 0.50).  
However as mentioned previously, this could be an artifact of the data and it is likely that when grade-related 
effects are quantified as continuous variables and interactions by lane, such anomalies will diminish.  The intent 
of this paper to present as general a specification that offers comparable insights into the effects of endogenous 
variables on speed and speed deviation relationships. 
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This finding corroborates previous inferences given that traffic volumes in the middle lane 
during weekends are expected to be minimal. 

Variable: Seasonal indicator (winter) 

Finding: Decrease in middle-lane speed deviation in the eastbound direction while 
increasing in the westbound direction 

This finding is consistent with evidence on winter effects found in previous variables.  
However, it appears that westbound direction experiences adverse effects (positive) in the 
passing lanes, the effects most likely being downgrade-related. 

Variable: Time-of-day indicator (midnight to early morning) 

Finding: Increases middle-lane speed deviations in both directions 

This finding indicates the effect of free-flow conditions on driver behavior when the 
population selection effect (as evidenced in right lane relationships) is absent.  Coupled with the 
fact that the middle lane and left lanes serve as passing lanes under such conditions, causes an 
increase in speed deviations. 

Variable: Time-of-day indicator (PM peak hour) 

Finding: Decrease in middle-lane speed deviations in the eastbound direction and 
insignificant in the westbound direction 

This finding indicates the effect of commute-related volume effects on speed deviations and 
is consistent with earlier inferences on traffic flow variable-related impacts. 

c) Equation 3 (left lane) 

Variable: Speed deviation in middle lane 

Finding: Positively affects speed deviations in the left lane in both directions 

The lateral “friction” effects caused by interaction between the middle and left lanes are 
captured by this variable.  Given that this portion of I-90 is largely in the “flat” portion of the 
upper part of the speed flow curve, the middle and left lanes serve predominantly as passing 
lanes, thereby experiencing a self-selected sample of drivers who are more risk-prone and 
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significantly influenced by variations in speed.  The positive impact of the variable captures such 
lateral lane effect dynamics. 

Variable: Middle- and left-lane speeds 

Finding: Increasing middle-lane speeds decrease left lane deviations while increasing in-
lane speeds increase in-lane deviations in both directions 

This variable captures similar to the endogenous relationships between the middle and right 
lanes, the cascading effect of speed variation from the right lane to the left lane.  With higher 
middle lane speeds the need to change to the left lane decreases, thereby minimizing friction in 
the left lane.  On the other hand, when left-lane speeds increase, there is a consequent increase in 
speed deviation because the self-selection of the left lane to the most risk-prone drivers is 
greatest. 

Variable: Passenger car percentage 

Finding: Negatively affects eastbound speed deviations 

This finding illustrates locale-specific effects related to grades.  The eastbound direction 
which experiences significant upgrades consequently also experiences a greater distribution of 
truck traffic across the cross-section.  The passenger car variable captures this effect and 
corroborates the impact of uniformity of vehicle mix on traffic flow dispersion. 

Variable: Time-of-day indicator (PM peak hour) 

Finding: Increases eastbound speed deviations 

This finding is consistent with earlier discussions in that the middle and left lanes serve as 
passing lanes and commuter lanes in the PM peak hour in the eastbound direction.  The positive 
effect may also be capturing the tendency of drivers in their home-bound commute to take 
greater risks, evidence that cannot be supported in the westbound direction because of its lack of 
commute effects. 

Variable: Seasonal indicator (winter) 

Finding: Increases left-lane speed deviations in both directions 

This finding is consistent with those presented for middle-lane speed deviations. 
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4.7 Conclusions 

Endogenous relationships within lane speeds and between lane speeds and speed deviations 
were found to be statistically valid.  The westbound and eastbound directions of our study site 
experienced dissimilar effects related to grade, time-of-day and time-of-week characteristics.  On 
the other hand, the endogenous relationships in large part are similar, with estimated coefficients 
of like sign, means and standard errors.  Our findings show that in-lane speeds are affected only 
by adjacent-lane speeds and in-lane speed deviations are affected progressively by adjacent lane 
speed deviations and in addition, in-lane and adjacent-lane speeds.  Coupled with findings on the 
contemporaneous impact of temporal and vehicle-mix factors, such inferences corroborate the 
need for a comprehensive investigation into lane-mean speed and lane-speed deviation 
relationships.  To be sure, the data we used was limited (i.e. a single site) it that it did not allow 
us to explore variations in geometric characteristics, functional classifications, and other factors 
that might vary from site to site.  Further insights could be gained from a more diverse data set 
that encompasses various regions and roadway functional classes. 

The findings gathered from this research appear promising for further application of the 
structural equations methodology to macroscopic traffic-flow modeling.  It is quite possible that 
dynamic effects could be uncovered to a greater extent with more microscopic data by 
incorporating pre-determined lane-mean speed and lane-speed deviation variables in the 
specifications.  Such a study could have objectives relating to the unraveling of incremental 
dynamics in traffic flow under smaller time windows and greater seasonal, vehicle-mix 
constraints.  While the present research offers generic insights, understanding the cause-effect 
relationships between lane-mean speed and lane-speed deviations under such constraints could 
enrich our knowledge of driver response under specific conditions.  Such knowledge will be 
beneficial to the design and planning of advanced traffic management systems intended for the 
improving traffic flow and safety. 



 

Part III 

Survey Studies 
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It is important to study driver behavior before the implementation of the TravelAid advisory 
systems.  This enables the comparison of before and after data to understand the actual effect of 
the TravelAid project.  For this purpose, a survey was designed and data was collected from 
Snoqualmie Pass drivers during the winter of 1995. 

The design of the survey and the data collection is described in the next Chapter.  There is 
then a Chapter that describes the research of Morse (1995) on the reported speed reductions of 
drivers in adverse weather conditions.  It is followed by a Chapter on the analysis of various 
other reported driver behavioral characteristics (Boyle, 1998).  That research provides before 
data for a comparative driving simulator study described in the next Part. 
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Chapter 5 

Methodology 

A questionnaire was developed to collect motorist’s opinions about safe speeds in dry, wet, 
and icy conditions, as well as the motorists’ perception of an in-vehicle device that provides real-
time information.  As part of the evaluation of the TravelAid Project, the questionnaire was 
designed to collect data on the needs of the motorists and data for the evaluation project.  The 
TravelAid Project includes the evaluation of the use of an in-vehicle display device.  The 
questionnaire included questions about the use of the device and solicited volunteers to 
participate in simulation experiments and personal interviews regarding the use of the device.  
The questionnaire was mailed to 1,960 motorists to determine what information is most useful 
(important) to motorists and to safety.  The results of the questionnaire are discussed later in this 
Chapter.  License-plate numbers were collected from vehicles using Snoqualmie Pass in March 
1995.  These numbers were used to obtain the addresses for the mail-back survey. 

5.1 License-plate numbers 

License-plate numbers were collected from vehicles using Snoqualmie Pass and a 
questionnaire was mailed to the registered owner.  Experience with mail-back surveys 
(Mannering and Koehne, 1994) has shown that a sample of 400 responses is adequate to create a 
statistically valid model of driver-behavior based on driver characteristics. 

Other surveys conducted recently in the Seattle area experienced a 25 percent response rate 
(Mannering and Koehne, 1994). Therefore, about 1,600 addresses were needed to insure 400 
responses.  Based an a 25 percent collection-error rate, 2,000 license-plate numbers would be 
required to obtain 1,600 valid addresses. 

Binoculars were used to read license-plate numbers from vehicles.  Observers sat on a 
roadway structure over the freeway and read the numbers from the rear of vehicles driving away 
from the observers. Eight hundred numbers were collected on March 21, 1995:  400 from 
milepost 62 (the east end of the pass) and 400 from milepost 32 (the west end of the pass).  
Numbers were not collected from the summit because there is no structure from which to 
observe.  One thousand license-plate numbers were collected from milepost 32 on March 22, 
1995.  Two observers each collected 500 numbers from different directions of the freeway. Since 
the ski areas were closed when the numbers were taken from the roadway, very few skiers were 
observed on the road as well as in the parking lot. 
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On Saturday, March 26, 500 additional numbers were collected from vehicles in the parking 
lots of the Snoqualmie Pass ski areas.  Table 5.1 shows the date and count of license-plate 
numbers collected from each location. 

The use of numbers collected from the parking lots of ski areas could bias the survey.  
However, because skiers are a significant portion of winter time users, it is important that skiers 
be included in the survey.  Since 22 percent of the numbers came from skiers, but 38 percent of 
the respondents use the pass for recreational reasons, the sample may be biased toward non-
skiers.  This bias will only be significant if skiers have different information requirements than 
other motorists.  Models developed for recreational users and non-recreational users showed no 
significant difference in information requirements. 

All license-plate numbers were written on pre-printed tally sheets, which were marked to 
show the direction of travel (a special code was used for the numbers from the parking lot).   

The numbers were entered into a text file and sorted. Collecting license-plate numbers on 
three different days could have caused a problem with duplicate numbers. Fifty duplicate 
numbers were found and removed, giving a total of 2250 numbers.  The file was sent to the 
Department of Licensing, which returned a file containing 2,175 addresses. 75 numbers were not 
on file.  It is possible that some numbers were misread or were transcribed incorrectly when 
entered into the data file. 

There are many factors that could cause the number to be misread.  In order to collect data, 
the research team had to sit on a six-foot shoulder of a busy arterial facing away from traffic — 
an uncomfortable situation.  Passing motorists who shout, honk or drive too close are a strong 
distraction.  Several letters in the alphabet are very similar in shape and easily confused.  Many 
vehicle owners have decorative license-plate covers or borders.  The borders partially obscure or 
blend into the letters and make them difficult to read.   

Discussions with other survey takers in the Seattle area indicated that a significant number of 
plates would not be on file.  However, if the observer misread one letter and created a ‘new’ 
number, the new number could be valid.  There is no way to know how many of the license-plate 
numbers collected were misread.  The misread numbers could affect the number of responses if 
the ‘new’ number matches a person who does not drive on Snoqualmie Pass or matches a vehicle 
that is inoperable.  Because all drivers’ opinions are equally important, responses to misread 
numbers will not adversely affect the outcome of the survey. 



88 

 

Business addresses and rental car addresses were removed, leaving 1,960 personal addresses.  
The target respondents were drivers.  If the survey were sent to businesses or rental car agencies, 
there would be no way to know who would answer it. 

Table 5.1:  The count of license-plate numbers collected on three dates from three locations. 

Date Milepost 32 Milepost 62 Ski 
area 

March Eastbound Westbound Eastbound Westbound  

21 - Tu. 200 200 200 200 0 

22 - We 500 500 0 0 0 

26 - Sa. 0 0 0 0 500 
 

5.2 Questionnaire 

The format of the questionnaire was driven by the cost of postage and ease of use by the 
respondent.  A three-page questionnaire was designed and printed on a single sheet and folded to 
open like a book (with no loose pages to be lost).  The three-page design was not long enough to 
intimidate the recipient and the single sheet made the questionnaire easier to follow, preventing 
confusion and incomplete sections. 

The questionnaire was broken into three sections: information about the respondent’s trip, 
the respondent’s opinions about the pass, and demographic information about the respondent.  
See the appendix for a copy of the questionnaire. 

In the trip section of the questionnaire, the respondent answered questions about a typical trip 
on Snoqualmie Pass.  The frequency of trips, the driving speed, the purpose of the trip, seatbelt 
usage, accident information, and the source and importance of weather and roadway information 
were all topics addressed by this section of the questionnaire. 

The opinion section asked the respondent to give opinions about safe driving speeds and 
general safety aspects of the pass.  The respondent was also asked to give opinions about the use 
of an in-vehicle display device. 

The last section asked questions about age, income, sex, marital status, family size and the 
number of vehicles owned by the family.  The respondent was also asked if they are interested in 
participating further in the project — either as a tester of an in-vehicle device, or in an interview 
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or simulation experiment.  The questionnaire also contained space for the respondent to put 
contact information for further participation and to make comments. 

When finished with the questionnaire, the respondent was asked to mail it back with return 
postage paid by the project.  The results of the survey are discussed in the next section. 

5.3 Descriptive statistics 

Of the 1,960 questionnaires distributed, 23 percent were returned, providing 444 
observations for analysis.  The responses to the survey are superimposed on the questionnaire in 
Appendix A. 

Based on the questionnaire responses, 39 percent of the respondents use Snoqualmie Pass for 
recreational purposes, 28 percent for family visits, 21 percent for business, 3 percent for errands 
and 9 percent for other reasons (such as trips to the doctor).  The large number of trips using the 
pass for recreation and family visits and the infrequency of the trips (usually less than 2 per 
month) points to the need for an efficient and reliable motorist information system on the pass.  
Infrequent users cannot rely on experience to know what to expect in terms of weather and 
roadway conditions.  Infrequent users also have difficulty in judging the proper speed in adverse 
weather conditions, as shown in the statistical analyses later in this Chapter. 

Figure 5.1 shows the number of trips made during the months of December, January and 
February.  The number of trips made in the winter months was used in the models to measure 
winter driving experience.  The plots of trips made in spring, summer, and fall closely resemble 
those shown in Figure 5.1.  

The results of this questionnaire showed that 52 percent of the respondents drive at or above 
the posted speed limit (65 mph) on dry roadway conditions.  In wet conditions, 61 percent drove 
between 55 and 65 mph.  Ninety-three percent indicated that they drove less than 55 mph in icy 
conditions.  The large number of motorists driving at or near 65 mph in wet conditions suggests 
that motorists may be over-driving their capabilities as well as a safe speed.   

Most respondents (95%) indicated that increasing safety is moderately to very important, 
while 85 percent indicated that saving trip time is moderately to very important.  The tendency to 
speed is corroborated by the respondents that indicated that saving trip time is important.  This 
finding is of particular interest when compared to the number of respondents that reported safety 
to be moderately to very important.  More than three quarters of the respondents indicated that 
the 65 mph speed limit is unsafe in wintry conditions.  In winter, the need for safety and lower 
speeds is in conflict with the desire to reduce trip time and higher speeds.  With the 
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implementation of variable speed-limit signs, the TravelAid Project will enhance safety and 
encourage lower speeds during adverse conditions. 
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Figure 5.1:  The number of trips made in winter (Dec. through Feb.). 

A small number of respondents (14%) admitted they drive at or above the speed limit in wet 
or icy conditions, and 85 percent agree that trip safety is important.  Seventy-seven percent of the 
respondents disagreed that 65 mph is a safe speed limit for wintry conditions.  These results are 
not contradictory.  If the majority of drivers know that it is unsafe to drive 65 mph on the pass in 
winter and agree that safety is important, why is the speed limit 65 mph?  Until the TravelAid 
Project, law enforcement agencies had no economical means to change the speed limit during the 
winter.  With the variable speed-limit signs, the Washington State Patrol will be able to enforce a 
speed limit that is appropriate for prevailing conditions.  The final report on the Evaluation of the 
TravelAid Project will discuss the impact of the variable speed limits on the accident rate. 

Respondents indicated that current weather conditions were very important (66%).  Roadway 
conditions were considered very important to 74 percent of respondents.  Forty-four percent of 
respondents consider weather forecasts very important.  Motorists are most interested in roadway 
conditions because these conditions have the largest impact on trip time and safety.  Current 
weather conditions are considered important because their influence on roadway conditions.  
Weather forecasts are of least interest because they have the least impact on current conditions, 
but may be useful to predict the roadway conditions that the motorist may encounter on the next 
trip or return trip. 
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Fifty-seven percent of the respondents indicated that the presence of an incident was very 
important information.  The number of lanes blocked was very important to fewer respondents 
(50%).  The type of incident and the level of congestion were very important to 35 percent of 
respondents.  This finding suggests that motorists are more interested in the presence of a 
problem than the specific details or nature of the problem.  If this is true, then information 
providers must concentrate on distributing information on the existence of a problem and do not 
need to worry about the details of the problem.  When the amount of information is restricted, 
such as on a variable message sign or in-vehicle display device, the details of a problem can be 
omitted; the presence of the problem is the essential information. 

Highway advisory radio was the preferred source of road and weather information, chosen by 
44 percent of the respondents, followed by commercial radio stations with 23 percent.  Table 5.2 
shows the number of responses for each information source. 

Between half and three quarters of the respondents consider accident, lane blockage 
information, current weather, or road information to be very important.  These types of 
information all directly influence trip time and safety.  Highway advisory radio was the most 
common source of road and weather information.  This means that the most desired information 
is available in very limited locales.  The use of an in-vehicle display device will significantly 
increase the availability of road and weather information — the driver will receive information 
as it becomes available in the I-90 corridor between North Bend and Cle Elum, not just at the 
highway advisory radio transmission sites. 

Many respondents (86%) agreed or strongly agreed that the 65 mph speed limit is safe for 
dry road conditions.  Most respondents (77%) disagreed or strongly disagreed that the 65 mph 
speed limit is safe for wintry conditions.  Two-thirds of the respondents (68%) agreed or strongly 
agreed that other sections of Interstate 90 are less dangerous in rain or snow.  

Many respondents (92%) indicated that they would use an in-vehicle information device if 
one was provided (at no cost to the user).  However, 60 percent of those respondents indicated 
that they would obey the device only if conditions warranted if told to put on chains.  Thirty-
seven percent would obey immediately.  Fifty-six percent would obey immediately if told to 
slow down — 42 percent would slow down only if conditions warranted.  Seventy-three percent 
of the respondents are interested in using an in-vehicle display device, but respondents were split 
on their perceived obedience of the device.  Most respondents indicated that they would reduce 
speed when commanded by the device.  However, most respondents would not put on chains 
unless conditions warranted chains.  Figure 5.2 shows the relationship between the number of 
respondents willing to use a display device and their perceived obedience of the device. 
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Table 5.2:  The number of responses for each source of driver information. 

Source Number of 
responses 

Percentage 

CB Radio 7 2 

Cellular Phone 6 2 

Commercial Radio Station 87 23 

Highway Advisory Radio 165 44 

Commercial TV Station 30 8 

Variable Message Signs 25 7 

Observation of Traffic Conditions 12 3 

Talking to Other Drivers 2 0.5 

Other Sources 44 12 
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Figure 5.2:  The perceived obedience of an in-vehicle display device. 

Speed reduction is easily accomplished from the driver’s compartment — little effort is 
required.  However, putting on chains is disruptive — someone must spend the time and energy 
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to install the chains.  These findings suggest that the interest in the device must stem from the 
information that it provides (or we live in a gadget-happy society.)  Since space in which to 
safely chain-up is limited and motorists are reluctant to chain-up until absolutely necessary, the 
greatest benefit of the display device (from the driver’s point of view) may be the timely road 
and weather information, while highway officials may see the speed control aspect to be most 
beneficial.  The final report on the Evaluation of the TravelAid Project will discuss the results of 
the simulation experiments using the in-vehicle display devices. 

Nearly all of the respondents (91%) wear their seatbelts all of the time.  Seatbelts are never 
worn by 4 (0.90%) of the respondents.  These results are significantly higher than the state and 
national average seatbelt usage rates.  Nationally, the average seatbelt use rate in passenger 
vehicles is 58 percent, compared to 83 percent in Washington State.  The higher than average 
conformance to the seatbelt regulation may indicate a willingness to also obey the variable 
speed-limit signs, if they are seen as necessary safety measures.  However, the survey results 
may not accurately reflect seatbelt usage in Washington.  Respondents may have answered 
optimistically or been influenced by the desire to “give the right answer” and reported higher 
than actual seatbelt usage. 

Summary statistics for the surveyed data is provided in Table 5.3 for those variables that 
were used in the forthcoming data analyses.  As we can see from the table, 64.2% were male and 
73.1% were married.   

The average driving speed was highest for driving on dry roads, and lowest for icy roads.  
This is also anticipated since most drivers tend to drive slower in more hazardous road 
conditions.  Further, no one in this surveyed sample reported that they drove over 75 mph on icy 
roads. 

In terms of utilization of an in-vehicle device, 91.6% (n=404), said they would use the 
system, and 8.4% (n=37) said they would not.  Therefore, a large proportion of the drivers 
sampled saw a need for such an in-vehicle system while driving over the pass.  In addition, 
42.8% said they would “slow down” only if conditions warranted it, and 57.2% said they would 
“slow down” immediately.  When we compare this with the ratio of those who would obey only 
if conditions warranted for “putting on chains”, to those who would obey immediately 
(61.6/38.4), we find a greater proportion unwilling to obey immediately.  This suggests that if 
the system requires the driver to conduct an activity outside their vehicle, drivers will question 
the validity of performing the extra task. 
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Table 5.3:  Summary statistics of survey data. 

Gender (sample size and percentage) 
 Males 
 Females 

 
280 (64.2%) 
156 (35.8%) 

Age of drivers  

Marital Status (sample size and percentage) 
 Married 
 Single 

 
269 (73.1%) 
99 (26.9%) 

Number of people in vehicle (average) 2.21 

Amount of time driving over pass during:(average) 
 Winter 
 Spring 
 Summer 
 Autumn 

 
11.2 times 
8.6 times 
8.4 times 
7.9 times 

Average speed on: (average) 
 Dry roads 
 Wet roads 
 Icy roads 

 
65.0 mph 
58.8 mph 
43.3 mph 

Primary trip purpose (number of respondents/percentage) 
 Recreation 
 Business 
 Family 
 Errands 
 Other 

 
163 (38.9 %) 
86 (20.5 %) 
118 (28.2 %) 
14  (3.3 %) 
38  (9.1 %) 

Utilization of in-vehicle system (sample size of yes/no responses) 404/37 

Would “slow down” 
 Immediately if system told them to do so 
 Only if conditions warranted 

 
247 (57.2%) 
185 (42.8%) 

Would “put on chains”: 
 Immediately if system told them to do so 
 Only if conditions warranted 

 
159 (38.4%) 
255 (61.6%) 
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Chapter 6 

Speed reductions in adverse conditions 

6.1 Introduction 

The variable message signs and the variable speed-limit signs provided by the TravelAid 
Project will address two issues on Snoqualmie Pass:  motorist speeds in adverse conditions and 
road and weather information for motorists.  In order to evaluate the TravelAid Project, data was 
required regarding the information needs and driving characteristics of the motorist.  A survey 
was conceived to gather data about the motorists:  their use of the pass, driving habits and 
characteristics, opinions and perceptions, preferences and uses of road and weather information.  
In this Chapter a brief background on information distribution systems will be given. Then the 
development of the survey questionnaire will be described.  Following that the results of the 
survey will be analyzed and then discussed. 

a) Information distribution systems 

Currently, road and weather information for Snoqualmie Pass is available from the following 
sources:  

• Commercial radio and television broadcasts 

• Highway Advisory Radio broadcasts 

• Pay-per-use telephone numbers 

• Manually controlled message signs (e.g., “chains required”) 

According to Bosely et al., (1993), the most popular (traditional) methods of information 
distribution include those on Snoqualmie Pass and: 

• Rest-area broadcasts 

• Commercial local-area advisory broadcasts 

• NOAA Weather Radio broadcasts 

• American Automobile Association (AAA) telephone services 

• Variable Message Signs remotely controlled 
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• Variable Message Signs remotely controlled by sensors 

• Visible indicators, wind socks, etc. 

While these methods are widely used, all but the last two have one thing in common: one or 
more humans in the communication chain.  Human interaction tends to delay the information and 
may allow for different interpretations among system operators.  One noteworthy omission from 
this list is a vehicle-borne information system.  Since the driver is the ultimate recipient of the 
information, in-vehicle systems have the advantage of continuously receiving information and 
presenting it to the driver.   

Bosely et al., (1993) studied the collection and distribution of road and weather information, 
from the point of view of the agency responsible for snow and ice removal.  However, the needs 
of the driver were not addressed or discussed by Bosely et al., (1993).  This research attempts to 
answer these questions:  What information is needed?  When and where is the information 
needed?  What are safe speeds for different road and weather conditions?  How much do 
motorists slow down in wet conditions? in icy conditions? 

Ground-mounted systems have limited distribution areas and may not be available when the 
driver needs to make a decision.  According to Bosely et al., (1993), the primary requirement of 
an information system is to provide information in near real-time.  Real-time is ambiguous in 
this case — does the term refer to the information or to the driver’s need?  For the driver, real-
time means that the information is available when needed — during the decision-making 
process.  Conversely, real-time can mean that the information reaches the user while it is still 
“fresh” and meaningful.  If either of these conditions are not met, the driver will find the 
information not useful, or misleading. 

Information distribution systems have many important functional requirements.  
Leidschendam (1984) provides a list of the most important requirements, which includes 
flexibility, prioritization, validity, and presentation. 

Flexibility is the most important aspect of an information system.  The system needs to be 
compatible with future developments in technology.  Any particular system must not preclude 
the introduction of any other system (Leidschendam, 1984). 

Information with the highest priority needs to be distributed first, although this priority is 
usually determined at the source of the information and may differ from the priority defined by 
the driver.  The information must also be relevant to the driver — if it is not, the driver will 
waste resources to evaluate the information and discard it.   
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Information validity is also a concern.  Information from different sources must be analyzed 
to ensure consistency and eliminate contradictory information. Leidschendam (1984) indicates 
that information that is not reliable and accurate will lose effectiveness and credibility.  Drivers 
quickly dismiss information that is perceived to be inaccurate or contradictory.  This 
phenomenon is also alluded to by Bosely et al., (1993). 

Leidschendam (1984) also states that it is important to present the information in a format 
that is understandable and unambiguous.  Driver interpretation is the ultimate test of the 
information distribution system. After a system is in place, it must be evaluated to measure its 
effectiveness (Leidschendam, 1984). 

The TravelAid Project will address the issue of driver information through the use of variable 
message signs and the in-vehicle display devices.  The signs and display devices will provide 
current road and weather information.  The second issue addressed by the TravelAid Project is 
speed control and, ultimately, accident reduction. 

b) Accidents and speed control 

The annual number of injury accidents in the United States remains relatively constant in 
light of advances in technology in the automotive industry, such as anti-lock brakes and air bags.  
Kaub and Rawls (1993) contend that the additional safety provided by new technology is off-set 
by the increasing use of the highway system.  Air bags and anti-lock brakes are saving lives, but 
more accidents occur as more people drive more miles each year. 

According to Kaub and Rawls’ (1993) interpretation of Accident Facts—1989, speed is a 
contributing factor in more than one-third of the fatal accidents that occur each year.  With the 
exception of the introduction of the radar gun, speed enforcement technology and techniques 
have changed little since the 1930’s and 1940’s (Kaub and Rawls, 1993).  Law enforcement 
authorities rely primarily on ghosting (following the suspected speeder), radar, and direct 
observation for speed enforcement.  However, Kaub and Rawls (1993) suggest an alternative 
method of speed enforcement. 

The speed control system presented by Kaub and Rawls (1993) relies on computer 
technology.  In their plan, magnets will be permanently mounted in the pavement.  A sensor on 
the automobile will detect the magnets and measure the time required to drive from one magnet 
to the next.  Given a constant distance between magnets and the time required to travel between 
them, an in-vehicle computer system can calculate the speed of the automobile. If the vehicle 
exceeds the posted speed limit, the computer would alert the driver to the situation. Kaub and 
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Rawls (1993) suggest that repeated warnings from the computer could result in the issuance of 
speeding tickets to the registered owner when the vehicle is sold.   

While “automatic” speed enforcement and “blind” speeding tickets (blind because you never 
see the law enforcement officer) may sound appealing to law enforcement officials,  there are 
several implementation problems.   

First, the Constitution guarantees a timely redress of grievances, and offenders should not be 
expected to wait any length of time to settle the speeding ticket.  Kaub and Rawls (1993) 
recommend settling the tickets when the vehicle ownership is transferred (could be many years 
and many tickets from now) or when the vehicle is next tested for emissions (many states do not 
require emissions tests).  A better time to settle any outstanding speeding tickets (or any other 
infraction) is at the time of vehicle-registration renewal.  Secondly, implementation may be 
inhibited by resistance to law enforcement by something other than a police officer.  The third 
obstacle that may hinder the implementation of automatic speed enforcement is the inability to 
identify the offender — only the registered owner (not the driver) is identified.  The owner can 
claim that another person was driving the vehicle on the day in question; therefore, that person is 
responsible for the infraction. 

The method described by Kaub and Rawls (1993) has a final hurdle: the requirement that all 
vehicles be modified to calculate speed based on magnets in the roadway.  Drivers may not 
choose to have their vehicles modified, or they may disable the system. 

Another approach to speed enforcement is the “photo cop” — an automated system that 
measures the speed of vehicles, photographs violators, and mails the registered owner a ticket.  
This system receives the same criticism as Kaub and Rawls’ magnetic system — blind 
enforcement and the identification of the guilty driver. 

The system installed by WSDOT does not have these obstacles to overcome.  WSDOT will 
change the variable-speed-limit signs to match current weather and road conditions, based on 
information from the weather stations along the highway.  Rather than make modifications to an 
extensive array of vehicles that use Snoqualmie Pass, the WSDOT will modify the motorist 
information system.  In this way, all motorists will have access to motorist information, not just 
motorists with specially equipped vehicles.   

The Washington State Patrol will enforce the speed displayed by the signs.  Enforcement will 
not be blind — citations will be issued by a patrol officer.  Currently, motorists can be cited for 
traveling “too fast for conditions”, which provides a gray area in the determination of the proper 
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speed for existing conditions.  The variable speed-limit signs will indicate the proper speed for 
existing conditions, eliminating the need for judgment calls by the driver and the law 
enforcement officer.  The offender will be identified as the driver of the vehicle and cited at 
once.  After the signs are in place, no other modifications will be necessary.  Using the existing 
law-enforcement infrastructure and variable speed-limit signs, the TravelAid Project will address 
the second issue — speed control in adverse conditions. 

Weather stations located along Interstate 90 on Snoqualmie Pass will provide information to 
a system operator, who will use the information to determine the appropriate speed and message 
to be displayed on the signs and display device.   

6.2 Statistical analysis 

This section describes the development and results of the statistical models used to analyze 
the survey data concerning speeds driven in different conditions.  A model was created to 
compare each of two adverse conditions to dry roadway conditions.   

a) Model estimation 

The questionnaire asked respondents to indicate the speed driven on Snoqualmie Pass in 
different weather conditions.  Respondents chose speed categories (i.e. 55-64 mph, 65-74 mph, 
etc.) for dry, wet and icy roadway conditions (see survey question three in Appendix A).  The 
models in this Chapter will predict changes in category selection.  For example, if a respondent 
chose 65-74 mph in dry conditions and then 45-54 mph in icy conditions, the model will show a 
20-mph reduction (which is an average) because the average difference between two adjacent 
categories is 10 mph.  Throughout this Chapter, a 10-mph speed reduction is used to indicate a 
speed reduction of one category.  In reality, the actual speed reduction could be slightly more or 
less.  For example, if a person that drives 67 mph in dry conditions and 60 mph in wet 
conditions, the model will indicate a one-category reduction in speed, even though the actual 
speed reduction is seven mph.  Conversely, a person that drives 60 mph in dry conditions and 55 
mph in wet conditions will indicate no speed reduction (i.e. both responses will be in the 55-64 
mph category),  when the driver actually reduces speed by five mph.  To be truly correct, the 
reader must keep in mind that a 10-mph reduction is really a one-category reduction, a 20-mph 
reduction is really a two-category reduction and so forth. 

Responses to the questionnaire were entered into a text file and analyzed using Statistical 
Software Tools (SST), version 1.1, developed at the University of California at Berkeley.  Two 
Multinomial Logit models were estimated.  The first model determined the likelihood of speed 
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reduction in wet conditions.  In wet conditions, responses to the survey indicated that drivers 
chose one of three alternatives (compared to dry conditions):  no speed reduction, an average 10 
mph speed reduction (one category), or an average 20 mph speed reduction (two categories).  A 
sketch of the speed reduction alternatives for wet conditions is shown in Figure 6.1. 

 None 10 MPH 20 MPH 

Speed Reduction in Wet Conditions 

Figure 6.1:  Speed reduction alternatives for wet conditions. 

The second model determined the likelihood of speed reduction in icy conditions.  In icy 
conditions, responses to the survey indicated that drivers chose one of five alternatives 
(compared to dry conditions):  no speed reduction, 10 mph speed reduction, 20 mph speed 
reduction, 30 mph speed reduction, or 40 mph speed reduction.  A sketch of the speed reduction 
alternatives for icy conditions is shown in Figure 6.2. 

 None 10 MPH 20 MPH 30 MPH 40 MPH 

Speed Reduction in Icy Conditions 

Figure 6.2:  Speed reduction alternatives for icy conditions. 

Estimation of the multinomial logit specification was carried out using standard maximum-
likelihood methods.  The results of the two models are discussed below. 

b) Model of speed reduction for wet conditions 

Table 6.1 shows that the signs of the model coefficients are plausible and that the model has 
good overall convergence.  The log-likelihood for the model of wet conditions converges from -
459.2 to -316.9, with a ρ2  of 0.302.  The number of respondents that chose each alternative is 
shown in Figure 6.3.  Interpretations of the model findings are provided below. 
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Table 6.1:  Multinomial logit model of speed reduction for wet conditions. 

Variable Estimated 
coefficient  

t-statistic 

Constant 1, (specific to zero speed reduction) 1.96 5.74 

Constant 2, (specific to a 10 mph speed reduction) 1.55 3.14 

Winter driving experience, (1 if less than 21 trips were made in Dec. - 
Feb., 0 if more than 21 trips were made.  Specific to a 10 mph speed 
reduction) 

0.68 2.49 

Number of accidents driver has had on Snoqualmie Pass, (specific to 
zero speed reduction) 

-0.66 -1.42 

Seatbelts, (1 if seatbelts are always worn, 0 otherwise.  Specific to 10 
mph speed reduction) 

0.69 1.86 

Gender of the driver, (1 if male, 0 if female.  Specific to zero speed 
reduction) 

0.51 2.30 

Purpose of the trip, (1 if the purpose is visit family,  
0 otherwise.  Specific to a 10 mph speed reduction) 

0.58 2.39 

Immaturity of the driver, (1 if the driver’s age is less than 33 years.  
Specific to zero speed reduction) 

0.56 2.03 

Household income, (1 if annual income is $40 - 75,000.  Specific to 
zero speed reduction) 

0.54 2.53 

Number of observations 418  

Log-likelihood at zero -459.2  

Log-likelihood at convergence -316.9  

ρ2 0.30  

Alternatives:  No speed reduction, 10 mph reduction, 20 mph reduction 

0
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100
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200

250

None 10 mph 20 mph

Speed Reduction  

Figure 6.3:  Number of responses for each alternative in model of wet conditions. 
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Variable: Winter driving inexperience 

Finding: Increases the likelihood of 10 mph speed reduction 

This variable indicates that drivers are more likely to reduce their speed by 10 miles per hour 
if they make fewer than 21 trips across the pass in the months of December, January and 
February.  Conversely, drivers that make more than 21 trips in the months of December, January 
and February are likely to reduce their speed by 20 miles per hour or maintain the same speed.  
Frequent users will be very familiar with the roadway on the pass and therefore, more 
comfortable driving at higher speeds.  It is possible that drivers with more winter driving 
experience become over-confident and do not slow down for wet conditions.  On the other hand, 
some experienced drivers may have had close calls in the past and have become aware of their 
capabilities and understand what can happen when speed is combined with wet conditions. 

Variable: Number of accidents driver has had on Snoqualmie Pass 

Finding: Decreases the likelihood of zero speed reduction 

This variable indicates that drivers are more likely to reduce their speed while driving on the 
pass in wet conditions if they have had an accident on the pass.  It is possible that these drivers 
have learned from previous experiences and are more cautious.  The respondents indicated that 
most of the accidents resulted from the loss of control of the vehicle in adverse weather 
conditions. 

Variable: Seatbelt usage 

Finding: Increases the likelihood of 10 mph speed reduction 

This variable shows that drivers who always wear seatbelts are more likely to reduce their 
speed by 10 mph when driving in wet conditions.  Conversely, drivers who do not always wear a 
seatbelt are likely to maintain speed or reduce their speed by 20 miles per hour.  It is possible 
that drivers that do not always wear seatbelts are more naturally prone to take risks and are 
willing to drive faster in adverse conditions.  The questionnaire did not investigate the age of 
vehicles owned by the respondents.  It is also possible that drivers do not always wear a seatbelt 
because they drive vehicles that are not equipped with seatbelts.  In this case, unbelted drivers 
may reduce their speed by 20 miles per hour to compensate for the lack of a seatbelt.  Drivers 
that always wear seatbelts are willing to make the extra effort to reduce risks and therefore, 
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reduce speed when driving in adverse conditions.  Perhaps belted drivers feel protected by the 
seatbelt and feel a speed reduction of more than 10 miles per hour is not warranted. 

Variable: Gender of the driver (male) 

Finding: Increases the likelihood of zero speed reduction 

This variable indicates that males are less likely to slow down in wet conditions than female 
drivers.  As studies in the insurance industry have shown, female drivers pose a smaller risk to 
the insurance company than do males.  Generally, males are willing to take more chances (such 
as driving fast on wet roadways) than their female counterparts. 

Variable: Purpose of the trip   

Finding: Family visits increase the likelihood 10 mph of speed reduction 

This variable shows the tendency of the driver to slow down by 10 mph in wet conditions 
while traveling to visit family.  Family visits are of an informal nature, without strict deadlines.  
Recreation on Snoqualmie Pass usually involves a business or government-controlled enterprise 
(such as a ski area or a campground) with access limited to certain hours of the day.  Business 
travel also carries time constraints.  This variable shows that drivers are not willing to take 
unnecessary risks when traveling to visit other family members. 

Variable: Immaturity of the driver   

Finding: Increases the likelihood of zero speed reduction  

This variable indicates that young drivers (less than 33 years old) are more likely to maintain 
their speed when driving in wet conditions.  With age and experience, drivers tend to take fewer 
risks and drive more responsibly.  Increasing age brings increasing responsibilities — spouse, 
family, income, house, etc. — and drivers become reluctant to put these responsibilities at risk. 

Variable: Household income 

Finding: Increases the likelihood zero of speed reduction   

Drivers in households with average income ($40,000 to $75,000) are less likely to reduce 
speed in wet conditions than are drivers from other income levels.  Conversely, high- and low-
income drivers are more likely to reduce speed in wet conditions.  Drivers with average incomes 
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may feel driven to “get ahead”, and always push to accomplish more in less time to achieve their 
goals.  Low-income drivers may feel that they would be financially strapped by a driving mishap 
and be more cautious to protect their resources.  Perhaps high-income drivers understand that the 
time savings do not offset the potential loss due to an accident caused by driving too fast in wet 
conditions. 

c) Model of speed reduction for icy conditions 

Table 6.2 shows that the signs of the model coefficients are plausible and that the model has 
good overall convergence.  In the model of icy conditions, the log-likelihood converges from -
661.5 to -472.4, with a ρ2 of 0.277.  The number of respondents that chose each alternative is 
shown in Figure 6.4.  Interpretations of the model are provided below.  

Variable: Passengers in the vehicle 

Finding: Increases the likelihood of 20 mph speed reduction 

This variable shows that drivers with passengers in the vehicle with them are more likely to 
reduce speed by 20 miles per hour in icy conditions.  Drivers are considerate of others and 
unwilling to put them at risk.  With a possible critic at hand, drivers are more conscientious and 
drive more carefully.  However, common courtesy and good sense may be tempered by 
impatience.  Drivers with passengers are less likely to reduce speed by 30 miles per hour in icy 
conditions. 



105 

 

0

50

100

150

200

250

None 10 mph 20 mph 30 mph 40 mph

Speed Reduction  

Figure 6.4:  Number of responses for each alternative in model of icy conditions. 
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Table 6.2:  Multinomial logit model of speed reduction for icy conditions. 

Variable Estimated 
coefficient  

t-statistic 

Constant 1, (specific to zero speed reduction) -3.99 -2.53 

Constant 2, (specific to a 10 mph speed reduction) -0.22 -0.60 

Constant 3, (specific to a 20 mph speed reduction) 0.61 1.72 

Constant 4, (specific to a 30 mph speed reduction) 0.63 1.97 

Passengers in the vehicle, (1 if there are passengers, 0 if not.  Specific 
to a 20 mph speed reduction) 

0.85 3.53 

Winter driving experience, (1 if less than 10 trips are made in Dec. - 
Feb., 0 if more than 10 trips are made.  Specific to a 20-30 mph speed 
reduction) 

0.72 2.77 

Purpose of the trip, (1 if the purpose is visit family, 0 otherwise.  
Specific to a 10 mph speed reduction) 

0.84 2.68 

Seatbelt usage, (1 if seatbelts are always worn, 0 otherwise.  Specific to 
zero speed reduction) 

-2.12 -2.12 

Gender of the driver, (1 if male, 0 if female.  Specific to zero speed 
reduction) 

3.18 2.59 

Gender of the driver, (1 if male, 0 if female.  Specific to 10-30 mph 
speed reduction) 

1.16 2.65 

Maturity of the driver, (1 if the driver’s age is greater than 60 years.  
Specific to a 10 mph speed reduction) 

0.84 2.57 

Household income, (1 if annual income is $40 - 75,000.  Specific to 
zero speed reduction) 

2.08 2.35 

Household income, (1 if annual income is $40 - 75,000.  Specific to 10 
mph speed reduction) 

0.85 3.98 

Family size, (1 if the driver lives alone, 0 otherwise.  Specific to zero 
speed reduction) 

3.93 3.96 

Number of people working outside the home, (1 if more than 2 people 
work, 0 otherwise.  Specific to a 20-30 mph speed reduction) 

-0.84 -2.25 

Single-car family, (1 if the family owns 1 car, 0 otherwise.  Specific to a 
10 mph speed reduction) 

-1.00 -1.98 

Number of observations 411  

Log-likelihood at zero -661.5  

Log-likelihood at convergence -472.4  

ρ2 0.28  

Alternatives:  zero speed reduction, 10 mph, 20 mph, 30 mph, 40 mph reduction 



107 

 

Variable: Winter driving inexperience 

Finding: Increases the likelihood of 20 to 30 mph speed reduction 

This variable shows that drivers who make fewer than ten trips across the pass in December, 
January and February are more likely to slow down by 20 or 30 mph in icy conditions.  Drivers 
with little winter driving experience are more cautious and slow down in icy conditions.  Drivers 
become more comfortable and bold with experience and more aware of their capabilities.  These 
experienced drivers are less likely to slow down in icy conditions. 

Variable: Purpose of the trip 

Finding: Increases the likelihood of 10 mph speed reduction 

This variable shows the tendency of the driver to slow down by 10 mph in icy conditions 
while traveling to visit family.  As in the model of wet conditions, family visits are of an 
informal nature, without strict deadlines.  Recreation on Snoqualmie Pass usually involves a 
business or government-controlled enterprise (such as a ski area or a campground) with access 
limited to certain hours of the day.  Business travel also carries time constraints.  This variable 
shows that drivers are not willing to take unnecessary risks when traveling to visit other family 
members.  However, impatience may overcome prudence.  Drivers on family visits are not 
willing to reduce speed by more than 10 miles per hour. 

Variable: Seatbelt usage 

Finding: Decreases the likelihood of zero speed reduction 

This variable shows that drivers that always wear seatbelts are less likely to maintain their 
speed when driving in icy conditions.  Again, as in the model of wet conditions, it is possible 
that drivers that do not always wear seatbelts are more naturally prone to take risks and are 
willing to drive faster in adverse conditions.  The questionnaire did not investigate the age of 
vehicles owned by the respondents.  It is possible that drivers do not always wear a seatbelt 
because they drive vehicles that are not equipped with seatbelts.  In this case, unbelted drivers 
may reduce their speed to compensate for the lack of a seatbelt.  Drivers that always wear 
seatbelts are willing to make the extra effort to reduce risks and therefore, reduce speed when 
driving in adverse conditions. 

Variable: Gender of the driver (male) 
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Finding: Increases the likelihood of zero speed reduction 

This variable indicates that males are more likely to maintain speed in icy conditions than 
female drivers.  Again, as in the model of wet conditions, female drivers pose a smaller risk to 
the insurance company than do males.  Generally, males are willing to take more chances than 
their female counterparts. 

Variable: Gender of the driver (male) 

Finding: Increases the likelihood of 10, 20, or 30 mph speed reduction 

This variable indicates that males are more likely to reduce speed by 10, 20, or 30 mph in icy 
conditions than female drivers.  Conversely, this variable and the previous variable show that 
female drivers are more likely than male drivers to reduce speed by 40 miles per hour and less 
likely to maintain speed in icy conditions.  As noted above, females are generally less willing to 
take risks than their male counterparts. 

Variable: Maturity of the driver  

Finding: Increases the likelihood of 10 mph speed reduction 

This variable indicates that mature drivers (older than 60 years) are more likely to reduce 
speed by 10 mph when driving in icy conditions.  With age and experience, drivers tend to take 
fewer risks and drive more responsibly.  Increasing age brings increasing responsibilities — 
spouse, family, income, house, etc. — and drivers become reluctant to put these responsibilities 
at risk. 

Variable: Household income 

Finding: Increases the likelihood of zero or 10 mph speed reduction 

Drivers in households with average income ($40,000 to $75,000) are more likely to maintain 
speed or reduce speed by 10 mph in icy conditions than drivers from other income levels.  This 
variable indicates that drivers from very high or low income brackets are more likely to reduce 
speed by more than 10 miles per hour than are drivers in the average income bracket.  Drivers 
with high income have learned to use their resources wisely and do not take unnecessary risks.  
Drivers from the lower income brackets have also learned to use resources wisely and cannot 
afford unnecessary risks.  Drivers in the average income bracket are able to budget insurance 
premiums and are less fearful of  submitting a claim to the insurance company. 
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Variable: Family size  

Finding: Increases the likelihood of zero speed reduction 

This variable shows that drivers that live alone are more likely to maintain their speed in icy 
conditions.  Drivers that live alone have fewer responsibilities and therefore may be willing to 
take more risks, such as driving fast on ice.  Drivers who live alone do not have someone 
“checking up” on them — no one to question them if they arrive earlier than expected. 

Variable: Number of people working outside the home 

Finding: Decreases the likelihood of 20-30 mph speed reduction  

This variable shows that if more than 2 family members work outside the home, drivers are 
less likely to reduce their speed by 20 to 30 mph in icy conditions.  Perhaps with more than two 
family members working outside the home, there is no one at home to run errands and chauffeur 
children to extra-curricular activities, and drivers must maintain their speed in icy conditions to 
maintain a schedule.  If more than two people work outside the home, the odds are that at least 
one is a teenager and parents are setting a good example by reducing speed by 40 mph when 
driving on ice.  Drivers in families with more than two members working feel responsible for 
helping support of the family and take responsibility for their actions. 

Variable: Single-car family 

Finding: Decreases the likelihood of 10 mph speed reduction 

This variable shows that drivers in households that own one car are less likely to reduce 
speed by 10 mph in icy conditions.  If a household has two workers but only one car, the drivers 
may feel a need to maintain speed even in icy conditions so that they can maintain a schedule 
and not cause delay to the other worker.  If the household has only one worker, the driver may 
reduce speed by more than 10 mph in icy conditions because the family cannot afford to lose 
their only means of transportation. 

6.3 Model specification issues 

The multinomial logit model used in this Chapter can potentially be afflicted with a serious 
specification error because the derivation of this model requires us to assume that the unobserved 
terms are independent from one alternative to another.  Intuitively, it is possible that alternatives 
could share unobserved terms and have a correlation that violates the assumption made during 
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the model estimation.  For example, the 30 mph and 40 mph speed reductions may share 
unobservable terms related to cautious driving.  In the presence of shared unobservable terms, 
the logit formulation will erroneously estimate the model coefficients.  The problem of shared 
unobservable terms is referred to as an independence of irrelevant alternatives specification 
error.  To test for the possibility of this error, alternate model structures were created (nested 
logit models).  These alternate models showed that the simple multinomial logit model was 
appropriate and did not violate the independence of irrelevant alternatives.  Therefore, the 
models used in this research are properly specified with regard to this important concern. 

6.4 Conclusions 

This research provides an important methodological framework (the use of a multinomial 
logit specification) for estimating the speed reduction likelihood in wet or icy conditions on 
Snoqualmie Pass.  The findings of this study confirm previous conclusions (Bosely et al., 1993; 
Kaub and Rawls, 1993) and point to a possible factor contributing to the number of accidents on 
Snoqualmie Pass during the winter months.  By developing a probabilistic model that contains 
several important variables relating to driver characteristics and attributes, this study has shown 
that it is possible to avoid the ambiguity and bias stemming from confounding effects in a 
partially specified model (a model with omitted variable specification error).  In addition, this 
study provides suggestive results by its investigation of speeds driven on Snoqualmie Pass under 
adverse conditions.  The wide diversity of speeds driven in icy conditions may be an indication 
of the cause and severity of winter-time accidents on Snoqualmie Pass.  The installation and use 
of variable speed-limit signs on the pass will narrow the speed differential between motorists and 
dampen the potential for larger numbers and reduce the severity of accidents on Snoqualmie 
Pass. 

This research uncovered many important relationships between speeds driven in wet or icy 
conditions and the winter driving experience, accidents, seatbelt usage, gender, age, income, 
purpose of the trip, passengers in the vehicle, the size of the household, the number of working 
family members, and the number of cars in the household.  The wide diversity of variables found 
to influence the speed driven in adverse conditions suggests that many factors play a role in a 
driver’s choice of speeds when traveling on wet or icy roads.  The use of variable speed-limit 
signs to control speeds in adverse conditions will eliminate the effect of many of the variables 
and overcome the wide discrepancy in speeds in wet or icy conditions. 

The results of the survey indicate that motorists drive as fast as the law allows and pay too 
little attention to prevailing roadway conditions.  Using variable speed limits on the pass will 
require motorists to drive at speeds commiserate with current conditions.  The speed limits are 
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legal and the Washington State Patrol will be able to enforce the speed limit portrayed on the 
signs.  It is the recommendation of the author that WSDOT install variable speed-limit signs on 
all 11 mountain passes. 

An interesting result is the number of respondents that would like to have an in-vehicle 
display device, but will not obey the device.  At first glance, this seems like a waste of effort and 
resources.  However, better informed motorists are safer travelers.  If the drivers with display 
devices do not obey them, but do benefit from the information provided by the device, then the 
device has served a purpose. 

People desire current information, but are on their own schedule.  In these days of advancing 
technology, some drivers are willing to pay for timely information in the form of a display 
device.  Future studies may show that people are being overrun by devices and wish for a 
universal information display system with a common communication format.  For example, 
driver information display systems may merge with other information systems, such as the Seiko 
receptor watch and personal information managers (PIM). 

The accident rates of users of the pass should be studied to verify that the variable speed 
limits are indeed safer and reducing the number of accidents.  Without enforcement by the 
Washington State Patrol, the variable speed limits may lose their effectiveness. 
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Chapter 7 

Reported driver behavior 

7.1 Introduction 

In examining driving behavior with the use of an in-vehicle system, several issues needed to 
be explored.  One of the main issues is the true added benefits provided by additional traffic 
information.  To answer the question, “Are variable messages presented on the road just as 
efficient if not better than in-vehicle information”, data needed to be collected and analyzed. 

There are essentially, two types of data which are typically used to model behavioral 
information: stated preference, and revealed preference (Koutsopoulos et al., 1995).  Stated 
preference data is used to identify how drivers would behave in hypothetical situations.  Surveys 
provide one means of collecting stated preference data.  However, since most surveys are 
answered while not on the road, data bias can exist.  Drivers’ responses may not reflect what 
they actually will do under the stated condition, but rather, what they hope they would do.  
Revealed preference data provides information on what drivers would actually do in a real world 
situation.  Unfortunately, hazards may be imposed on the drivers for the data which is required.  
Therefore, an alternative collection technique, is to use an immersed driving simulator in an 
attempt to portray these real world situations.  Thus, a comparison between this and revealed 
preference data can be obtain.  The more realistic a hypothetical scene is portrayed to a 
participant, the more validity can be added to the responses. 

In order to validate and compare the information from the in-laboratory studies to what 
drivers perceive in the real world, an analysis of previous stated preference data has been 
completed.  This data is used to establish the drivers desires and use of an in-vehicle system on 
the Snoqualmie Pass.  The findings of this survey as it pertains to preferential system usage is 
presented in this section. 

7.2 Binary logit models 

Logit models are appropriate choices for qualitative responses whose outcomes are 
inherently categorical.  The logit model, a special form of the general loglinear model is based 
on the binomial distribution and provides an analysis of the odds of a response variable. 
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Given the discrete groups, mathematical models can be generated to determine the 
probability of a driver falling into one of these discrete groups.  The model for the multinomial 
logit is of the form: 

Pn i( ) =  
exp βiXn[ ]

exp βIXn[ ]
I

∑  (7.1) 

where Pn(i) denotes the probability of a driver n to fall into a specific group i, vector Xn is a 

vector of measurable characteristics of the driver (e.g., driver age, driver income, utilization of 
traffic information, marital status, trip planning techniques, and so on), and βi is a vector of 

estimable coefficients.  The derivation of this model is described in detail in Greene (1993). 

The advantage of the logit analysis is that the model assumptions are not as stringent as those 
for regression or discriminant analysis.  In addition, various tests are available which are not 
possible in standard cross tabulation approaches (Demaris, 1992).  For example, the effects of a 
given predictor variable on the dependent variable, which has been adjusted for other effects in 
the model, is summarized by parameters (estimated coefficients) that translate into odds ratios. 

In addition, a goodness of fit measure for these models can be calculated from: 

1
0

2
−

−L c
L

k( )
( )

 (7.2) 

where L(c) is the log-likelihood at convergence, L(0) is the initial log-likelihood, and k is the 
number of variables in the model. 

In the analysis of three questions from the Morse (1995) survey, binary logit models were 
estimated because of the dichotomous responses for utilization of an in-vehicle system (yes or 
no), and for how they use the system in terms of “putting on chains”, and “slowing down” (1: 
obey immediately, or 2: obey only if conditions warranted).  Essentially, the models estimated 
included predictions on: 

(1) whether or not they would use an in-vehicle system on Snoqualmie Pass,  

(2) whether they would obey the system immediately if it told them to slow down, or 
wait until they feel it is necessary. 

(3) whether they would obey the system immediately if it told them to put on chains, or 
wait until they feel is necessary, and 

A discussion of each model is presented in the following sections. 
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7.3 Utilization of in-vehicle device model 

The first binomial logit model (shown in Table 7.1) estimated whether or not drivers would 
or would not use an in-vehicle system.  Essentially, of the 441 people that responded to the 
question “Would they use an in-vehicle system”, 91.6% (n=404), said they would use the 
system, and 8.4% (n=37) said they would not.  This model has a corrected ρ2= 0.6826. 

From this model, several effects in relations to driving characteristics, traffic information 
usage and socioeconomic characteristics can be observed, and are discussed in the next sections. 

Table 7.1:  Binomial logit model of whether or not drivers would use an in-vehicle system. 

Variable Estimated 
coefficient 

t-statistic 

Constant -1.88 -1.99 

Winter driving indicator (1 if drive more than 6 times in the winter 
months, 0 otherwise) 

0.87 1.80 

Speed on wet roads indicator (1 if drive 65 mph or more, 0 otherwise) 2.41 2.72 

Trip safety indicator (1 if increasing trip safely was “important to very 
important”, 0 otherwise.) 

1.35 2.78 

Snow/ice accumulation (1 if information was “important to very 
important”, 0 otherwise) 

1.40 2.06 

Presence of a hazard/accident (1 if information was “moderate to very 
important”, 0 otherwise) 

2.19 3.30 

Observe traffic conditions (1 if the preferred medium traffic 
information receival, 0 otherwise.) 

-2.19 -2.82 

Pass is more dangerous than other section in good weather (1 if 
“strongly agree”, 0 otherwise) 

-1.93 -2.05 

Trucks are more dangerous on Pass (1 if “agree to strongly agree”, 0 
otherwise) 

 1.41 2.82 

65 mph is safe driving on dry roads (1 if “strongly disagree”, 0 
otherwise.) 

-1.36 -1.18 

65 mph is safe driving on rainy/wet roads (1 if “strongly disagree”, 0 
otherwise.) 

1.08 2.14 

65 mph is safe driving on winter roads (1 if “strongly disagree”, 0 
otherwise.) 

-1.51 -2.70 

Age indicator (1 if between 41 to 50 years,  
0 otherwise) 

-0.88 -1.74 

(Continued) 
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Table 7.1:  Binomial logit model of whether or not drivers would use an in-vehicle system. 
(Continued). 

Variable Estimated 
coefficient 

t-statistic 

Age indicator (1 if 65 years and older, 0 otherwise) -1.11 -1.93 

Income indicator (1 if make over $75,000,  
0 otherwise) 

1.36 1.96 

College Graduate indicator (1 if college graduate,  
0 otherwise) 

0.66 1.29 

Married with children (1 if married with children, 0 otherwise) 1.13 1.63 

Children indicator 
(1 if you have children between 6 and 16,  
0 otherwise)  

-1.41 -2.35 

Car indicator  (1 if have more than 2 cars,  
0 otherwise) 

0.86 1.15 

Number of observations  441 

Log-likelihood at zero  -305.68 

Log-likelihood at convergence  -88.014 
Note: Alternatives for dependent variable are (1)Yes, and (2)No.  All dependent variables are set to (1) the YES 

response. 

a) Driving characteristics 

This model shows that the amount of winter driving and how fast they drive on wet roads 
significantly affects whether or not they would use an in-vehicle system.  More specifically, if a 
driver uses the Snoqualmie Pass more than 6 times during the winter (or at least twice a month 
during the winter), then they were more likely to use an in-vehicle system.  This shows that 
drivers who frequently use the mountain pass, understand the importance of a traffic system to 
provide important road condition information.  In addition, if they drive 65 miles per hour (mph) 
or more on wet roads, the drivers were more likely to use this system.  This implies that drivers 
who like to drive fast, would like to know when they could do so. 

If they reported that increasing trip safety was “important to very important” they were more 
likely to use an in-vehicle system.  This makes intuitive sense since drivers who want a safer trip 
would like the best information possible about the road conditions to ensure their safety. 
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b) Traffic information 

It was anticipated that those drivers who value traffic information were more likely to use an 
in-vehicle system.  Therefore, findings that drivers who placed importance on snow/ice 
accumulation information and those who placed information on the presence of accidents or 
hazards were more likely to use this system was not surprising.  These drivers are obviously 
concerned about the impact of road conditions on their commute. 

If the driver preferred to observe traffic conditions to receive road and weather information, 
he or she was less likely to use this system.  Again, this is foreseeable since these individuals use 
a traffic medium which does not require any type of technological advances, so they would 
perceive no benefit in yet another system. 

c) Opinion of Snoqualmie Pass 

Drivers who strongly agreed that in good weather, the Snoqualmie Pass is more dangerous 
than other sections, were less likely to use this system.  This suggests that drivers who perceive 
the Pass to be dangerous, no matter what the road condition is, find no added value in using a 
system, because the road will always be perceived as dangerous, regardless of what information 
is available. 

If the driver believes that trucks are more dangerous on the Snoqualmie Pass than in other 
areas, then they were more likely to use this system.  Thus, information on oncoming trucks 
could help drivers who are concerned about a possible collision to know when to move to a lane 
further from the incident.  Interestingly, drivers who agreed or strongly agreed that snow or rain 
was more dangerous on Snoqualmie Pass than on other sections of Interstate 90 were less likely 
to use this system.  This could indicate that drivers who are uncomfortable with traveling in 
severe road conditions, feel even less comfortable diverting their attention from the road to use a 
visual in-vehicle system. 

Drivers who strongly disagreed that 65 mph is a safe driving speed on dry roads were less 
likely to use this system.  In contrast, drivers who “disagreed or strongly disagreed” that 65 mph 
is a safe driving speed on wet roads, were more likely to use this system.  Similar to those 
drivers, previously mentioned, who perceived the Pass to be more dangerous than any other 
section in good weather, drivers who see 65 mph as an unsafe speed on dry roads may see little 
benefit in using a system when the road will be dangerous regardless of the weather condition.  
In addition to these findings, we also see that drivers who agreed or strongly agreed that driving 
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65 mph is safe on wintry roads, were less likely to use this system.  This is a plausible finding 
since these drivers are going to drive recklessly, no matter what the road conditions. 

d) Socioeconomic characteristics 

Age, income, education, and type of households had an effect on whether or not the surveyed 
drivers wanted to use an in-vehicle system.  For example, if they were in their forties (41 to 50 
years old), then they were less likely to use the system.  This suggests that middle age drivers are 
confident enough in their driving ability that they would prefer not to use a system to dictate 
what driving maneuver they should make.  Drivers 65 years old and older were also less likely to 
use this system indicating a similar finding.  Older drivers may also be accustom to a set driving 
routine and feel that an in-vehicle system may be a hindrance instead of a help. 

Drivers who made over $75,000, and drivers who have a college degree were more likely to 
use this system.  It is speculated that these drivers place greater value on their personal safety 
and time on the road, and would like to explore every possible means of decreasing unnecessary 
road time. 

Drivers who were married with children were more likely to use an in-vehicle system.  
However, drivers who had a child between the ages of 6 and 16 were less likely to use this 
system.  This surprising result could be indicating the drivers perceived notion that an older child 
is a better navigational assistance, and observer of traffic than an in-vehicle system.  Lastly, 
drivers with two cars were more likely to use an in-vehicle system. 

7.4 Slowing down model 

This model (see Table 7.2) provides insight on the characteristics associated with drivers 
who are willing to immediately obey an in-vehicle traffic system and compare them with those 
who are willing to obey only if conditions warrant it.  Of the 432 people who responded to this 
question, 42.8% said they would slow down only if conditions warranted it, and 57.2% said they 
would slow down immediately.  This model has a corrected ρ2= 0.2078. 

In the following section, an explanation of variables used in predicting whether drivers 
would slow down immediately, or only if conditions warrant it so, is provided. 

a) The driving trip 

Driving trip characteristics that caused drivers to more likely slow down only if conditions 
warranted include, (1) being a single occupant driver, (2) being a frequent winter driver over the 
pass, (3) being a fast driver on dry roads, (4) those finding great importance in saving trip time, 
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and (5) those finding little importance in increasing trip safety.  These findings suggest that 
drivers who are more familiar with driving over the Snoqualmie Pass, and those concerned about 
how soon they can get to their destination, would like to be absolutely sure that slowing down is 
indeed necessary.  In contrast, drivers who have had an accident on Snoqualmie Pass, were more 
likely to obey immediately, indicating that these drivers are not as confident in their ability to 
judge road conditions appropriately. 
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Table 7.2:  Binomial logit model on whether drivers would obey a system immediately or only if 
conditions warranted if told to slow down. 

Variable Estimated 
coefficient 

t-statistic 

Constant 0.35 0.63 

Single occupancy driver indicator (1 if a single occupant, 0 
otherwise) 

0.38 1.31 

Winter driving indicator (1 if drive more than 6 times during the 
winter, 0 otherwise) 

0.39 1.60 

Driving speed on dry roads indicator (1 if average speed is 65 mph 
or more, 0 otherwise) 

1.02 3.99 

Accident indicator (1 if had an accident,  
0 otherwise) 

-0.72 -1.35 

Saving trip time indicator (1 if saving trip time is “important to very 
important”, 0 otherwise) 

0.44 1.75 

Trip safety indicator (1 if increasing trip safety is “not important”, 0 
otherwise) 

1.66 2.21 

Snow/ice accumulation (1 if information was “very important” for 
planning trip, 0 otherwise) 

-0.87 -3.01 

Presence of a hazard/accident (1 if information was “moderate to 
very important”, 0 otherwise) 

-0.81 -1.62 

Type of hazard/accident (1 if information was “very important”, 0 
otherwise) 

-0.66 -2.39 

Lane blockage (1 if information was “very important”, 0 otherwise) 0.85 2.45 

Traffic congestion (1 if information was “important to very 
important”, 0 otherwise) 

-0.72 -2.38 

Presence of snow/rain is more dangerous on Pass 
(1 if “agree to strongly agree”, 0 otherwise) 

-0.50 -2.00 

65 mph is safe on dry roads (1 if “agree”,  
0 otherwise) 

-0.39 -1.33 

65 mph is safe on winter roads (1 if “agree”,  
0 otherwise) 

1.07 2.71 

(Continued) 
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Table 7.2:  Binomial logit model on whether drivers would obey a system immediately or only if 
conditions warranted if told to slow down. (Continued). 

Variable Estimated 
coefficient 

t-statistic 

Male indicator (1 if male, 0 if female) 0.50 1.95 

Age indicator (1 if between 26 to 40 years old,  
0 otherwise) 

0.40 1.41 

Income indicator (1 if household income is over $75,000, 0 
otherwise) 

-0.84 -2.56 

Income indicator (1 if household made between $50,000 — $75,000, 
0 otherwise.) 

0.36 1.25 

Education indicator (1 if some high school or high school diploma, 0 
otherwise) 

-0.60 -2.23 

Children indicator (1 if have child, 0 if do not) 0.42 1.59 

Car indicator (1 if they have two cars,  
0 otherwise.) 

-0.50 -2.07 

Number of variables  432 

Log likelihood at zero  -299.44 

Log-likelihood at convergence  -226.73 
Note:  Dependent variable choices were (1) would obey only if conditions warranted, and (2) would obey 

immediately.  All variables set for equation (7.1). 

b) Traffic information 

It was anticipated that those who value traffic information would immediately obey a system 
that provided them with this information.  Therefore, it was not surprising to find that those who 
placed great importance on (1) information relating to snow and ice accumulation, (2) presence 
of a hazard, (3) type of accident/hazard, and (4) traffic congestion, were more likely to obey 
immediately.  What was surprising was the finding, that those who placed importance on lane 
blockage information was more likely to slow down only if conditions warranted.  This could 
suggest that drivers who are interested in lane blockage information may be interested to the 
extent of knowing whether the lane they are traveling on is being blocked.  Thus, if the system 
told them to slow down because a lane is blocked, they may not feel the need to do so until they 
are sure that it is their affected travel lane. 
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c) Opinion of Snoqualmie Pass 

Appropriately, drivers who “agreed or strongly agreed” that snow is more dangerous on 
Snoqualmie Pass than other section, were more likely to obey immediately.  Also, drivers who 
“strongly agreed” that dry roads was safe on the Pass were more likely to obey immediately and, 
drivers who “agreed to strongly agreed” that wintry road is safe were more likely to observe 
traffic conditions before slowing down. 

d) Socioeconomic characteristics 

As was found in the previous model, age, income, education and type of household had an 
effect on whether or not the surveyed drivers were willing to slow down immediately, or only if 
conditions warranted.  In addition, gender was a significant variable.  Specifically, male drivers 
were more likely to slow down only if they believe conditions warranted it.   

Regarding other socioeconomic characteristics, it was revealed that drivers between 31 and 
40 years old were more likely to slow down only if conditions warrant it.  In terms of income, 
those that made over $75,000 were more likely to obey immediately.  while those who made 
between $50,000 to $75,000 were more likely to slow down only if they deemed conditions 
warrant it so.  This shows that wealthier individuals are more willing to accept information from 
an in-vehicle system while middle income drivers would like to observe what is occurring.  
Drivers who had some high school or a high school diploma were more likely to obey 
immediately and drivers who had children were more likely to obey only if conditions warrant it.  
If they had two cars in their family, they were more likely to obey immediately. 

7.5 Put on chains model 

The third model (see Table 7.3) predicted whether or not drivers would put on chains 
immediately if the system told them to so, or only if they feel it is warranted.  Of the 414 people 
who answered this question, 61.6% said they would do it only if conditions warrants, and 38.4% 
said they would do it immediately.  This model has a corrected ρ2= 0.2002. 
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Table 7.3:  Binomial logit estimation of whether drivers would put chains on immediately or 
only if conditions warranted. 

Variable Estimated 
coefficient 

t-statistic 

Constant 0.18 0.36 

Winter driving indicator (1 if drive more than 6 times during the 
winter, 0 otherwise) 

0.76 2.93 

Driving speed on dry roads indicator (1 if average speed is 65 mph 
or more, 0 otherwise) 

1.23 4.57 

Driving speed on wet roads indicator (1 if average driving speed is 
between 55 and 64 mph,  
0 otherwise) 

0.53 1.62  

Accident indicator (1 if had an accident,  
0 otherwise) 

-0.68 -1.19 

Saving trip time indicator (1 if saving trip time was “very 
important”, 0 otherwise) 

0.51 2.10 

Trip safety indicator (1 if increasing trip safety is “not important”, 0 
otherwise) 

1.53 1.79 

Snow/ice accumulation (1 if information was very important, 0 
otherwise) 

-1.03 -3.32 

Lane blockage (1 if information was “important to very important”, 
0 otherwise) 

0.86 2.40 

Type of hazard/accident (1 if information was “very important”, 0 
otherwise) 

-0.61 -2.21 

Traffic congestion (1 if information was “very important”, 0 
otherwise) 

-0.78 -2.38 

Pass is more dangerous than other section in good weather (1 if 
“strongly agree”, 0 otherwise) 

1.18 1.59 

Presence of snow or rain is more dangerous on Pass (1 if “agree to 
strongly agree”, 0 otherwise) 

-0.65 -2.49 

65 mph is safe driving on dry roads (1 if “strongly disagree”, 0 
otherwise.) 

-0.95 -3.02 

65 mph is safe driving on rainy/wet roads (1 if “strongly disagree”, 0 
otherwise.) 

1.70 2.36 

Marital status indicator (1 if single, 0 otherwise) 0.37 1.13 

Age indicator (1 if 25 years old and younger, 0 otherwise) -0.96 -1.86 

(Continued) 
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Table 7.3:  Binomial logit estimation of whether drivers would put chains on immediately or 
only if conditions warranted. (Continued). 

Variable Estimated 
coefficient 

t-statistic 

Income indicator (1 if income between $50,000 to $75,000, 0 
otherwise) 

0.56 2.21  

Education indicator (1 if have some high school or high school 
diploma, 0 otherwise) 

-0.49 -1.85  

 Children indicator (1 if have children,  
0 otherwise) 

0.57 2.19 

Number of observations  414 

Log likelihood at zero  -286.96 

Log-likelihood at convergence  -220 
Note: Dependent variable choices were (1) would obey only if conditions warranted, and (2) would obey 

immediately.  All variables set for equation (7.1). 

When we compare this model to the previous model on predicting whether a driver would 
slow down immediately or only if conditions warranted, we note many similar findings.  The 
same sign convention was found for similar variables pertaining to driving characteristics, 
opinions of driving on Snoqualmie Pass, use of traffic information, and socioeconomic 
characteristics.  This would be expected since the driver would view the system in a similar 
fashion and thus react similarly.  There are, however, noted differences.  Specifically, significant 
findings were found for the indicator variables of “drivers whose average speed between 45 and 
65 mph” (more likely), “presence of snow/rain is more dangerous on Pass”, “Being single”, and 
if you were 25 years old or younger. 

7.6 Summary 

In this Chapter, a presentation of the initial analysis on drivers’ adherence to messages was 
shown.  Specifically, data collected from a 1995 survey provided the means for three binary logit 
estimations.  These models looked at stated preference data to predict whether or not a driver 
over the Snoqualmie Pass would or would not use an in-vehicle system, whether or not they 
would obey immediately or only if conditions warranted for “slowing down”, and “putting on 
chains”.  The findings showed that traffic information, the driver’s perception of the Snoqualmie 
pass conditions, and socioeconomic characteristics had significant implications to using an in-
vehicle system.  These findings will then be compared with data collected after drivers view and 
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use an in-vehicle system (see the Chapter on the analysis of traffic advisory systems on travel 
behavior). 



 

Part IV 

Simulation Studies 
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The research discussed in this Part focuses primarily on how well traffic messages will help 
drivers divert potentially hazardous road conditions.  In-laboratory studies were conducted to 
isolate the effects of speed, braking and lane changes by drivers as they go through a graphical 
representation of the Snoqualmie pass while being provided with information from two different 
sources, 

• (1) an in-vehicle unit located in the driver’s car and, 

• (2) variable message signs located on the road. 

Essentially this research will focus on traffic advisory information rather than navigational 
guidance. 

The techniques used for this research involves a driving simulator in a laboratory setting, to 
examine the effects of driving behavior while viewing traffic information.  The motivation 
behind this study is driven by the need to understand whether or not an in-vehicle system will 
help reduce the number of accidents on the road, and to do so without unnecessary risks to the 
drivers.  If drivers can be persuaded to modify their driving maneuver by information provided 
by a traffic system, then road hazards can potentially be avoided. 

The objectives of this study is to show how various statistical methods can be used to model 
driving behavior given data collected using an in-laboratory driving simulator.  The use of a 
simulator will allow us to control the driving environment and isolate the effects of speed 
variations, lane changes and, braking. 

The techniques used for the research described in this Part involve a driving simulator in a 
laboratory setting, to examine the effects of driving behavior while viewing traffic information.  
The motivation behind this study is driven by the need to understand whether or not an in-
vehicle system will help reduce the number of accidents on the road, and to do so without 
unnecessary risks to the drivers.  If drivers can be persuaded to modify their driving maneuver 
by information provided by a traffic system, then road hazards can potentially be avoided. 

The objectives of this study is to show how various statistical methods can be used to model 
driving behavior given data collected using an in-laboratory driving simulator.  The use of a 
simulator will allow us to control the driving environment and isolate the effects of speed 
variations, lane changes and, braking. 
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In this Part we will describe studies using data collected in an experiment using the driving 
simulator.  The first Chapter of this Part describes previous research that is common to both of 
the studies performed.  The second Chapter gives a detailed description of the experiment. It is 
followed by two Chapters, that describe the individual studies.  The former study is an analysis 
of mean speeds and speed deviation in presence of IVUs, VMSs, and VSLs (Ulfarsson, 1997).  
The latter study focuses on the effect of these systems on travel behavior (Boyle, 1998). 
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Chapter 8 

Previous research 

8.1 Variable message signs 

Variable Message Signs (VMS) have been incorporated in many metropolitan cities in the 
world (Van Eeden et al., 1996; Emmerink et al., 1996) in the hopes that the information 
provided by these signs will alter drivers’ behavior in a positive manner. 

Variable Message Signs provide on-road information to traveler’s for the route that they are 
currently using.  However, to observe information further down the road or in more severe 
weather conditions, in-vehicle information is also proposed.  There are several in-vehicle 
systems on the road today to provide drivers with information or advice that is relevant to the 
activities of driving but which are not an integral part of the driving task.  These include 
Toyota’s GPS Voice Navigation System, a touch screen display mounted in the dashboard and 
being used Japan, and a Portable Navigation System by Toshiba that can be moved from one 
vehicle to another (and also used in Japan)  (Upchurch, 1993).  These systems differ from 
Automated Vehicle Operations, another ITS service, because the driver is still an important part 
of operating the car.  In addition to the systems being used in Japan, there have also been many 
prototypes tested in the United States and other parts of the world, e.g., TravTek, Pathfinder in 
the US (Wasielewski, 1988), Ali-Scout in Germany (Tokewitsch, 1991), and AMTICS in Japan 
(Okamoto, 1989).  The major goal of all these systems, is to help you achieve a timely, safe and 
enjoyable trip.  Some systems focus more on navigational guidance while others are geared more 
toward traffic advisory.  The system being used in this study, the Trafficmaster, focuses on 
helping drivers arrive at their location safely.  Since the test area for this research project has 
only one main route, the ability to navigate to other routes will not be tested.  If the mountain 
pass is closed, drivers must wait until it is reopened again before traveling.  However, many 
other on-road and in-laboratory studies have looked at this function and their findings are 
discussed in the next section. 

8.2 On-road field studies 

On-road studies provide information on what happens in an actual driving situation.  
Problems which may not be encountered in a laboratory setting can materialize and provide 
insight into necessary system modifications. 
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Many on-road studies pertaining to in-vehicle systems have focused on navigational route 
guidance information (e.g., TravTek).  The conclusion of many of these road studies reveal that a 
significant improvement in travel time can be achieved when these systems are used in 
unfamiliar surroundings versus no system usage (Dingus et al., 1994). 

Graham and Mitchell (1997) did a study on how drivers process in-vehicle information while 
driving through winter conditions. 

In familiar surroundings, the biggest benefits came from congested areas where information 
on traffic volumes, length of delays, and accidents can help drivers determine if an alternate 
route should be used.  For example, Wenger et al., (1990) reported that commuters, who are 
normally in rush  hour traffic, based their first decision to take an alternate route based on 
information that was provided in their vehicles.  This research proposes to examine the benefits 
of providing traffic congestion information also. 

8.3 Simulation studies 

Simulation studies allow researchers to examine parameters of interest in difficult and critical 
driving situations without subjecting drivers to unnecessary risks which may occur in a real 
world situation.  In addition, researchers are able to control parameters and to repeat experiments 
multiple times.  In other words, we can isolate the effects of desired variables by maintaining a 
consistent driving environment.  Factors relating to weather and road conditions can be held 
constant from one subject to another.  Since past studies have shown that road and weather 
related conditions do affect driving behaviors (Shankar et al., 1995), this study will also look at 
the effects of varying these conditions in a simulator setting.  Simulators are also closer to 
showing the revealed preference of the participants than surveys, which show the stated 
preference of the subjects. These two preferences need not be the same, i.e. what a subject does 
in reality (revealed preference) is not necessarily what the subject states on a survey. 

Driving simulator studies have been used to study the driving performances of the elderly 
(Ward, 1996), those with dementia (Rizzo, 1997), and to examine performance due to the time of 
day of travel (Lenne et al., 1997).  However, the largest literary contributions on driving 
simulation work has been directed on the impact of innovative technology toward driving 
behavior.  A discussion of some of the relevant work in this field is presented. 

Vaughn et al., (1992) conducted experiments used a PC-based simulation program to 
investigate route choice under the influence of ATIS (Advanced Traveler Information System).  
Their findings showed that males were more likely to follow advice provided by the system, and 
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interestingly, that drivers were more willing to obey the system for a route change if the route 
included the freeway. 

Adler and Kalsher (1994) investigated the effects of traffic advisory and route guidance 
information on enroute behavior and travel performance using a simulation program called 
FASTCARS (Adler et al., 1993).  Information on the simulated traffic speeds and route guidance 
information was provided and driver travel speeds were collected.  Their findings showed that 
providing subjects with guidance information resulted in shorter travel times compared to having 
drivers go through a trial and error scenario.  Thus, their conclusions support the field studies 
discussed in the previous section.  Although, their simulated program, FASTCARS, uses a 
graphics based interface to simulate audio and visual effects, the user is limited to a birds-eye 
view of the network. 

Levine and Mourant (1995) designed a simulator that allows a user to view the simulator in a 
3 dimensional environment with the use of a heads-mounted display (HMD).  This allows the 
user to become immersed in the virtual environment while driving through a graphical 
representation of the road.  Although this simulator is quite impressive, research conducted using 
this system has been limited to the perception of realism of the simulation and the sense of 
immersion in the virtual environment (Levine, 1995) and has not focused on driving behavior 
using the simulator. 

Srinivasan and Jovanis (1997) conducted a driving simulator experiment to analyze the 
effects of mean speeds in three types of roadway scenarios (2-lane roads, 4-lane roads, and 
parkways), and four types of route guidance systems (i.e. paper map, HUD and electronic map, 
electronic map, and voice and electronic map).  Significant findings for scenario effects and 
route guidance effects were found.  Specifically, their findings showed that highest speeds were 
associated with electronic maps and slowest speeds were associated with paper maps. 

Kaptein et al., (1996) present a large number of considerations on the validity of driving 
simulators as study tools. They found that simulators can, in principle, give the driver every type 
of information found in a real driving situation but most simulators are in some way simplified. 
They found that such simplification could give valid results if the simulator gave the information 
needed for the particular task tested. In this study, for example, the effect of upgrades and 
downgrades on speed among other things is sought. Therefore it is important that the simulator 
slow down as expected when going uphill and that it speed up when going downhill.  

Kaptain et al., (1996) also note that driving speed in driving simulators is not absolutely 
valid but relatively valid. This finding is also supported by Riemersma et al., (1990). This result 
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means that the absolute speed used by drivers in simulators is not necessarily the same as the 
speed they would select in reality but the relative changes in speed are the same. So if they see a 
sign giving a new speed limit and they change their speed, the relative speed change would 
remain the same. This is important to know before giving out any results based on the actual 
speed measured in the simulator. To combat this, the speedometer was directly in front of the 
subjects on the screen as can be seen in the scenes from the simulator in Appendix H. The 
subjects therefore had constant feedback concerning their speed and they could therefore more 
easily maintain the speed they remember normally using, even if for some reason they perceive 
their driving speed to be different by viewing the scenery. The subject was also instructed to 
drive at the speed they normally would in the circumstances found in the simulation.  

There has been research into the effect of simulation sounds on the general behavior of 
subjects and on driving speed in particular. The results were that the presence or absence of 
speed related sounds such as engine noise or wind noise did not affect the speed as noted by 
Kaptain et al., (1996). 

Kaptain et al., mention more examples were the validity of simulator experiments can 
become questionable. The resolution of the screen can be too coarse which makes it hard for 
subjects to see anything at a long distance. This has some significance in the present study as the 
resolution is indeed limited and the visible distance is short. The effect of this is however 
minimized because the particular road simulated is very curvy and is generally going up. It 
therefore seems to the drivers as if the road is going around a bend in the distance or over a hill 
when it really just disappears. The field of vision can have a big effect if the simulation must go 
around sharp curves for example. This is not a problem in this study as the field of view is ample 
for highway conditions. There is no rear view in this study but Kaptain et al., note that to be 
insignificant if there are no other vehicles in the simulation which the driver must be aware of, 
before changing lanes for example. In this case, the drivers have the road to themselves except 
for stationary snow plows at selected locations. The simulator used in this study is also not on a 
moving base nor are there any centrifugal or acceleration forces experienced by the driver. This 
will have some effect, but probably small, because the simulation is of a highway which, in 
reality, offers a smooth ride at the legal speeds. 

Koutsopoulos et al., (1995) have examined possible causes for bias in simulation studies. 
The basic types of bias mentioned by them are: 

Prominence hypothesis: This is when the subject obeys every order of an in-vehicle unit or 
other message devices without considering the quality of the information. 
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Policy response: This is when the subjects believe they benefit from a particular response. 

Preference inertia: Subjects continue to follow their preference no matter what happens. 

Justification: Subjects try to justify a previous response to appear consistent to the 
experimenter. 

Context effects: It is hard for subjects to perceive differences between trip purposes. 

Incentive effect: This happens if there is a prize for finishing first, for example, or a penalty for 
errors. 

Technology bias: Simulators affect different people differently, depending on various factors 
such as age and previous simulator experience. 

To minimize these biases in the present study, a number of things were done. To minimize 
the prominence hypothesis and the preference inertia, each subject was told to specifically use or 
ignore the messages given depending on what they think they would do in reality. The policy 
response was not a major factor in this study because the subjects realized and were told that this 
was a theoretical analysis with no direct effect on the subjects.  The justification bias can affect 
the results of the surveys and it can also affect the simulation if the subjects want to appear as 
being safe drivers to the experimenters. To minimize this effect the subjects were specifically 
told that the experimenters did not care in the least how safe or unsafe they drove or if they 
broke speed limits. The present study did not specifically check differences between trip 
purposes and the subjects were not told anything about the reason for why they were driving the 
simulated road so the context bias is not relevant. There was no prize or penalty during the 
simulation so the incentive bias is irrelevant. The technology bias could affect the subjects 
because it is hard to remove when a breadth of subjects from different socioeconomic groups is 
gathered. To minimize its effect each subject was given a five minute practice session in the 
simulator. After the initial practice session the subjects were asked if they felt comfortable 
driving the simulator. In the case they were not comfortable the subjects were given the 
opportunity to continue the practice session to better familiarize themselves with the simulator.  

Kiefer and Angell (1993) have examined the differences between digital and analog 
speedometers and they found some differences between the two types. These differences are 
mainly related to the time it takes the driver to see the speed where the analog speedometer 
appears to be better, and also when the driver attempts to maintain a constant speed where the 
analog speedometer also appeared to be better. However, they could not conclude with statistical 
validity that one type was better than the other. For the purposes of this study it will not make a 
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difference because the purpose of the simulation is not to analyze how well subjects maintain 
constant speed but rather have them drive as they normally would. The speed will also be 
averaged over sections of the road to remove the effects of minor speed fluctuations. Also, one 
of the main advantages of the analog speedometer found by Kiefer and Angell (1993) is that 
drivers glanced less often at analog speedometers and for a shorter time. As the digital 
speedometer is on the screen the driver will see the speed at all times and therefore this 
limitation of the digital speedometer is removed. 

8.4 Trafficmaster 

The in-vehicle system being evaluated for this study is called Trafficmaster (see Figure 9.2 
and 9.5).  Trafficmaster is an in-vehicle congestion warning device that has previously been 
tested and evaluated in the London area by Stevens and Martell (1993).  The differences between 
the Snoqualmie Pass study area and the London study area, is road configuration and usage.  The 
Snoqualmie Pass is a moutainous terrain with no other viable alternate routes.  The Trafficmaster 
in-vehicle unit provides traffic information on speeds, traffic congestion and type of incident.  
Stevens and Martell (1993) focused their research on the safety implications of the Trafficmaster 
in relation to all other information sources which may be available.  Their findings showed that 
safety was not significantly impaired with the Trafficmaster.  However, no reported 
mathematical modeling of their data was done. 

8.5 Summary 

In this section, background information relating to the research, including a description of the 
in-vehicle unit which will be used in the study (the Trafficmaster) is presented.  In addition, 
related research work is presented and compared with the focus of this research. 

In general, there has been a great deal of field and laboratory work done on how effective in-
vehicle systems can work for diverting to alternate routes, and providing drivers with 
navigational information.  However, little has been done on modeling the behavior of drivers 
while provided in-vehicle traffic advisory information in a laboratory setting.  This could be due 
to the complexity of gathering and analyzing this information in a laboratory.  Typically, to 
understand driving behavior, one needs to observe the driver as they are maneuvering around 
severe weather and road conditions.  It is, therefore, the goal of this study to be able to find a 
way to model these parameters and study their effects. 
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Chapter 9 

Methodology 

Preparation for the driving simulator experiment required several design criterias to be 
established.  This section presents information on the subject pool, the type of equipment needed 
for the experiment, and the procedures undertaken to collect the appropriate data.  Other research 
facilities have set up similar experimental conditions (e.g., Liu and Chang, 1995). 

9.1 Subjects 

There were 48 subjects needed for the experiment.  A total of 51 subjects varying in age and 
gender were obtained.  Particpants must have driven over Snoqualmie Pass to qualify for the 
driving experiment since questions on one of the survey related to driving over the Pass. 

9.2 Equipment 

A fixed based driving simulator was used for the experiments since the emphasis of this 
research was on the visual sensory feedback rather than the tactile sensory feedback.  For that 
reason, all equipment listed focuses on effectively using the visual and auditory information.  
The following equipment list describes all the major hardware components required for the 
interface between the driving simulator, computer workstation, and screen projections of the 
driving scenes. 

• A General Electric IMAGER610PJ RGB (Red Green Blue) Graphics Projector 
(ceiling mounted), is used to project color graphics to a screen projector. 

• A 104” x 76” screen projector is used to display a life-size graphical representation 
of the driving scene. 

• A Silicon Graphics Image (SGI) Workstation with 64 MB (SGI Indigo II Extreme 
Workstation with IRIX 5.3 operating system) and a 19 inch diagonal monitor (color 
resolution 1280 x 1024 refresh rate: 60 Hz non interlaced display). 

• General Electric AVDU490 Control Unit:  A data unit that connects the GE Imager 
to the SGI Workstation.  This enables the Imager to receive the images displayed on 
the SGI Workstation. 
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• Ford Escort car frame equipped with seats, steering wheel, windshield, dashboard, 
brake and gas pedals.  A computer mouse is attached to the steering wheel and 
provides feedback to the SGI workstation regarding where the car is located with 
respect to the road. 

• A Motorola 68HC11 microcontroller is used to relay information on whether or not 
the car is on/off, and identifies when participants are braking and accelerating.  The 
simulator simulates a vehicle with automatic transmission, so the driver uses 
accelerator and brake pedals along with the steering wheel but there is no gear 
shifting required. 

• TRAFFICMASTER In-vehicle unit:  This unit provides various scenes which 
include a map of the area being driven, variable speed information, and variable 
messages on road conditions (e.g., fog ahead).  It is mounted on the center of the 
windshield, directly above the dashboard (see Figure 9.2).  In general the unit can 
be used to display messages to the driver while on the road and more extensive pre-
trip information.  The pre-trip information can be about such things as congestion, 
the need for chains, weather conditions or speed limits.  The on road messages, used 
in this experiment, give short messages with information about the road ahead with 
a new speed limit. 

• A portable beacon transmitter capable of sending messages to the IVU via a 
program written for the IBM PC.  This transmitter is connected to the IBM Hard 
Drive via a 9 pin (COM1) connection. 

The images projected on the screen encompass a 2.46 m by 1.47 m (97” x 58”) rectangle.  
The images are not in 3-dimensions (3D), nor is the simulator able to detect motion.  
Nonetheless, the simulator is quite adequate for portraying real-world situations by providing 
life-size images of the driving scenes, the use of a real car frame with real car parts, and the 
drivers ability to drive with a steering wheel while utilizing the brake and gas pedals. The car 
which is situated in front of a large screen projector, enables the driver to feel immersed in the 
driving environment with a 60° field of view (see Figure 9.1).  The reason for using 60° field of 
vision is that this is the human binocular field of vision which is the field that can be seen with 
both eyes at the same time when they are both fixed at a central position (NHTSA, 1987).  The 
distances set for the driver to obtain a 60° field of view is calculated as: 
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( )
Tanθ =

1
2

width of projector

driver's viewing distance from eye to projector
 (9.1) 

and therefore the distance from a subject's head to the screen is set at 2.13 m.  Also, this field of 
vision is approximate since the vehicle simulator will not be moved from its position during the 
course of the experiment and the exact seating position of the subjects vary. The exact 60° field 
of vision would be reached if the subject sat in the middle of the car. 

30o

30
o 97”

 

Figure 9.1:  Subject's field of view (top view). 

The operating components of the car are shown in Figure 9.3, and the lab setup for the 
simulator experiments is shown in Figure 9.4. 

9.3 Software 

There were three software programs that were needed to enable the simulator to function 
properly with the SGI workstation and the Trafficmaster in-vehicle unit. 

 1. MAXTALK.  A communication package supplied with the 68HC11 Microcontroller. It 
was installed on an IBM Personal Computer (PC) and allows the PC to establish 
communication at 96 baud  from a COM1 port to the Microcontroller.  This enables 
activation of the stepper motor for the car, so that information on ignition, gear, 
acceleration, and braking can be recorded. 
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Figure 9.2:  View of Trafficmaster mounted in car. 
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Figure 9.3:  Components of the car used for the simulator. 
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Figure 9.4:  Driving simulator setup. 

 2. A modified version of the SGI DRIVE program written in the C++ programming 
language.  The mean update rate of new images in this program was 20.6 Hz for files 
with VMS, and 23.2 Hz for files without VMS1.  This program runs the actual simulation 
and presents the driver with a geometry contained in a data file.  The program has been 
enhanced to give more realism on up- and downgrades by decreasing or increasing the 
acceleration respectively. 

 3. An in-house PC based program, written in the C programming language, relays the 
messages (on-road, pre-trip and speed information) to the Trafficmaster in-vehicle unit. 

9.4 Procedure 

At the onset, each subjects was given a list of instructions to read that relate to their 
particular driving conditions (see Appendix B).  After reading the instructions, each subject then 
drove through two simulation sessions.  The first session encompassed a 5 mile loop and was 

                                                 

1 The update rate is the rate at which new images are presented to the user.  This differs from the refresh rate, 
which affects the projector/screen.  Given a 60Hz refresh rate, and an update rate of ~20 Hz, the system will 
present 3 consecutive images of a scene before the elements in the scene changes (i.e., 20 new images per 
second are shown to the user).  An update rate beyond 10 to 15 Hz produces the illusion of smooth motion in 
the scene (cite reference). 
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used to familiarize the subjects with the simulator configurations (i.e. braking, steering, and 
accelerating), the use of the in-vehicle unit, and if necessary, answer any questions they may 
have. 

The second session was the main part of the experiment and encompassed a 12 mile (or 
19.31 kilometer) graphical representation of Snoqualmie Pass.  Essentially, each person goes 
eastbound on Interstate 90 starting around milepost 35 (North Bend, WA) and ending at milepost 
47, the top of the Snoqualmie summit. 

One of four sign conditions was randomly assigned to each subject.  Thus, the effects of 
signage was tested at four levels: 

 1. Presence of on-road variable message signs. 

 2. Presence of in-vehicle message signs. 

 3. Presence of both on-road and in-vehicle message signs. 

 4. Absence of messages (control condition). 

The driving scenes viewed by each subject are described in the following section. 

9.5 Driving scenes 

The configurations for grade and horizontal curvatures were derived from WSDOT 
geometric configurations of Interstate 90 (see Appendix J) and is portrayed for the eastbound 
section of the interstate.  Slight changes had to be made to some of the horizontal curves to fit 
the requirements of the simulation software. These changes increased the degrees of curvature of 
some curves.   

The simulator creates the vertical curves by using the change in grade between two stretches 
to calculate the radius of curvature. The simulator uses the simple formula for a circle as 
opposed to the more realistic parabolic formula actually used in road design (Mannering and 
Kilareski, 1990). This should not pose a problem as the grade changes are typically slight. The 
actual length of the vertical curves is taken from the real geometric configuration.  The 
configuration of the highway in the simulation can bee seen in Appendix F gives the computer 
data file representing the terrain.   

The scenes represent a three lane highway with 11 feet shoulders on the right and left of the 
road.  The lanes were designed to be viewed as 12 feet wide.  Views of trees and mountains 
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provide the surroundings as well as road signs posting the interstate route (i.e. 90), mile 
indicator, and speed limit information.  In all sign conditions, fog and snowplows are observed at 
varying locations.  There are no other vehicles in the simulation and the speeds observed should 
therefore be the free-flow speeds chosen by the respective subjects. 

There were two levels of weather effects (“fog” and “no fog”) and two levels of snowplow 
effects (“snowplow” and “no snowplow”).  The order of presentation of the road/weather 
conditions were counterbalanced across a 4x4 Latin Square to reduce order effects (see 
Appendix E for the ordering of messages and conditions).  The four by four square gives rise to 
16 different run scenarios.  Therefore the number of subjects should be a multiple of 16. The 
number 48 was chosen as it is large enough to give statistical significance in the light of each 
subject yielding a large number of observations and it was practical in light of the time available 
to run the simulation experiments. As three of these runs were suspected to be faulty an 
additional three subjects were run using the same conditions giving a total of 51 subject. Tables 
9.1 and 9.2 give an overview of the scenery conditions and the simulation run types.  The order 
of the runs was randomized to make sure that a specific type of a run was not all done on the 
same day because it would include spurious effects as people may drive differently on a Saturday 
than on a Monday. 

Table 9.1:  The four scenery conditions. 

 • clear weather conditions 

 • clear weather conditions and a snow plow blocking 1—2 lanes 

 • foggy weather conditions 

 • foggy weather conditions and a snow plow blocking 1—2 lanes 

Table 9.2:  The four simulation run types. 

Control run No in-vehicle unit / No variable message signs 

IVU run In-vehicle unit  / No variable message signs 

VMS run No in-vehicle unit  / Variable message signs 

IVU/VMS run In-vehicle unit / Variable message signs 
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According to the National Oceanic and Atmospheric Administration (NOAA), fog is 
designated when the visibility is less than one km (3,300 feet) (NOAA, 1997).  Using this guide, 
the density of the fog, for the “fog conditions”, in the simulator was designed so that a driver 
could not see past 805 m (0.5 miles).  As shown in Table 9.1 some sections of the simulation 
contain fog. The fog is designed to limit the length of view to 805 m (half a mile). By definition 
fog is any mist that limits the length of view to 1 km or less. However the visible road in the 
simulation is only 229 m (750 ft) because the resolution of the image makes the road hard to see 
at longer distances. This does not pose a problem because the road is perceived as going up the 
mountain or around a bend in the distance. Due to this limitation, the fog does not make a real 
difference in the viewable length of road but it makes a perceived difference because the view to 
the mountains is blocked. Some participants actually noted that they perceived the fog as being 
of variable thickness but in reality it quickly achieves its thickness in the beginning and quickly 
disappears at the end, staying constant throughout the majority of the fog section. 

The snowplows are not moving and they occupy two lanes.  The driver’s task is to 
successfully go around them.  Appendix H contains a number of figures showing different scenes 
from the simulator. 

The speed, in mph, is shown on the screen in front of the driver with a digital speedometer. 
The differences between analog and digital speedometers are negligible for the purposes of this 
study (Kiefer and Angell, 1993). There is no sound emitted from the vehicle and it has been 
found that speed related noises do not affect the driving speed in driving simulators (Kaptein et 
al., 1996). 

9.6 VMS condition 

For some road conditions, variable messages are also observed.  The information displayed 
are similar to those used by the Washington State Department of Transportation on Interstate 90.  
There were three main messages viewed by the participants at various times for the VMS and 
IVU condition.  The complete list of messages used can be seen in Appendix E. 

 1. Fog Ahead, Slow Down 45 MPH 

 2. Curvy Road, Drive Slowly 

 3. Snow Plow Ahead, 35 MPH 
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9.7 IVU condition 

Participants using the in-vehicle unit were given additional instructions on the use of the 
Trafficmaster. The system shows them a map of the Snoqualmie Pass in four quadrants (see 
Figure 9.5).  The in-vehicle messages are identical to the ones provided in the VMS condition 
(see Appendix E).  The only difference was in message 2.  Since the IVU was not limited by the 
characters and spacing and had a designated field for the speed limit, this additional information 
was provided.  Therefore, for “Curvy Roads”, the recommended speed limit was posted at 88.5 
km/h (55 mph).  There were also four different order of sign presentation over the 12 mile terrain 
and the exact orders for the VMS and IVU conditions are presented in Appendix E. 

The messages for the IVU were relayed manually by the experimenter. Yellow signs were 
designed in the simulator scenes to prompt the experimenter to send a message.  Once sent, 20 
seconds would elapse before the message was actually displayed on the in-vehicle unit.  This is 
consistent with the proposed usage on the Snoqualmie Pass. 

Pictures of various scenes observed by the drivers can be viewed in Appendix H. 
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Figure 9.5:  The Trafficmaster in-vehicle display. 
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9.8 Survey 

At the end of the experiment, all subjects were asked to evaluate the in-vehicle unit whether 
they used it in the experiment or not.  They were given more detailed information on the unit 
including the use of the pre-trip information, use of traffic congestion information, and any other 
necessary components.  To allow the users to practice using the system, two messages were sent 
to them.  A survey asking them to evaluate the TrafficMaster in-vehicle unit (see Appendix C) 
was then completed.  A second survey, similar to the one distributed by Morse (1995) (see 
Appendix A), is also filled out (see Appendix D).  The difference between this and Morse’s 
survey is the inclusion of “fog” questions.  Since the simulator tested drivers under foggy 
conditions, their opinion of driving in the fog was also collected.  This information will enable a 
comparison to be made between data collected from this study with the information collected 
from the on-road study. 

9.9 Information collected 

Driving performance measures collected from the simulator experiment included lane 
changes, speeds, braking, position, time and the presence of fog.  This information will be 
recorded onto a log file in ASCII format.  A sample of the data is shown in Appendix G.  In 
addition, data will be collected from the surveys completed by the participants of this same 
study. 

9.10 Summary 

In this Chapter, the methodology for the driving simulator work has been described.  This 
included the subject pool, the equipment used, the different driving environment for the four sign 
conditions (i.e. IVU, VMS, Both, and none).  The procedure for collecting the data via surveys 
and through the SGI was also discussed.  The analysis performed with this data is described in 
the next two Chapters. 
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Chapter 10 

Descriptive statistics 

The data were collected from 51 subjects and each should give 18 observations (there are 
only 17 observations from one subject which due to a software error ended the simulation early) 
of speed and standard deviation data along with the surveys.  

There were 15 females and 36 males.  They ranged in age from 16 to 70 years (mean = 33.49, 
SD=14.08).  Approximately 60% were single, 30% were married, and 8% were divorced.  The 
other 2% said checked “other”. The survey on the use of the Trafficmaster in-vehicle unit 
collected information on the participants opinion of the system.  The socioeconomic 
characteristics of the drivers are summarized in Table 10.1. 

Table 10.1:  Socioeconomic characteristics of surveyed drivers. 

Variable Information 

Age 33.49 years 

Income $34,799.80 (SD=$24,317.10) 

Gender Male 70.6% (n=36) 
Female 29.4% (n=15) 

Marital Status Married 29.4% (n=15) 
Single 60.8% (n=31) 
Divorced 7.8% (n=4) 
Other 2.0% (n=1) 

Number of people typically in vehicle while driving 
Snoqualmie Pass 

2.08 (SD=0.88) 

Seat belt usage All the time  82.3% (n=42) 
Most of the time 15.7% (n=8) 
Some of the time 2.0% (n=1) 

Average driving speed on dry roads 69.00 mph (SD=9.13) 

Average driving speed on wet roads 59.80 mph (SD=9.40) 

Average driving speed on icy roads 41.41 mph (SD=10.20) 
 

The overall average speeds driven by participants was 85.63 kilometers per hour.  Subjects 
willing to use the Trafficmaster were willing to pay $136.78 on average (SD=88.75) for the unit.  
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In addition, those who were willing to pay for a monthly service said they felt $13.80 on average 
was good. 

Table 10.2:  Frequency of responses to the usefulness of Trafficmaster features. 

Trafficmaster 
feature 

Extremely 
Useful 

Of 
Considerable 
Use 

Of Use Not very 
useful 

Of no use Did not 
notice 

Beep 21 (42) 15 (30)  10 (20) 1 (2) 3 (6) 0 (0) 

On-road 
messages 

20 (40) 21 (42) 7 (14) 2 (4) 0 (0) 0 (0) 

Map Display 7 (13.7) 13 (25.5) 14 (27.5) 14 (27.5) 3 (5.9) 0 (0) 

Pre-Trip 25 (50) 10 (20) 13 (26) 1 (2) 0 (0) 1 (2) 

Speed Limit 8 (15.7) 14 (27.5) 19 (37.3) 8 (15.7) 2 (3.9) 0 (0) 
Percentages are identified in parenthesis. 

The statistics of the geometric, environmental and driver based variables are to be found in 
Tables 10.3–10.8. The statistics of the survey questions appropriate for this study, i.e. questions 
1-5,7,14–24 on the Snoqualmie Pass survey in Appendix D, can be found in Tables 10.9 and 
10.10.  

Table 10.3:  The number of horizontal and vertical curves in sections. 

Horizontal curves 0 1 2 3 4 Total 

Observations 31 223 259 301 103 917 

Percentage 3.38 24.32 28.24 32.82 11.23 100 

Vertical curves 0 1 2 3 4 Total 

Observations 3 415 346 153 0 917 

Percentage 0.33 45.26 37.73 16.68 0 100 
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Table 10.4:  Distances within curves averaged over sections, and grade information. 

Mean distance in a horizontal curve: dh = 290 m, σ = 170 m 
Mean distance in a vertical curve: dv = 290 m, σ = 120 m 
 

Maximum grades in a section Observations 

less than 2%  204 

between 2% and 4%   155 

greater than 4%  558 

Total  917 
 

Table 10.5:  Maximum speed limits and maximum speed limit difference in a section as set by 
road signs, the IVU and/or the VMSs. The number of observations of each value are given. All 
speed values are in km/h 

Max. speed limit 56.32 72.42 88.51 96.56  Total 

Road signs 0 0 0 234  234 

IVU 48 99 104 0  251 

VMS 42 84 0 90  216 

IVU/VMS 42 84 90 0  216 

Total 132 267 194 324  917 

Max. speed limit diff. 0 16.09 24.14 32.19 40.23 Total 

Road signs 234 0 0 0 0 234 

IVU 196 30 0 25 0 251 

VMS 168 21 6 0 21 216 

IVU/VMS 168 27 0 21 0 216 

Total 766 78 6 46 21 917 
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Table 10.6:  Number of sections with fog and number of sections with snow plows. 

 No fog Fog  Total 

Observations 421 496  917 

Percentage 45.91 54.09  100 

     

No. of snow plows 0 1 2 Total 

Observations 790 51 76 917 

Percentage 86.15 5.56 8.29 100 
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Table 10.7:  The number of particular VMS and IVU messages and the message they are 
trailing. 

VMS message type Observations 

Curvy Road after Curvy Road: 36 

Curvy Road after Fog Ahead: 6 

Curvy Road after Snow Plow Ahead: 18 

Fog Ahead after Fog Ahead: 36 

Fog Ahead after Curvy Road: 6 

Fog Ahead after Snow Plow Ahead: 18 

Snow Plow Ahead after Curvy Road: 24 

Snow Plow Ahead after Fog Ahead: 24 

  

IVU message type Observations 

Curvy Road after Curvy Road: 39 

Curvy Road after Fog Ahead: 6 

Curvy Road after Snow Plow Ahead: 20 

Fog Ahead after Fog Ahead: 40 

Fog Ahead after Curvy Road: 6 

Fog Ahead after Snow Plow Ahead: 19 

Snow Plow Ahead after Curvy Road: 25 

Snow Plow Ahead after Fog Ahead: 26 
 

Table 10.8:  The mean and standard deviation of the observed mean speeds, and the mean and 
standard deviation of the observed deviations. 

v = 88 , σ v = 20  km/h 

σ = 8.8 , σσ = 5.9  km/h 
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Table 10.9:  The statistics of the survey results used. Trip specific information. 

Question 1       

Occupants 1 2 3 4 5 Total 

Observations 197 522 144 36 18 917 

Percentage 21.48 56.92 15.70 3.93 1.96 100 
 

Question 2     

 Winter Spring Summer Autumn 

Mean trips 3.63 2.91 2.98 2.02 

St. dev. 7.70 5.93 3.92 4.27 

Range 0—50 0—30 0—24 0—24 
 

Question 3        

Speed (km/h): <56 56—71 72—87 89—103 105—119 >=121 Total 

Dry        

Observations 0 0 36 324 252 305 917 

Percentage 0 0 3.93 35.33 27.48 33.26 100 

Wet        

Observations 0 54 234 323 288 18 917 

Percentage 0 5.89 25.52 35.22 31.41 1.96 100 

Icy        

Observations 269 378 108 144 0 0 899 

Percentage 29.92 42.05 12.01 16.02 0 0 100 

(Continued) 
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Table 10.9: The statistics of the survey results used. Trip specific information. (Continued). 

Question 4   

Purpose Observations Percent 

Recreation 684 76.08 

Business 36 4.00 

Visit family 143 15.91 

Errands 18 2.00 

Other 18 2.00 

Total 899 100 
 

Question 5  

No. of accidents Observations 

0 899 

1 18 

Total 917 
 

Question 7   

Frequency Observations Percentage 

all the time 755 82.33 

most of the time 144 15.70 

some of the time 18 1.96 

rarely 0 0 

never 0 0 

Total 917 100 
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Table 10.11:  The statistics of the survey results used, socioeconomic variables. 

Question 14  

Sex Observations 

Male 648 

Female 269 

Total 917 
 

Question 15       

Marital Status: Married Single Divorced Separated Other Total 

 Observations: 270 558 71 0 18 917 
 

Question 16    

Mean age: 33 years, σage = 14 years  

Minimum age: 16 years, Maximum age: 70 

Observations: 917   
 

Question 17    

Mean income $35,000 σincome = 24,000  

Minimum income: under $10,000 Maximum income: $75,000-
$100,000 

Observations: 899   
 

Question 18       

 Some high 
school 

High 
school 

Tech. 
College 

College 
degree 

Graduate 
degree 

Total 

Observations 72 126 90 396 233 917 

Percentage 7.85 13.74 9.81 43.18 25.41 100 

(Continued) 
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Table 10.10: The statistics of the survey results used, socioeconomic variables. (Continued). 

Question 19        

Household size 1 2 3 4 5 6 Total 

Observations 197 414 126 108 18 54 917 

Percentage 21.48 45.15 13.74 11.78 1.96 5.89 100 

Mean household size 2.5       

Standard dev. 1.3       
 

Question 20     

No. of children, age < 6 0 1 2 Total 

Observations 863 18 18 899 

Percentage 96.00 2.00 2.00 100 
 

Question 21      

No. of children, aged 6 to 16 0 1 2 4 Total 

Observations 827 36 18 18 899 

Percentage 91.99 4.00 2.00 2.00 100 
 

Question 22       

Work outside home 0 1 2 3 4 Total 

Observations 144 233 288 180 72 917 

Percentage 15.70 25.41 31.41 19.63 7.85 100 
 

Question 23       

No. of veh. 0 1 2 3 4 Total 

Observations 36 395 270 108 108 917 

Percent 3.93 43.08 29.44 11.78 11.78 100 
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Question 24  

 Live and work in same zip code 

Observations 108 
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Chapter 11 

Analysis of mean speed and deviation 

11.1 Introduction 

The present study aims to examine the mean driving speed on Snoqualmie Pass in a 
simulator study. By having a number of participants drive through a 19.3 km (12 miles) 
simulated section of a Snoqualmie Pass and by having them answer a survey also used by Morse 
(1995), the mean speed and deviation on a mountainous highway under free-flow conditions can 
be modeled as functions of geometric, environmental and socioeconomic variables. The 
simulation has some drivers viewing variable message signs containing the messages used by the 
TravelAid project. Some drivers have the help of an in-vehicle unit that gives information similar 
to the VMSs. Other participants have both systems and neither system while driving in the 
simulator. This makes it possible to analyze the effect of these different methods of giving 
information to the drivers in addition to the effect of the geometric, environmental and 
socioeconomic variables. 

This study begins with a review of the current literature on speed and simulation studies. In 
this review the limitations of simulator studies is discussed. Then, the modeling approach and the 
estimation methods used are presented and, finally the results of the model are given and 
discussed. 

11.2 Previous research 

a) Speed studies 

Speed has always been of major importance in transportation engineering, for example, in the 
study of flow analysis and when determining the level of service (see May, 1990; Highway 
Capacity Manual, 1994). Numerous studies on what factors affect speed have been performed. 
The earliest studies looked largely on the effects of geometric design on speed but later studies 
have examined other factors such as vehicle characteristics and the environment. Galin (1981) 
used multiple regression to model average speed as a function of driver population 
characteristics, traffic conditions, vehicle and road characteristics and environmental factors. He 
used empirical data gathered from a large number of subjects traveling a specific section of a 
rural two-lane road. He found, for example, that older drivers drove at lower speeds in light 
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vehicles but that age was insignificant among heavy vehicles. He also found that female drivers  
drove at significantly lower speeds than males.  

There has also been research performed on how to specifically analyze speed behavior in 
horizontal curves (see Kanellaidis et al., 1990) and also on speed perception in curves (see 
Milosevic and Milic, 1990). As the perception of speed in a driving simulation poses specific 
problems a very visible speedometer is used to give the drivers constant feedback on speed. 
Kanellaidis et al., (1990) found that speed in horizontal curves is a function of the curve radius 
and the desired speed which they defined as the speed on the straight section before the curve 
starts to have effect. In light of this result the radius of curves will be recorded in this study and 
used as a possible explanatory variable. However it may not be significant in this study because 
larger sections of road are used were each can contain a number of curves.  

Brisbane (1994) examined the effect of variable message signs designed to modify the speed 
characteristics on a highway in Australia. These signs were different from the ones used in the 
present study as they measure vehicle speeds with radar and point at the lane with the worst 
speed offender and send him an appropriate message. The signs used in this study do set new 
speed limits but without the fanfare of these Australian signs. Brisbane found that the Australian 
signs were extremely effective in modifying speed, in some cases  about 98% of speeding drivers 
lowered their speed when seeing the signs. 

Holland and Conner (1996) examined the effect of police intervention on speed. They found 
police intervention to be effective even for a few weeks after heavy police patrol of a particular 
road section in England. They found that the effect of police were different for drivers based on 
their attitude towards speeding.   

Kanellaidis et al., (1995) performed a detailed study on driver’s attitudes towards speed limit 
violations. They used a survey and asked questions about the driver himself and about others and 
they found interesting discrepancies. The drivers were shown to be generally egocentric and 
thought very differently of their own speeding and the speeding of others. Kanellaidis et al., 
found that the biggest group of high speeders which had very strong intentions to speed were 
young, educated males which can be compared to the results of the present study. 

b) Modeling methods 

This study differs from previous speed studies in a variety of ways. It uses a driving 
simulator to track the speed characteristics of each subject over an approximately 19 km long 
section of road, gathering observations along the way. This gives many observations per subject 
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which means fewer subjects are needed to get a statistically significant sample size. This method 
has been previously used by Mannering and Chu Te (1986) to analyze the impacts of 
manufacturer sourcing on vehicle demand and by Mannering (1987) to analyze the impact of 
interest rates on automobile demand. This method of using many observations from each subject 
leads to a correlation of the error terms because the observations from a particular subject share 
unobserved variables that affect that particular subject. It is difficult to correct for this effect and 
following Mannering (1987) this correlation is not taken into account in this study. 

To model speed and deviation a three stage least squares regression is used to estimate both 
equations simultaneously as these are endogenous variables. Three stage least squares regression 
has previously been used to model speed and deviation by Shankar and Mannering (1997). 

11.3 Modeling 

a) Geographic setting 

The road being modeled is a 19.312 km (12 miles) stretch of I-90 eastbound from mile 
marker 35 to 47. This is as I-90 heads up and into Snoqualmie Pass, WA. In this area the road 
generally has an upgrade, the highest being 7% (4°). The road is also curvy as it winds up the 
pass. Each lane is 3.66 m (12 ft) wide and the shoulders on both sides are 1.22 m (4 ft). 

b) Modeling issues 

The goal is to create a mathematical model describing mean speed and speed deviation as a 
function of geometric, socioeconomic and other variables being measured by the driving 
simulator and by the surveys in Appendices C and D.  

The speed data collected every second is subject to uninteresting fluctuations so it is more 
reliable to divide the road into sections and calculate the mean speed and standard deviation in 
each. These can then be regressed against the independent variables. There is a choice in 
deciding whether the sections should be of even length or if they should be designed to capture a 
constant geometric feature such as a whole horizontal curve. Following the logic of Shankar et 
al., (1995) who divided Snoqualmie Pass to examine accident frequencies, sections of even 
length will be used. Sections of even lengths are more likely to have a similar number of 
observations and the error terms are therefore more likely to be more identically distributed. This 
helps to lessen heteroskedasticity. Shankar et al., also found that this method gives an accurate 
representation of the road if the geometry of the sections are well known.  
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The minimum horizontal and vertical curvatures in each section were therefore 
recorded,along with the maximum up- and downgrades, the number of horizontal and vertical 
curves and the maximum length of horizontal and vertical curves in the section. The maximum 
and minimum speed limits in each section were also recorded because they are changed by the 
IVU in some simulation runs and by the VMSs in some runs. This gives all the necessary 
geometric information for the whole section. All this information will be included in the model 
but the coefficients are not expected to be significantly different from zero for all these variables. 

Kaptain et al., (1996) found that driving speed in driving simulators is not absolutely valid 
but relatively valid. Care must therefore be taken before any statements are made based on the 
actual speed measured in the simulator. 

c) Data processing 

The data collected by the driving simulator program needs to be processed before it is usable 
for the purposes of this study.  The driving simulator monitors and writes out the following 
variables every second: 

• the time since the start of the current run 

• the position of the vehicle in simulator units 

• the current lane 

• the current position of the gas pedal 

• the current gear 

• the current position of the brake pedal 

• the level of fog 

A sample data file can be seen in Appendix G. 

Because this study aims to model mean speed over a specific section length of the road this 
data must be used to calculate the current distance traveled since the start. The simulator units 
cannot be used for this purpose as they do not contain enough accuracy. They show the position 
with a margin of error of 10% of the current stretch length which is a variable length unit in the 
simulation. The stretch lengths used are shown in Appendix F in the length column.The distance 
is therefore calculated by using the mean speed of the previous second. This method also leads to 
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an error, especially if the speed changes dramatically within the second. As the road simulated is 
a highway with few obstacles this is not expected to pose a problem.  

Having calculated the distance traveled at each point the road can now be divided into 
sections of even length based on the calculated distances. A section length of 1 km is selected. 
The simulation is 19.3 km and the last 300 meters are dropped along with the first 1 km as in that 
first section the vehicle is typically accelerating as it starts at virtual standstill. There are 
therefore 18 equally long sections, each typically having 10—30 observations depending on 
speed. Due to a software malfunction the dataset from one subject contained only 17 sections 
resulting in a total of 917 sections for all 51 subjects. These sections become the observations 
used in the model. 

d) Econometric methods 

To create a model of mean speeds and deviation a system of two equations is set up where 
the mean speed and the deviation appear endogenously: 

vni = α + β Xni + φ σni + εni (11.1) 

σni = ζ + η Zni + ψ vni + δni (11.2) 

where vni is the mean speed of driver n in section i, σni is the standard deviation of the mean 
speed, α, ζ, φ and ψ are estimable scalars, β and η, are estimable vectors, Xni and Zni are 
vectors of exogenous variables, εni and δni are the error terms. 

To estimate equations (11.1) and (11.2) simultaneously it is best to use the three stage least 
squares (3SLS) method. It has been previously used to model lane mean speeds and deviations 
by Shankar and Mannering (1997) with good results. As noted by them the 3SLS method is 
asymptotically more efficient than other possible regression techniques such as indirect least 
squares, two stage least squares and limited information maximum likelihood. The mathematical 
methods of 3SLS are described in Greene (1993) and various issues concerning the method are 
discussed in Kennedy (1992). The Statistical Software Tools version 2.0 (Quigley et al., 1994) 
were used to perform the 3SLS regression. 

The assumptions of ordinary least squares (OLS) regression apply to 3SLS too (see Kennedy, 
1992). If they are not met the model will be erroneous. These issues were addressed in the 
following way: 
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Omission of relevant variables: Previous research on speed was consulted to help make sure all 
known relevant variables were included (see Galin, 1981; Kanellaidis et al., 1990; 
Kanellaidis et al., 1995; Shankar and Mannering, 1997). 

Presence of irrelevant variables: The large base model used will have irrelevant variables but 
they will be weeded out by using the t-statistic as a measure of significance and by using 
engineering logic. 

Nonlinearity: Previous research has shown speed to be largely a linear function (see Galin, 
1981) however on a small scale the speed in curves appears to show nonlinear effects (see 
Kanellaidis et al., 1990). This study works on a large scale and linearity can therefore be 
safely assumed. 

Changing coefficients: The section length used is relatively short so effects such as the driver 
getting tired should not impact the study. Previous studies on speed have not indicated this to 
be a problem. 

Non-zero disturbance mean:  If the disturbance mean is non-zero it will result in a biased 
intercept. Previous research on speed have not been overly concerned with this problem. 
There will be a tendency for intercept bias as the speed in a driving simulator is only 
relatively valid (see Kaptein et al., 1996). 

Heteroskedasticity: Results if the variance of the error terms is different.  It is lessened by the 
use of sections of even length.  

Correlation of error terms: The 3SLS method corrects for the contemporaneous correlation of 
error terms and the problems associated with it. There will, however, be some correlation of 
error terms in this study because there are many observations from each subject. This 
problem was not addressed in the present models so some caution must be taken while 
interpreting the results (see Mannering, 1987). 

Errors in variables: This study will suffer from this as the traveled distances are calculated 
from mean speed with one second intervals. This will introduce some error which should be 
small as the speed is not likely to change dramatically during the one second period. 

Autoregression: This is if a time lagged variable of a dependent variable is used as an 
independent variable which is not done in this study. 

Endogeneity: As speed and standard deviation are endogenous this issue is of concern and it is 
the reason for using the 3SLS simultaneous equation estimation technique as it solves this 
problem. 
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Multicollinearity: This happens if two ore more independent variables are linearly dependent. 
The 3SLS method as implemented by the SST software is sensitive to this and it will not 
function if a linear dependency is detected (see Quigley et al., 1994). 

There are 917 road sections with mean speed, standard deviation and detailed geometric 
information. There are also the 51 surveys filled out by the participants. To include the survey 
information the survey results for a particular subject are appended to each section driven by that 
subject. Therefore all vectors in equations (11.1) and (11.2) become 1 by 917. This is a 
statistically valid sample size even though the number of subjects was only 51, as each created 
18 observations (except for one subject who created 17 observations). Typically each subject 
creates one observations such as the survey and then a large number of subjects are needed. 
Mannering and Chu Te (1986) have previously shown that a large number of observations can be 
made from one subject and thereby a relatively few subjects are needed to get a statistically valid 
sample size. 

e) Designing the model 

To design this model variables are first selected on the basis that they could be explanatory. 
To do that all the information that is endogenous and/or opinion based is excluded. The two 
interesting endogenous variables, average speed and standard deviation, are kept. This means the 
removal of all questions from the surveys which ask the participant to give his or her opinion. 
The appropriate data used will be factual only as opinions change and can be very different 
based on the wording of the questions. This removes the survey in Appendix C completely and 
questions 6 and 8–13 from the survey in Appendix D. The variables used to begin are therefore: 

• Geometric variables: 

• number of horizontal and vertical curves, 

• lengths of horizontal and vertical curves, 

• radii of horizontal and vertical curves, 

• maximum up- and downgrades. 

• Environmental variables: 

• maximum and minimum speed limits set by road signs, the IVU and/or the VMSs, 

• fog or clear weather, 
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• number of snow plows, 

• the type of variable message received, if any, 

• the type of in-vehicle message received, if any. 

• Driver based variables: 

• mean speed, 

• standard deviation of mean speed, 

• questions 1–5, 7, 14–24 from the survey in Appendix D. 

This information has to be properly coded as either binary indicator variables, continuous 
variables or discrete ordered variables.  The least restrictive coding for all variables is used at 
first. Therefore there is one binary indicator variable used for each number of curves for 
example. 

The results are in Tables 10.3–10. Based on the results some variables may have to be left 
out of the analysis as they may have too few observations or may be constant. These issues will 
be addressed in the section on results. 

To design the model all variables are used that possibly can be included without triggering a 
linear dependency. This means that some variables must be left out but after having designed the 
model there will be a check to see if one of these variables are more significant than the ones 
used. The 3SLS regression is run on this large base model and the methodology in Table 11.1 
used to fine tune it. 

In some instances it was found during the modeling process that the least restrictive coding 
as possible was not used for a variable as it had a high t-statistic and contained more than one 
logical piece of information. Then the coding was changed for that variable and all other possible 
variables were inserted again (i.e. reverted to the base model) and the model fine tuned 
according to the methodology in Table 11.1. This resulted in the final model shown in Tables 
11.2–13.  

By examining the number of observations for the different variables in Tables 10.4–10.11 it 
can be seen that in some cases they are very few. If the coefficient for one of these variables had 
significant t-statistics (i.e. the absolute value of the t-statistic was greater than one) a check was 
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performed to see if the corrected R2 value was improved by leaving that variable out. This was 
the case for the VMS and IVU messages that had less than 20 observations (see Table 10.7), also 
for the indicator variables for business, errands and other purposes in question 4 (see Table 
10.9), for the number of accidents (see question 5 in Table 10.9), and for the indicator variable of 
other in the marital status question (see question 15 in Table 10.10). While performing the fine 
tuning of the model (as described in the section on the design of the model) it was found that the 
rest of the marital status indicator variables were not significantly different from each other. This 
means in effect that these variables were giving a constant contribution which belongs in the 
constant variable. These variables were therefore removed altogether. 

Table 11.1:  The modeling design methodology. 

 1. The t-statistic is used to determine if the coefficients of the variables are significantly 
different from zero. If the absolute value of the t-statistic is greater than one the variable 
is kept as it then has a coefficient significantly different from zero with at least a level of 
confidence of 85%. All variables which do not meet this criteria are deemed 
insignificant. 

 2. The least significant variable according to the t-statistic is picked and dropped from the 
model but noted on a list. The 3SLS regression is then run again and the process returns 
to step 1. 

 3. If all variables are significant the list of variables dropped from the model in step 2 is 
now inspected. They are inserted one at a time and the 3SLS regression is run. If a 
variable is shown to be insignificant it is dropped. If it becomes significant some other 
variable may become insignificant. If that happens the process returns to step 1 again. 

 4. If the list of variables that were dropped in step 2 becomes empty the variables that 
triggered a linear dependency are tried one at a time to see if any of them can improve the 
model. 

 5. Having tried all possible variables and removed all insignificant variables it is now 
examined if the binary indicator variables are significantly different from each other. One 
pair of indicator variables such as the ones for one and two horizontal curves in a section 
are taken and combined. The 3SLS regression is run and if the corrected R^2 has 
improved the combination is used. This is done for all possible pairs of related indicator 
variables. 
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11.4 Results 

The final model can be seen in Tables 11.2–13. Interpretation of the results for equations 
(11.1) and (11.2) can be found in the following two sections. The corrected R2 for the mean 
speed model was 0.54691 (see Table 11.2) and it was 0.39044 (see Table 11.3) for the standard 
deviation model. The system R2 is 0.54709 with a total of 830 observations. All signs in the 
models were plausible. 
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Table 11.2:  Three stage least squares estimation of mean speed in km/h. 

Variable Estimated 
coefficient 

t-statistic  

Standard deviation (km/h) -1.40065 -10.76597 

Constant (km/h) 74.20500 11.09307 

Maximum speed limit set by road signs, (96.56 km/h if the driver 
had neither IVU nor VMSs, 0 otherwise) 

3.31811*10-2 2.48481 

Maximum speed limit set by IVU only, (Speed limit in km/h if the 
driver had IVU only, 0 otherwise) 

8.33766*10-2 4.35987 

Maximum speed limit set by VMS only, (Speed limit in km/h if the 
driver had VMS only, 0 otherwise) 

5.58700*10-2 3.36881 

Horizontal curve indicator 3, (1 if there are three horizontal curves 
in a section, 0 otherwise) 

-2.52385 -2.72206 

Grade indicator 1, (1 if the maximum upgrade in a section is less 
than 2%, 0 otherwise) 

2.73590 1.89721 

Grade indicator 2, (1 if the maximum upgrade in a section is 
greater than 4%, 0 otherwise) 

-3.34956 -2.68920 

Vertical curve indicator 1, (1 if there are two vertical curves in a 
section, 0 otherwise) 

1.74570 1.80096 

Maximum distance in a vertical curve in a section (m) -8.43732*10-3 -2.27301 

Fog indicator, (1 if there is fog somewhere in a section, 0 
otherwise) 

-11.33593 -12.28128 

Usual number of occupants in driver's vehicle on Snoqualmie Pass 
trips 

-1.39307 -1.91773 

Driver's estimate of mean speed for Snoqualmie Pass trips under 
dry conditions (km/h) 

0.32576 9.24832 

Driver's estimate of mean speed for Snoqualmie Pass trips under 
icy conditions (km/h) 

0.28867 10.15192 

Primary purpose indicator, (1 if the primary purpose was to visit 
family, 0 otherwise) 

-13.91232 -8.21165 

Seat belt indicator, (1 if the driver reported using seat belts all the 
time, 0 otherwise) 

-3.95983 -3.02806 

Sex indicator, (1 if male, 0 if female) 9.09296 6.37411 

Driver age (years) -0.24544 -5.08766 

Driver's household income ($) -1.15100*10-4 -5.33556 

(Continued) 
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Table 11.2:  Three stage least squares estimation of mean speed in km/h. (Continued).. 

Variable Estimated 
coefficient 

t-statistic  

Education indicator 1, (1 if the driver's highest level of education 
was high school or technical college, 0 otherwise 

3.68538 2.78165 

Education indicator 2, (1 if the driver's highest level of education 
was a college degree, 0 otherwise) 

-15.75487 -11.87282 

The number of people in driver's household -2.75100 -4.85113 

Number of children aged 6 to 16 in driver’s household 2.37486 2.72239 

Number of people in driver's household that work outside the 
home 

-2.48350 -3.57331 

Number of licensed and operable vehicles in driver’s household 4.00188 5.90706 

R2 0.56002  

Corrected R2 0.54691  
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Table 11.3:  Three stage least squares estimation of the standard deviation of mean speed in 
km/h. 

Variable Estimated 
coefficient 

t-statistic 

Mean speed (km/h) -0.12816 -9.16855 

Constant (km/h) 18.45278 13.94781 

Maximum speed limit difference in a section, set by IVU only, 
(maximum difference in km/h if the driver had IVU only, 0 
otherwise) 

7.79066*10-2 3.30098 

Maximum speed limit difference in a section, set by VMS only, 
(maximum difference in km/h if the driver had VMS only, 0 
otherwise) 

0.15057 6.29182 

Maximum speed limit difference in a section, set by IVU and 
VMSs, (maximum difference in km/h if the driver had both IVU 
and VMS, 0 otherwise) 

0.16902 5.43059 

Horizontal curve indicator 1, (1 if there is one horizontal curve in a 
section, 0 otherwise) 

0.66029 1.71828 

Horizontal curve indicator 2, (1 if there are two horizontal curves 
in a section, 0 otherwise) 

1.27182 3.48832 

Maximum distance in a horizontal curve in a section (m) -2.09485*10-3 -2.43596 
(Continued) 
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Table 11.3:  Three stage least squares estimation of the standard deviation of mean speed in 
km/h.  (Continued). 

Variable Estimated 
coefficient 

t-statistic 

Grade indicator 2, (1 if the maximum upgrade in a section is 
greater than 4%, 0 otherwise) 

-1.54436 -4.40456 

Vertical curve indicator 2, (1 if there are two or three vertical 
curves in a section) 

1.22853 3.67455 

Fog indicator, (1 if there is fog somewhere in a section, 0 
otherwise) 

-1.56556 -4.26039 

Number of snow plows in a section 4.24467 13.93509 

Specific VMS indicator, (1 if a Curvy Road message follows a 
snow plow, 0 otherwise) 

-3.80811 -3.49842 

Experienced Snoqualmie Pass driver indicator, (1 if the driver 
reported traveling Snoqualmie Pass more than four times each 
season, on the average, 0 otherwise) 

1.03135 1.46003 

Driver's estimate of mean speed in km/h for Snoqualmie Pass trips 
under icy conditions 

4.83465*10-2 4.29633 

Primary purpose indicator, (1 if the primary purpose was to visit 
family, 0 otherwise) 

-1.70855 -3.57788 

Driver's household income ($) -2.69305*10-5 -3.82674 

Education indicator 2, (1 if the driver's highest level of education 
was a college degree, 0 otherwise) 

-3.24076 -8.37843 

Education indicator 3, (1 if the driver's highest level of education 
was a high school diploma, 0 otherwise) 

1.33854 2.60246 

Number of licensed and operable vehicles in driver's household 0.36368 2.35084 

R^2 0.40441  

Corrected R^2 0.39044  
 

a) Interpretation of the estimation of the mean speed equation. 

Variable: Standard deviation 

Finding: Negative contribution 

This result is in line with a priori expectations. The higher the standard deviation the lower 
the mean speed. This is logical since the only time drivers need to change their speed from their 
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desired speed is when they slow down as presumably they are driving as fast as they want or 
dare. Therefore if a driver slows down he or she will want to speed up soon to regain the desired 
speed. This results in a higher standard deviation being associated with lower speeds. 

Variable: Maximum speed limit set by road signs 

Finding: Positive contribution 

This result indicates that the mean speed of drivers without an IVU or VMSs get a constant 
positive contribution of 3.2 km/h. This means that these drivers drive faster than drivers with 
both IVU and VMSs as they do not receive a contribution to mean speed from the speed limits. 
A comparison between this and the following two variables can be seen in Figure 11.1. 

Variable: Maximum speed limit set by IVU only 

Finding: Positive contribution 

This result is logical as a higher speed limit allows drivers to legally drive faster and that is 
generally desired by drivers. What is interesting about this result is that these drivers drove faster 
than all other drivers on the average. 

Variable: Maximum speed limit set by VMS only 

Finding: Positive contribution 

This result is logical as the preceding result for the IVU set speed limits. Note that the 
coefficient a bit lower than the IVU coefficient indicating less impact on speed from the VMS 
signs. The VMS drivers drove at approximately the same speed as the drivers in the control run 
in sections with snow plows. 

Variable: Horizontal curve indicator 3 

Finding: Negative contribution 

If a section contains three horizontal curves the average speed tends to be lower than if there 
are more or less curves in the section. This is logical as a high number of horizontal curves is 
expected to hinder speed. The reason the speed is lower for three curves than four can be 
explained when the typical lengths of curves are compared to the 1 km section length. If there 
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are four curves in a section then the two curves at the edges are sure to be only partially within 
the section and therefore they cause less of an hindrance in that particular section. 

Variable: Grade indicator 1 

Finding: Positive contribution 

If the maximum upgrade in a section is lower than 2% the average speed tends to be higher 
than for other sections. This is logical as the higher the upgrades the poorer the performance of 
the simulated vehicle which slows it down.  

Variable: Grade indicator 2 

Finding: Negative contribution 

If the maximum upgrade in a section is greater than 4% the average speed tends to be lower 
than for other sections. This result is as expected and in harmony with the previous grade 
indicator. 

Variable: Vertical curve indicator 1 

Finding: Positive contribution 

If there are two vertical curves in a section the average speed tends to be higher. This may at 
first seem to be counter intuitive but is really logical, especially in the light of the next variable. 
It may also be said that not all vertical curves bridge differences between upgrades, some 
connect to downgrades and thereby giving a tendency for higher speeds. 

Variable: Maximum distance in a vertical curve in a section 

Finding: Negative contribution 

The longer distance spent traversing a vertical curve the lower the average speed. This 
variable works against the one for two vertical curves which gave a positive contribution. That 
contribution may be negated if the curve is long enough as the drivers tend to drive slower on 
long vertical curves. 

Variable: Fog indicator 

Finding: Negative contribution 
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The presence of fog in a section has a strong negative impact on average speed which is as 
expected. 

Variable: Usual number of occupants in driver's vehicle on Snoqualmie Pass trips 

Finding: Negative contribution 

The drivers who generally have more people in the vehicle tend to drive slower. It seems 
drivers tend to drive more carefully when carrying passengers as they feel they are otherwise 
risking other people's lives. This result is supported by previous research (see Morse, 1995). This 
effect seems to carry into the simulator experiment as the drivers have gotten used to particular 
driving speeds which have been partially based on the number of passengers. It is interesting to 
see this effect in a simulation study where the risk to the driver's life is virtually zero. Galin 
(1981) did not find this variable to be significant in his study on speed.  

Variable: Driver's estimate of mean speed for Snoqualmie Pass trips under dry conditions 

Finding: Positive contribution 

The faster the drivers estimated his or hers usual average speed the faster they drove in the 
simulation which fits with intuition. 

Variable: Driver's estimate of mean speed for Snoqualmie Pass trips under icy conditions 

Finding: Positive contribution 

This variable shows the same effect as the previous variable as driver's who estimate going 
faster in reality went faster in the simulation than others. 

Variable: Primary purpose indicator 1 

Finding: Negative contribution 

Drivers who reported their usual primary purpose for Snoqualmie Pass trips as visiting 
family drove slower than others. This is not surprising as such visits can be expected to be of a 
more leisurely nature than other types of trips and this has been found previously, for example 
by Morse (1995). It is interesting to see this effect carry into the simulation. The subjects were 
not instructed to behave as if they had a particular purpose while driving in the simulation but 
rather drive as they usually would. Previous research has shown that subjects generally have a 
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hard time of driving according to specific trip purposes in simulators (see Koutsopoulos, 1995). 
In this study the subjects' usual purpose appears to manifest itself in their driving patterns. 

Variable: Seat belt indicator 

Finding: Negative contribution 

Drivers that reported using seat belts all the time on Snoqualmie Pass have lower average 
speeds than do others. This is probably connected to the fact that those who do not use the seat 
belts all the time are not as safety conscious and therefore likely to have higher average speeds. 
As seat belt use is required by law in Washington state the drivers who do not use seat belts all 
the time are breaking the law. If they do not think much of breaking this law then they are 
probably also more likely to break the legal speed limit. 

Variable: Sex indicator 

Finding: Positive contribution 

This is the expected result, that males drive faster than females. This is supported by 
previous research on attitudes towards speeding which shows that males have a more general 
tendency to speed (see Galin, 1981; Kanellaidis, 1995). 

Variable: Driver age 

Finding: Negative contribution 

This result indicates that older people drive slower than younger people. This is as expected 
since previous research on the connection between age and speed has found this to be the case 
(see Galin, 1981; Kanellaidis, 1995). In a simulation study a further effect can be the technology 
bias, described by Koutsopoulos et al., (1995). Older people may not be as used to computer 
simulations and may therefore have a more difficult time adjusting to the simulator. 

Variable: Driver's household income 

Finding: Negative contribution 

The higher the household income of the driver the lower the average speed. This tendency of 
higher income drivers has been previously found by Morse (1995) where he found drivers from 
high income households to be more likely to reduce speed more than middle income drivers 
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under adverse weather conditions. It seems drivers from higher income households are less 
willing to take risks with their life and therefore tend to drive safer than middle income groups. 

Variable: Education indicator 1 

Finding: Positive contribution 

If the driver's highest level of education was high school or a technical college degree the 
average speed tends to be higher than for drivers of other levels of education. Kanellaidis et al., 
(1995) found that the higher the educational level the more likely people were to have intentions 
to speed. This fits the result for technical college degrees but there were not significant 
differences between those drivers and those with a high school degree. 

Variable: Education indicator 2 

Finding: Negative contribution 

Drivers with a college degree drive slower than others. This does not fit the results of 
Kanellaidis et al., (1995) as they found higher education to be a positive contributor to drivers' 
intentions to speed. However, they do not mention if they split up their educational variable to 
allow each level of education to have their own coefficient. That can make a difference in the 
result. 

Variable: Number of people in driver's household 

Finding: Negative contribution 

Drivers from bigger households drive slower. This variable is very much coupled with the 
following variables and must be analyzed in conjunction with them. This result is supported by 
the results of Morse (1995) which found drivers who live alone to be less likely to slow down 
under icy conditions. Drivers who live with families (or share a household with friends) are here 
found to drive slower than others. This may well be because drivers with families feel more 
responsibility than others but note the following variables. 

Variable: Number of children aged 6 to 16 in driver's household 

Finding: Positive contribution 
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Drivers who have older children and young teenagers drive faster. This couples with the 
household size which gives a negative contribution so the total contribution from these two 
variables together may still be negative. Drivers from larger households do therefore tend to 
drive slower but the more children aged 6 to 16 in the household the smaller the negative 
contribution. This study did not contain subjects from large enough families (see Table 10.10) to 
change the total contribution to positive values so the model cannot be easily extended into that 
region. 

Variable: Number of people in driver's household that work outside the home 

Finding: Negative contribution 

The more people that work outside the home in the driver's household the slower the driver 
tended to be. This couples again with the previous two variables to give a total negative 
contribution for drivers from larger households. 

Variable: Number of licensed and operable vehicles in the driver's household 

Finding: Positive contribution 

This variable adds further impact to the previous household variables. Driver's from 
households with more cars tend to drive faster than others. These households are likely to have 
higher incomes and thereby opposing the negative income based contribution. These households 
are also more likely to have more than one person working outside the home and therefore this 
variable opposes the negative contribution of the work outside of home variable. 

b) Interpretation of the estimation of the standard deviation equation. 

Variable: Mean speed 

Finding: Negative contribution 

This result fits the one found for the standard deviation of mean speed in the previous section 
as higher mean speeds are correlated with lower standard deviations. 

Variable: Maximum speed limit difference in a section, set by IVU only 

Finding: Positive contribution 
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This fits intuition as the greater the difference in speed limits within a section the larger the 
expected speed difference and therefore a larger standard deviation of mean speed. The IVU 
therefore contributes to the standard deviation by setting different speed limits depending on 
conditions and apparently the drivers took some note of the IVU set speed limits. 

Variable: Maximum speed limit difference in a section, set by VMS only 

Finding: Positive contribution 

The VMSs had a similar effect as the IVU. They increase standard deviation by setting 
different speed limits depending on conditions and according to this, drivers followed the VMS 
suggestions. 

Variable: Maximum speed limit difference in a section, set by IVU and VMSs 

Finding: Positive contribution 

As for the previous two variables for either IVU or VMS this variable is for drivers who had 
both. They, along with the drivers with IVU only or VMS only had higher standard deviations 
than drivers who saw road signs with a constant speed limit. 

Variable: Horizontal curve indicator 1 

Finding: Positive contribution 

The standard deviation in a section with one horizontal curve was higher than for other 
sections. This is not surprising when comparing a section with a curve with a straight section. In 
such a case the standard deviation is expected to be higher as the speed is bound to change 
within the curve. For comparison with sections with more curves see the next variable. 

Variable: Horizontal curve indicator 2 

Finding: Positive contribution 

The standard deviation in a section with two horizontal curves was also higher than for other 
curves, i.e. no curves or more than two as the case of one curve is covered by the previous 
variable. The standard deviation of one and two curves can be higher than for three or four 
curves in a section because if the section is so curvy then the driver may well adjust to a slower 
speed and maintain it while traveling through the section while if there are one or two only then 
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the driver is more likely to slow down upon entering the curve and then regain speed when 
exiting. Therefore the standard deviation is higher for sections with one or two curves than for 
more or less curves. 

Variable: Maximum distance in a horizontal curve in a section 

Finding: Negative contribution 

This result is not surprising and stems from similar reasons as noted to explain greater 
standard deviations in one or two curves than in three or four. If the curve is long the driver 
maintains the speed selected to traverse the curve longer and therefore the standard deviation is 
reduced for longer curves. 

Variable: Grade indicator 2 

Finding: Negative contribution 

The standard deviation of sections with a maximum upgrade greater than 4% is less than for 
sections with lower grades. The mean speed in these sections is lower which means the standard 
deviation is higher than for other sections but this variable adjusts the effect of low speed on 
standard deviation as it is not as low on an upgrade as it is on a straight section or a downgrade 
with a similar mean speed. 

Variable: Vertical curve indicator 2 

Finding: Positive contribution 

If there are two or three vertical curves in a section the standard deviation tends to be higher 
than for sections with fewer curves. There are no sections with more than three vertical curves as 
can be seen in Table 10.3. This is not surprising as vertical curves affect the speed, either by 
increasing it when going downhill or decreasing it when going uphill and thereby the standard 
deviation is increased. 

Variable: Fog indicator 

Finding: Negative contribution 

The standard deviation tended to be less in sections with fog than in other sections. The mean 
speed in the fog tended to be lower than in other sections and the mean speed variable shows that 
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higher speeds lead to lower standard deviation. The fog variable adjusts the effect of the lower 
speed on standard deviation as the fog lasts for a long time and within it the driver adjusts to the 
fog and maintains speed with less standard deviation than predicted by other variables. This 
result is therefore not as counter intuitive as it may seem at first. 

Variable: Number of snow plows in a section 

Finding: Positive contribution 

This result was very much so expected as the snow plows block 1-2 lanes and require the 
driver to slow down and possibly change lanes and then pick up speed again. Therefore it is only 
normal that the number of snow plows in a section contribute to a higher standard deviation. 

Variable: Specific VMS indicator 

Finding: Negative contribution 

When a VMS shows the "Curvy Road" message after the driver has encountered snow plows 
the driver typically assumed that there would be no more snow plows in the coming sections and 
picked up speed and held it relatively constant throughout the section with this sign. That leads 
to a lower standard deviation. 

Variable: Experienced Snoqualmie Pass driver indicator 

Finding: Positive contribution 

Drivers who reported going on average more than four times across Snoqualmie Pass during 
each of the four seasons show a tendency to have higher standard deviations than others. It may 
be linked to the fact that these experienced drivers drove faster and upon encountering snow 
plows and fog they had to change their speed more than others and thereby generating a higher 
standard deviation of mean speed. 

Variable: Driver's estimate of average speed for Snoqualmie Pass trips under icy conditions 

Finding: Positive contribution 

The higher the driver reported driving on average during icy conditions the higher the 
standard deviation. This may be due to similar reasons as for the previous variable. These drivers 
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may drive faster than others and therefore have to change their speed more resulting in higher 
standard deviation. 

Variable: Primary purpose indicator 

Finding: Negative contribution 

Driver's whose primary purpose for traveling across Snoqualmie Pass was to visit family had 
lower standard deviation than others. These drivers also drove slower as shown in the previous 
section and this variable is therefore correcting against the influence of speed on standard 
deviation. That is, even if these drivers drove at lower average speeds they maintained them 
better than others who drove at similar speeds and therefore have lower standard deviation. 

Variable: Driver's household income 

Finding: Negative contribution 

The higher the driver's household income the lower the standard deviation. This couples with 
the result from the previous section which showed that these drivers drove slower. This result 
shows that driver's from higher income houses had lower standard deviation than other drivers 
even if they drove at similar speeds. 

Variable: Education indicator 2 

Finding: Negative contribution 

This result works in much the same way as the previous result for income as it adjusts the 
standard deviation of drivers with college degrees who drove slower than others but had lower 
standard deviation than other drivers even if they drove at similar speeds. 

Variable: Education indicator 3 

Finding: Positive contribution 

This result indicates that drivers with a high school diploma have higher standard deviation 
than other drivers. These drivers also drove faster as seen in the previous section. This therefore 
means these drivers have a tendency for higher standard deviations than other drivers who drove 
at similar speeds. 

Variable: Number of licensed and operable vehicles in driver's household 
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Finding: Positive contribution 

As seen in the previous section these drivers drove faster than others and they are by this 
shown to also have higher standard deviation than others and even higher than drivers who drove 
at similar speeds. 

11.5 Conclusions 

In this Chapter a model of mean driving speed and deviation under free-flow conditions on 
an highway has been created. The model can be used to explore the effects of the various 
explanatory variables on speed and deviation. However as the model is based on data from a 
driving simulation, care must be taken before the actual speed values predicted by the model are 
carried over to reality. 

The findings of this study were mostly consistent with previous research on the variables that 
have previously been studied, such as the effects of sex and age (see Galin, 1981). Young drivers 
drove faster, male drivers drove faster and drivers with high school or technical college degrees 
drove faster than others. The only inconsistent result was that drivers with a college degree drove 
slower than others in this study while previous research found that the higher the education the 
higher the intent to speed (see Kanellaidis et al., 1995). The reason for that may be that in this 
study there was one indicator variable for each level of education to begin with. This allowed 
each level to have its own coefficient. In the paper of Kanellaidis et al., (1995) there was only 
one variable used with higher numbers signifying higher levels of education. This restriction 
may well have caused the difference and also the fact that in this study there were many 
observations from people with college degrees (see Table 10.10). 

Upgrades and curves tended to generally cause lower speeds and higher standard deviations 
which fits with intuition. The presence of fog caused people to slow down to lower mean speeds. 
It was also revealed that speed and deviation are endogenous as presumed beforehand and 
thereby validating the use of the 3SLS regression method. Both variables were statistically 
significant in each others equation. The results for those variables were consistent as high speeds 
signified lower standard deviations and high standard deviation signified lower speeds. 

The study found that the speed limits set by the IVU and VMS did have an effect on drivers. 
The higher the speed limit the larger the contribution to mean speed. The speed limits change 
depending on the scenery conditions shown in Table 9.1 and this must be taken into account 
when comparing the four run types shown in Table 9.2. Figure 11.1 shows the different 
contributions to speed depending on run type and scenery type. 
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Figure 11.1:  A comparison of the contributions to mean speed depending on run type and 
scenery condition. The contribution for IVU/VMS marks the baseline of zero km/h. 

The figure shows that drivers with IVU only drive faster than others on the average. The 
drivers with VMS only drove faster than those using both systems or no system in the clear and 
fog areas but in the snow plow sections they drove at approximately the same mean speed as 
those with no system. Drivers with both systems drove at the lowest mean speed. The drivers 
that received additional help from the IVU or the VMSs do therefore seem to have put some trust 
in the messages to give information about upcoming dangers such as the snow plows used in this 
study. The IVU and VMS drivers may therefore have been given an added sense of security 
which shows itself in higher speeds during the areas they considered safe, i.e. the sections 
without snow plows. This is affected by the lack of additional traffic in the stream which would 
have lead to the fog section in particular to be considered more dangerous than it was when the 
drivers knew they were the only driver except for possible obstacles. 

The reason for the lower mean speed of drivers with both IVU and VMSs may be because 
drivers who saw every message twice were more affected by the messages in the sense that they 
slowed down more than those with either IVU or VMSs. That results in lower mean speed than 
predicted for the IVU only and VMS only drivers. This result is supported by the standard 
deviation model were the drivers with IVU and VMS have the largest coefficient for the 
difference in speed limits. Figure 11.2 shows a scenario that helps to explain why the standard 
deviation is higher for the IVU, VMS and IVU/VMS runs than for the control run.  
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Figure 11.2 is not based on any particular subject but is a schematic representation of 
possible speed characteristics. The differences in speed are exaggerated. This figure shows the 
drivers in the IVU/VMS driving at a faster speed in the beginning but upon seeing the snow 
plows ahead message they slow down. They keep that speed until they see another message, 
which does not indicate that there are more snow plows ahead. The drivers in the control run, 
slow down when they first see a snow plow, pass it and speed up again. Their mean speed is 
higher but the deviation is higher for the IVU/VMS run.  

The use of IVUs or VMSs does seem to be a two-edged sword. Drivers using IVU and/or 
VMS did slow down when the messages indicated danger ahead but in the IVU only case the 
drivers drove faster on the average than other drivers. While in the VMS only run the drivers 
drove faster than the drivers in the control run and IVU/VMS run during the areas without snow 
plows. The drivers did therefore seem to trust the messages given by the IVU or VMSs. The 
drivers who saw both IVU and VMS may also have driven faster than the drivers with neither 
system in high speed limit zones and may have driven slow for longer in the low speed limit 
zones as seen in Figure 11.2 and still have lower mean speed. This explains the higher standard 
deviation of the IVU/VMS run. 

Control
IVU/VMS

Snow plow locationIVU/VMS Snow plow
warning message

Distance

Speed

 

Figure 11.2:  Schematic figure showing a scenario were the different speed characteristics of a 
IVU and/or VMS run and the control run result in lower deviation for the control run. 
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This has interesting implications for advanced traveler information systems. Erroneous 
messages can prove to be more dangerous than no message at all. Care must therefore be taken 
when designing such a system to ensure message correctness. To better understand the effects of 
VMSs and IVUs on mean speed and deviation it would be interesting to conduct a study in 
which the messages are not always correct but contain different levels of accuracy from low to 
high accuracy. This is important because message correctness would probably not be perfect in 
reality. It would also be interesting to study different types of adverse weather conditions such as 
rain, snow and ice. 

This study also shows that if the traffic stream has vehicles with IVUs and others without any 
information system the standard deviations and the speed characteristics of the two groups would 
be different which increases the risk of accidents. If all vehicles have an IVU or see VMSs of 
some sort and this results in higher mean speeds it is not necessarily bad if the risk for accidents 
goes down because drivers drive faster in safe areas but slow down in unsafe areas. It would 
therefore be interesting to perform an analysis to better see the effect of advanced traveler 
information systems on accident frequency. This should be done for traffic streams with vehicles 
without information systems, with information systems and mixtures of vehicles with and 
without systems. 



182 

Chapter 12 

Traffic advisory systems and driving behavior 

12.1 Introduction 

This Chapter is separated into five sections.  The second section discusses the data analysis 
approach and the significant findings appear in the third section.  A market analysis of the in-
vehicle product is prepared for section four and potential applications for the efforts of this study 
are discussed in section five. 

12.2 Data analysis 

a) Introduction 

The validity of information collected from simulators have previously been questioned due to 
the existence of “simulator biases”  (Morikawa, 1989).  To ensure that the quality of the data 
collected minimizes as many biases as possible, precautions/steps were taken given the list of 
biases associated with simulation work identified by Koutsopoulos, Polydoropoulou and Ben-
Akiva (1995).  For example, the technology bias (bias associated with simulator use by people 
who are more technically oriented) can be reduced if the subject pool is from a diverse driving 
population (i.e. varying age, income, education, etc.). 

The data to be analyzed comes from two major sources:  (1) Data collected on a log file from 
the Silicon Graphics Workstation, and (2) data collected from the surveys (age, gender, income, 
driving habits, use of Snoqualmie pass, and opinions of the in-vehicle unit). 

Analysis of the data is conducted using several statistical software mediums.  For the 
multivariate models, SST (Statistical Software Tool) will be the primary medium, and for the 
analysis of variance (ANOVA), SAS (Statistical Analysis Software) will be the software choice. 

The simulator study provides information on the use of in-vehicle and out of vehicle systems.  
Thus, several predictor variables will be obtained, and the analysis of these variables will include 
the use of 3 stage least squares, and analysis of variance.  These two analysis technique and how 
they will relate to the analysis of the simulator data is discussed in the following sections. 
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b) Three stage least squares estimation 

A simultaneous model of equations predicting mean speeds, standard deviations of mean 
speed, and a one kilometer lag in the two previously mentioned variables was developed.  The 
intent of this model was to observe effects due to mean speeds and the changes in speeds over a 
one kilometer stretch as it relates to the previous one kilometer stretch.  Since these four 
variables are interrelated, a simultaneous set of equations was estimated using the three stage 
least squares (3SLS) estimation technique.  An estimation of simultaneous equations occurs 
when endogeneous variables in one equation feed back into variables in another equation.   The 
consequences of these estimation procedures is that the endogeneous variables and the error term 
are correlated.  If we estimate using an ordinary least square, our parameter estimates would be 
biased and inconsistent. 

The structural equation system for mean speeds, standard deviation of the mean speed, the 
lag in mean speed and the lag in standard deviations in the mean speed is written as a follows: 

u = β10 + β1iX1i + β1mσ + ε1

σ = β20 + β2iX2i + β2 ju + ε2  (12.1) 

where u is the mean speed for each driver in a 1 kilometer stretch, v is mean speed of the 
kilometer prior, σ is the standard deviation of the mean speed, and τ is the standard deviation of 
the kilometer prior.  All four variables are interrelated to each other.  X1i and is X2i the vector of 
exogeneous variables (for i=1,2....k variables),  β10, and β20, are estimable scalars and, β1i and β2i  
are estimable vectors.  The error terms for each equation is defined as ε1, and ε2, and are assumed 
to be normally distributed with a mean of zero and a constant variance. 

The R2 value is then used to determine the goodness of fit of the equations.  The calculations 
for R2 is: 
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where yi is the actual value for the dependent variable, y  is the mean of the actual values, ˆ y  is 
the predicted values, and ˆ y is the mean of the predicted values. 

The adjusted R2 is then calculated to compensates for the fact that R2 will get larger with 
more variables.  This equation is given as: 
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where n is the number of observations in your sample, and k is the number of variables in your 
equation. 

Greene (1993) provides a complete description of this procedure.  For this particular 
analysis, the statistical software package, SST (Statistical Software Tools 2.0) was used.  

c) Analysis of variance 

Analysis of variance (ANOVA) models can be used for studying relationships between a 
response variable of a continuous nature (i.e. time, speeds and counts) and one or more 
independent variables for experimental and observational data.  This analysis technique differs 
from logit estimations because ANOVA, which is based on a general linear model, allows the 
examination of a quantitative response variables while logit models are more suitable for 
qualitative responses.  The use of ANOVA techniques provides a method to compare multiple 
means of treatment combinations whose responses are normally and independently distributed.  
This method has the advantage of testing whether there are any differences among groups (or 
treatment combinations) with a single probability associated with the test (Cody and Smith, 
1994).  The hypothesis tested is that all groups have the same mean. 

Please note also that several assumptions must be met before conducting an ANOVA (Hicks, 
1993).  They are as follows: 

 (1) The process must be in control (i.e. it is repeatable), and there is independence among 
groups. 

 (2) The sampling distribution of the sample means must be normally distributed 

 (3) The variance of the errors within the levels of the treatments is homogeneous. 

The basic model for a one-way ANOVA can be written as: 

Yij = µ + τj + εij (12.4) 

where Yij is the response or dependent variable, µ is the overall mean for the response variable 
over populations, τj represents the effects of each treatment, and εij is the error term.  For two or 

more way ANOVAs, this model can be expanded to represent the effects of each factor, and the 
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existence of blocking, confounding, and repeated measures.  Further reading on this subject can 
be found in Hicks (1993).  

In this research work, ANOVAs can be conducted for the data that will be collected from the 
driving simulator.  They include data collected every second on speed changes, lane changes, 
and braking.  The dependent variables used to determine if there are any differences due to using 
variable message signs and in-vehicle displays will be, for each subject, the mean speed (and 
standard deviation) over each weather/vehicle stretch. 

The model for the experimental design is depicted in Table 5. 

Table 12.1:  Setup for simulator experiment. 

   EXISTENCE OF FOG 

   No Fog Fog 

   PRESENCE OF VEHICLES 

   Snow Plows None Snow Plows None 

 In-Vehicle 
Unit 

Subj  
1-12 

    

SIGNAGE 
TYPE 

Variable 
Message 
Signs 

Subj  
13-24 

    

 Both 
 

Subj  
25-36 

    

 None 
 

Subj  
37-48 

    

 

Each of the four weather/incident conditions will be observed by the driver in three mile 
stretches.  Therefore, the participants will drive a total of 12 miles.  It was decided, that due to 
the mechanics of a full-size simulator, participants will not be able to be immersed in the 
environment longer than 15 minutes before feeling “car sick”.  Given that drivers will probably 
go an average of 50 to 60 miles per hours, a 12 miles stretch should be reasonable for the 
participants while enabling a feasible amount of data to be collected. 

For the sign conditions where variable messages are observed, signs are placed one and a 
half miles apart for a total of 8 signs.  There are four different order of presentations for the four 
weather/incident conditions (i.e., fog with snow plows, fog with no snow plows, no fog with a 
snow plow, and no fog with no snowplow) and they are randomly assigned to each participant.  
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This randomization of order and assignment reduces experimental error due to learning which 
may occur if the weather/incident conditions were presented in the same order for each sign 
condition.  It also takes into account variations due to different geometric configurations along 
each stretch.  However, a restriction on randomization is present given that data for all weather 
conditions must be collected for a given subject and sign type before another subject and sign 
type can be tested. 

Since each subject will go through each weather/incident condition, the experimental design 
is often referred to as a repeated measured design, which is essentially a special case of a nested 
factorial experiment (Hicks, 1993).  Therefore, given the stated conditions, the experiment is set 
up as a nested factorial whose mathematical model is: 

Yijkl = µ + Signi+ Subj(i)j + δ(ij)  
 + Weatherk + Sign * Weatherik + Subj * Weather(i)jk 

 + Vehiclesl + Sign * Vehiclesil + Subj * Vehicles(i)jl  
 + Weather * Vehicleskl + Sign * Weather * Vehiclesikl  
 + Subj * Weather * Vehicles(i)jkl + εijklm (12.5) 

where: 

Yijkl  represents the mean speed and standard deviation for the jth subject (where j = 1,...,12) in 
the ith sign type (i = 1,2,3,4) , kth weather condition (k = 1,2), and lth vehicle condition (l 
=1,2), 

µ is the overall mean,  

Signi represents the effects of one of four sign “treatments” that will be used (1. Variable 
message signs, 2. in-vehicle information, and 3. VMS and IVU information, and 4: No 
information),  

Weatherk represents the effects of one of two fog conditions (Fog or no fog),  

Vehiclesl represents the effects of the presence or absence of other vehicles (Snow Plow or no 
Snow Plow),  

Subj(i)j represents the effects of each subject nested under the sign type.  There will be 8 subjects 
for each sign type. 

δ(ij) represents the restriction error caused by the jth subject on the ith sign.  That is, a restriction 
on randomization is present since data for all ocurrences of weather and vehicles must be 
completed for subject j on sign i before another experiment can be run. 
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ε represents the within error term which is normally and independently distributed N(0, σ2) 

The expected mean square calculations for this model are shown in Appendix I. 

The experimental error term in this model is not retrievable since the number of observations 
in each cell is 1 (i.e. m=1).  Thus, the random error is confounded in the Subject * Weather * 
Vehicle interaction, and the tests for significant effects due to Subjects, and any interactions with 
Subjects cannot be conducted.  Likewise the restriction error is confounded with Subjects.  The F 
tests for all other variables will be conducted as follows: 

FSign  = MSSign / MSSubj 

FWeather  = MSWeather / MSSubj*Weather 

FSign*Weather  = MSSign*Weather  / MSSubj*Weather 

FVehicles  = MSVehicles / MSSubj*Vehicles 

FSign*Vehicles  = MS Sign*Vehicles / MSSubj*Vehicles 

FWeather*Vehicles  = MS Weather*Vehicles / MSSubj*Weather*Vehicles 

where MS stands for Mean Square and is calculated as Sum or Squares for the variable of 
interest divided by the degrees of freedom for the variables of interest. 

d) Surveys 

Two surveys were given to the participants. The first survey asked questions specific to the 
use of the in-vehicle unit used in the experiment.  The development of the questionnaire was 
done using the Likert scales as defined by the US Army Research Institute for the Behavioral 
and Social Sciences (1976).  This survey is shown in Appendix C.  The second questionnaire 
asked participants to provide information on their usage of the Snoqualmie Pass (Appendix D).  
This later survey asked questions similar to the survey distributed by Morse (1995).  From these 
surveys, a market analysis can be conducted on the in-vehicle unit that was used in the 
experiment and an assessment on participants opinions regarding the safety of using the 
Snoqualmie pass can be conducted. 

e) Summary 

In this section, a description of the analysis that will be conducted has been presented.  In 
addition to descriptive statistics, there are two types of inferential statistical analysis that will be 
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the primary focus of the study.  Multinomial logit estimations will be used to model the discrete 
variables relating to system usage, and ANOVA techniques will be used to determine if there are 
significant differences among the sign types.  Surveys with additional information on 
participants’ opinions of using the Trafficmaster in-vehicle unit and their usage of the 
Snoqualmie pass was also collected.  The results of the data analysis is presented in the next 
section. 

12.3 Results 

a) Introduction 

This section presents the results of the analysis conducted on the data collected from the 
laboratory study.  It is separated into two major sections plus the section summary.  The first 
section will present the findings from the analysis of variance and the second section will 
describe the mathematical model estimated. 

b) ANOVA results 

Performance on the sign conditions was analyzed by means of a nested factorial model 
ANOVA.  This model was described in the previous section.  The four dependent variables used 
with this model was:  average speed in each road/weather stretch consisting of three miles or 
4828 m, standard deviation, minimum speed and maximum speed. 

i) Mean Speeds 

There were no significant differences in the average speeds driven by subjects regardless of 
whether they were provided additional information on an in-vehicle unit, variable message sign, 
both or none (F(3,47)1=1.77, p>0.05).  There were, however, significant differences in the 
average speed when encountering fog (F(1,47)=46.87, p<0.01), snowplows (F(1,47)=61.75, 
p<0.01), and for the two-way interaction between fog and snowplows (F(1,47)=7.03, p<0.05).  
As shown in Figure 12.1, the mean speeds were higher on clear days than when fog and 
snowplows were present. 

                                                 

1 Results of F-tests are reported as F(df1, df2)=F value where df1 is the degrees of freedom associated with the 
treatment being tested, and df2 is the degrees of freedom for the error term used.  The F Value is calculated 
using the standard F test calculations discussed in the previous chapter. 
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Figure 12.1:  Mean speeds driven for the four different weather / road conditions. 

ii) Standard deviations of Mean Speeds 

In terms of the variation among speeds (standard deviation), there was also no significant 
differences found among the four sign conditions (F(3,47)=0.49, p>0.05).  There were 
differences observed for snow conditions (F(1,47)=57.61, p<0.01), and the two-way interactions 
between snow and fog (F(1,47)=8.61, p<0.01). 

iii) Minimum Speeds 

For minimum speeds driven by subjects, there were also no significant differences found 
among the four sign conditions (F(3,47)=1.01, p>0.05).  There were differences observed in 
minimum speeds for foggy conditions (F(1,47)=9.35, p<0.01), and given the presence of 
snowplows (F(1,47)=36.63, p<0.01).  However, there were no significant differences in any of 
the two or three-way interactions. 

iv) Maximum Speeds 

For maximum speeds attained by drivers, there were differences found among the sign 
conditions (F(3,47)=2.41, p<0.10).  The Duncans Multiple Range Test indicated that drivers 
under the “no sign” condition were more willing to go at higher speeds than drivers who viewed 
“both ivu and vms”.  There were also differences observed between the maximum speeds 
attained under a “fog” condition and a “no fog” condition (F(1, 47)=32.70, p<0.01). 
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Figure 12.2:  Minimum speeds driven for the four different weather / road conditions. 
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Figure 12.3:  Maximum speeds driven for the four different weather / road conditions. 

12.4 Market analysis 

a) Introduction 

A major application of this study is the marketability of the in-vehicle product being used in 
this study.  A great deal of ITS research is currently being done in the public sector due to the 
cost of research and development.  In order to make a smooth transition to the private sector, a 
business or organization needs to be assured that some profit can be generated from the sale of 
the product and/or service.  As stated earlier, this particular product, the Trafficmaster, is 
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currently being used in England and operated by a private firm.  However, many changes had to 
be made to ensure a profit.  The unit used in this study was one of the first designs and has 
several observed concerns which are discussed in this section. 

b) The display 

The unit operates with a liquid crystal display (LCD) that is difficult to read if the screen is 
not tilted toward the driver.  This can create problems that will be discussed later.  The system 
that was tested also had a hardcoded map that does not move, but a person can zoom in on a 
particular quadrant.  It does not provide information to the driver on where he or she is at in 
respect to the road.  There are also no color coded information for easing viewing. 

c) The subjects response to system 

However, many insights can be obtained from observing the drivers use of the system, their 
comments and their survey information.  People who used the Trafficmaster during 
experimentation were not more inclined to want to use the system when compared to those who 
did not use it during experimentation (χ2=0.41).  As shown in Figure 12.4, the number of people 
who said “yes” they would use the IVU did not differ much between the two experimental 
groups (IVU versus no IVU).  This indicates that the drivers preference for this system was not 
improved with prolonged usage.  However, when participants were asked what their overall 
opinions of the system was, they believed it to be reasonably good (Figure 12.5).  Further, they 
believed the screen appearance to also be reasonably good (Figure 12.6). 
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Figure 12.4:  Comparison of subjects responses to preference for Trafficmaster under IVU and 
no IVU experimental condition. 
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Figure 12.5:  Frequency of response to overall quality of Trafficmaster. 



193 

 

IVU screen appearance
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Figure 12.6:  Frequency of response to Trafficmaster screen appearance. 

Many participants noted that the beep was a very useful element but also commented that 
they found it annoying after a while.  For this study, the in-vehicle unit was placed on top of the 
car’s dashboard, toward the center of the dash.  Many people felt that was too far away to view 
while driving. 

12.5 Applications and further research 

a) Introduction 

This section discusses the significance of the research to be conducted and how it can be 
applied to other research areas.  In essence, this research will provide a contribution to the ITS 
field by furthering the analysis on the usefulness and application of in-vehicle systems.  It will 
provide a procedure for an alternative data collection method, using a full-scale driving 
simulator.  In addition, this study will provide insight in how drivers will react to various road 
information, presented through different mediums, on a mountain pass. 

DRIVE (1992) has identified three level of safety problems associated with the introductions 
of advanced and communication technologies in vehicles, (1) traffic safety, (2) system safety, 
and (3) the man-machine interface design and system usability.  In this research, all three safety 
issues will be addressed and analyzed.  These issues are very important to the design and 
deployment of in-vehicle systems because lack of consideration can cause less effective driving 
behaviors.  Therefore, understanding how drivers will react to these various systems is essential 
for its success.  If drivers do not react accordingly, the system has failed and further 
implementation should cease.  However, since past research has shown that there is a willingness 
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to comply with these systems (Vaughn et al., 1992; Ng et al., 1995), then further research should 
be conducted to ensure that we have the best system possible. 

This research also relates the information from stated preference data (collected for 
hypothetical situations) with revealed preference data (how the driver will react in an actual 
situation).  One may argue that information collected from a driving simulator is still considered 
stated preference (Koutsopoulos et al., 1995) because the drivers are still not on a real road, but 
hypothetical ones.  However, if the simulated configurations are designed to emulate a true real-
world setting, data collected can be very significant. 

Overall, the potential application in regards to this data is to predict revealed preference to 
using in-vehicle and out of vehicle information.  Stated preference information has already been 
collected in terms of whether or not they will use this system on Snoqualmie pass, and how 
willing are they to obey the information provided. 



 

Part V 

Post VMS installation research 
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This Part contains research that has been performed after the installation of the VMS signs 
on I-90 at Snoqualmie Pass. Chapter 13 contains a paper in preparation that studies the effect of 
variable message signs (VMS) on the relationship between hourly cross-sectional mean speeds 
and speed deviations on I-90 at Snoqualmie Pass, WA (Ulfarsson, Shankar and Vu,  2001). 



 

 

Chapter 13 

The effect of variable message signs on the relationship between mean 
speeds and speed deviations 

13.1 Introduction 

Intelligent transportation systems (ITS) use technology to affect or control the transportation 
network. Variable message signs (VMS) use dynamic information to improve transportation 
network efficiency and safety. Typically VMSs are used to give information about the road 
ahead, e.g. road condition, congestion, incidents, weather etc.  

Various studies have been made to analyze different aspects of VMS usage and 
effectiveness. Drivers have been found to reduce speeds when VMSs have warned about slippery 
road conditions ahead and drivers increased their headways upon seeing VMSs with minimum 
headway warnings (Raemae and Kulmala 2000). The effect on speed in their study was small 
and had decreased one year later. Luoma et al. (2000) surveyed drivers who had viewed the signs 
in Raemae and Kulmala’s (2000) study, and found that the drivers reported refocusing attention 
on the road and reported testing the road for slipperiness. Drivers also stated they used more 
caution during passing maneuvers (Luoma et al. 2000).  

Driver’s stated response to VMSs has been used to incorporate simulated driver response 
into a traffic assignment model to aid the forecasting of the effect of VMSs on transportation 
networks (Hounsell et al. 1998; Chatterjee and Hounsell 1999). Stated responses have also been 
used to assess the effect of VMSs on route choice, suggesting route choice can be strongly 
influenced (Wardman et al. 1997). 

VMSs have been used to affect driver route choice, as a part of efforts to increase 
transportation network efficiency and reduce congestion. The VMSs use information from 
various sources such as traffic sensors and incident response teams to display appropriate 
messages. The impact on driver route choice behavior has been studied and shows that good 
driver compliance cannot necessarily be assumed (Emmerink 1996; Bonsall and Palmer 1999). 
VMSs have been found to decrease total congestion and increase travel time reliability by 
reducing the variance of travel times and congestion by significantly affecting route choice 
(Kraan et al. 1999). The greater the congestion the more likely drivers are to follow VMS 
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directions to alternative routes (Yim and Ygnace 1994). Female drivers and commuters have 
been found to be less likely to change to alternative routes because of VMSs, and males are most 
willing to pay for in-vehicle traffic information (Emmerink et al. 1996). 

VMSs that receive information from loop detectors that calculate vehicle speed and length 
have been used to improve safety at an accident-prone location (McManus 1997). VMSs have 
been found to be able to reduce the number of injury accidents at an interchange between two 
freeways (Swann et al. 1995). 

This research analyses the relationship between cross-sectional mean speed and speed 
deviation in a rural area where VMSs have been installed by using a simultaneous equations 
approach. The relationships are examined both at a VMS site and at a site close by but outside 
the influence of the VMSs for comparison. 

13.2 Empirical setting 

Variable message signs (VMS) have been installed on Interstate 90 (I-90) in the Snoqualmie 
Pass through the Cascade mountain range, some 50 km east of Seattle. This is a rural location, 
with high elevations (roughly 1 km about sea level), and significant precipitation (averaging 216 
cm of rainfall and 1140 cm of snowfall annually). is on a 1.5% upgrade, while the westbound 
alignment is on a 2.5% downgrade. I-90 is a three-lane divided freeway in both directions at this 
location. The eastbound alignment This section of I-90 has high lane-speed deviations affected 
by roadway geometrics, seasonal changes in weather, and the percentage of trucks in the flow. 
The frequency and severity of accidents on this section of I-90 are significantly affected by the 
speed deviations, as examined by Shankar, Mannering and Barfield (1995, 1996). Lane-mean 
speeds and lane speed deviations on this section, before the installation of the VMSs, were 
analyzed by Shankar and Mannering (1998). This section of I-90, going eastbound, has been 
modeled in a driving simulator. The responses of drivers to VMSs and information from in-
vehicle units in the driving simulator were studied by Ulfarsson (1997), Boyle (1998), Ng and 
Mannering (2001). The drivers did slow down upon seeing VMSs that posted reduced speed but 
they drove faster than drivers with no information upon seeing VMSs that posted the normal 
speed limit with a positive message about the road conditions (Ulfarsson, 1997). The messages 
that have been implemented at Snoqualmie Pass on I-90 are used to report reduced speed 
conditions under adverse conditions. 

Dual magnetic loop detectors were used to collect data from late August 1997 until April 
1998. Speed data were aggregated over one hour (time mean speed) and grouped into bins of 10 
mph. The relationship between mean speed and speed deviation is not likely to be different if the 
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speed data were aggregated over shorter time periods. The observed vehicles were classified into 
four classes based on wheelbase lengths, up to 25 ft, 26 to 39 ft, 40 to 64 ft, and 65 to 114 ft. We 
group the upper two categories together and refer to it as heavy trucks. The data, speed and 
vehicle counts by class are cross-sectional in each direction, i.e. information is summed for the 
three eastbound lanes and separately for the three westbound lanes. The date and time of each 
observation was also recorded. 

Data was collected from two different locations on I-90. The main location is within the 
influence of the VMSs (VMS site, around milepost 53), and the secondary location is further 
west (non-VMS site, around milepost 47), downhill towards Seattle and is outside the area 
covered by the VMSs. The VMSs are not always in use at the VMS site so their status, on/off, 
was collected for the duration of the data collection. The data from the VMS site will be 
compared with the results from the non-VMS site. Vehicles traveling westbound will first reach 
the VMS site and if the VMSs are in use the speeds and deviations will be under their influence, 
while the non-VMS site is more than 3 km west of the last VMS. This gives the opportunity to 
test whether the effect of the VMSs lasts outside the immediate area where they are located. 

Table 1 shows the aggregate results for the duration of the study period for mean speed 
and speed deviation, grouped by VMS on/off status, at the VMS site and the non-VMS site. 

13.3 Modeling approach 

This research analyzes the effect of variable message signs (VMSs) on cross-sectional mean 
speeds and speed deviations, measured over one hour. The overall flow of the modeling and 
estimation is shown in Fig. 1. 

Lane mean speeds and speed deviations at this location, before the installation of the 
VMSs, were modeled by Shankar and Mannering (1997). They had data for each of the three 
lanes of the freeway while we have lane totals, i.e. information for total volume in all three lanes 
of the roadway. Shankar and Mannering (1997) showed that mean speed in a lane is dependent 
on the mean speed in adjacent lanes, and similarly that deviation in a lane was dependent on the 
deviation in adjacent lanes. These effects are unobserved in this research since we do not have 
lane dependent information. Shankar and Mannering (1997) also show that the mean speed and 
deviation are inter-linked as well, speed deviations depend on mean speed. The mean speeds and 
deviations, both eastbound and westbound, are also contemporaneously correlated because they 
share unobservable effects. 
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To account for the endogeneity of cross-sectional mean speeds and speed deviations in 
each other equations, and for the contemporaneous correlation across equations, the equations 
are modeled simultaneously as a system. The appropriate method is the three stage least squares 
(3SLS) method, described by Greene (2000). It uses information from the whole equation system 
to achieve asymptotically more efficient estimates than limited information approaches, such as 
equation-by-equation two stage least squares. Equation by equation ordinary least squares (OLS) 
estimation will be biased due to the simultaneous equations bias (Greene 2000). 

We estimate cross-sectional mean speed and deviation eastbound, and westbound in one 
equation system. The mean speed and deviation eastbound are endogenously dependent on each 
other, similar for westbound; while eastbound mean speed and deviation are contemporaneously 
correlated with westbound values. The equation system (structural) describing the mean speed 
and deviation becomes, 
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 (13.1) 

where s  and d  are the cross-sectional mean speed and deviation respectively, the subscripts e  
and w  stand for eastbound and westbound; X  are vectors of exogenous explanatory variables, 
Z  are vectors of endogenous explanatory variables; ,,,, λγβα  are estimable structural 

coefficients; and ε  are disturbance terms. Each term is indexed by direction and dependent 
variable. 

The exogenous variables are, seasonal indicators, day of week indicators, and time of day 
indicators. The endogenous variables are traffic flow variables, such as high/low flow indicators 
and percentage of heavy trucks (trucks with wheelbase 40 ft and longer) in the traffic flow. 
These are endogenous because traffic flow is likely to depend on the mean speed and/or speed 
deviation. To handle this endogeneity, these variables are instrumented separately by regressing 
them on the exogenous variables with OLS. The predicted value from those regressions where 
then used as instrumental variables in the 3SLS regression. The VMS on/off indicator variable is 
endogenous to mean speed and speed deviation because the VMSs are turned on during adverse 
conditions but not during normal flow. This means the VMSs are more likely to be active when 
road conditions have lead to slower speeds. To account for this we use a logit model to estimate 
the probability of the VMSs being on as a function of the exogenous variables. We use the 
predicted probability as an instrument to replace the actual VMS on/off indicator.  
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When applying a simultaneous equation model to predict results, e.g. in a simulation, we 
need to break the simultaneity so that we may calculate a predicted mean speed and speed 
deviation, as the calculation of one needs the prediction of the other. This can be resolved easily 
by inserting the equation for speed deviation into the speed deviation variable in the mean speed 
equation and vice versa to arrive at the reduced form model. It has the two equations 
independent of each other and is of the form: 
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where s  and d  are the cross-sectional mean speed and speed deviation respectively; the 
subscripted s  and d  refer to the mean speed and speed deviation equations; X  are vectors of 
the exogenous variables in (13.1), Z  are vectors of the endogenous variables in (13.1) that are 
instrumented before being included in either (13.1) or (13.2); π  are the reduced form 
coefficients; and η  are disturbance terms. The reduced form model is of the same form for 

eastbound and westbound but the coefficient values will be different. The reduced form 
coefficients are related to the structural coefficients through the equations shown here for the 
eastbound direction: 
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 (13.3) 

and we have a similar set of relationships for the westbound direction. The reduced form 
coefficients can be estimated directly from (13.2) via OLS but that does not give efficient 
estimates, so we prefer to calculate the reduced form coefficients using (13.3). It is important to 
consider the reduced form coefficients along with the structural coefficients from the 3SLS 
estimation of (13.1). If we examine the structural estimation only it is hard to see the full effect 
of a variable because it enters both directly and through the simultaneously determined 
endogenous variable, as can be seen in the formulas for the reduced form coefficients (13.3). The 
sign on a reduced form coefficient can even be of the opposite sign. This ‘multiplier’ effect is 
easily overlooked in (13.1). 

To examine the effect of the VMSs outside of the VMS influence zone, we consider a 
non-VMS site west of the VMS site. The non-VMS site is about 10 km west of the VMS site, 
downhill towards Seattle. We seek to compare the estimated equations for the westbound 
direction at the VMS site to estimated westbound equations at the non-VMS site. To perform 
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such a comparison, the westbound equations at both sides must be of the same form. We use the 
instrumented VMS on/off probability from the VMS site in the equations for the non-VMS site 
to see if it is has a significant effect on the mean speed and speed deviation at the non-VMS site. 
For the purpose of this comparison we use only time periods from which we have observations at 
both sites. This reduces the number of available observations slightly. 

We perform two tests across sites. We first test for transferability of the 3SLS estimated 
coefficients for the westbound direction at the VMS site to the non-VMS site. We first estimate 
an unrestricted model of the westbound mean speed and speed deviation at the non-VMS site 
using 3SLS and calculate the unrestricted (U) total sum of squared residuals (TSSR) for the 
system. We then restrict the westbound coefficients at the non-VMS site to the corresponding 
VMS values and calculate the restricted (R) TSSR. We then compare the unrestricted and 
restricted TSSRs by using the F-test: 

)/(
/)(),(calc KNTSSR
JTSSRTSSRKNJF

U

UR

−
−

=− , (13.4) 

where J is the number of restrictions, N is the number of observations, K is the number of 
parameters in the unrestricted model. Here KJ = because we restrict all coefficients in the 
restricted model to the VMS values. For a description of the F-test see for example Greene 
(2000). 

The second test we perform is the transferability of the reduced form coefficients that are 
calculated from the 3SLS estimates with (13.3). We calculate the unrestricted sum of squared 
residuals (SSR) by applying the computed reduced form for the non-VMS site to the non-VMS 
site data. Then we calculate the restricted SSR by applying the computed reduced form for the 
VMS site to the non-VMS site data. We do this separately for the mean speed and speed 
deviation equations. We use (13.4) to calculate the F-statistic, but replace the TSSR with the 
equation specific SSR. 

13.4 Results 

The observed data was categorized by VMS on/off status, east/west direction, and site. The 
average and standard deviation of observed hourly mean speeds and speed deviations are shown 
in Table 1. Table 1 also includes a t-statistic for the test of significant differences between the 
averages for VMS on and VMS off. All the t-statistics significantly reject the hypothesis of no 
difference. The significant difference between the averages for the eastbound direction at the 
non-VMS site cannot be attributed to the use of the VMS. Recall that the non-VMS site is west 
of the VMS site so any difference between VMS on/off values for the eastbound direction at the 
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non-VMS site is caused by other factors than the VMSs since drivers haven’t even seen the first 
VMS yet. This difference can be explained because the VMS are only activated when conditions 
warrant, i.e. are in some sense adverse. We therefore expect mean speeds to be lower and speed 
deviations to be higher when the VMSs are on because of the conditions. For the VMS site and 
the non-VMS site westbound direction, the total reduction in mean speed and increase in speed 
deviation cannot therefore be fully attributed to the VMSs. This is exactly the endogeneity 
between VMS usage and flow that we dealt with by instrumenting the VMS indicator variable by 
replacing it in the models with the logit model predicted probability of the VMSs being on. 

Table 13.1 shows that the reduction in mean speed and increase in speed deviation is 
significantly greater at the VMS site, and than the non-VMS site indicating that the effect of the 
VMSs is to reduce mean speed and increase speed deviation, but the effect is localized around 
the area of the VMS site, as the difference at the non-VMS site westbound is not nearly as 
significant. The aggregate results shown in Table 13.1 suggest that we should expect a negative 
sign on the VMS instrument in the mean speed equation, and a positive sign in the speed 
deviation equation, and that the VMS instrument be significant at the VMS site but possibly 
insignificant at the non-VMS site. 
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Table 13.1: Average mean speeds and speed deviations in km/h during the study period at the 
VMS and non-VMS sites in both directions. Standard deviation of the sample is in parentheses. 
The t-statistic is for the hypothesis of equal averages between the VMS on and off conditions. 

 VMS Site Non-VMS Site 

Eastbound       

 Number of 
observ. 

Average 
(St. dev.) t statistic Number of 

observ. 
Average 
(St. dev.) t statistic 

Mean speed       

VMS on 2,681 100.388 
(15.014) 2,464 119.578 

(9.712) 

VMS off 2,196 118.516 
(12.100) 

-46.688 
904 122.376 

(5.123) 

-10.785 

Speed deviation       

VMS on 2,681 16.727 
(4.596) 2,459 11.254 

(2.054) 

VMS off 2,196 11.765 
(4.840) 

36.432 
904 10.972 

(1.457) 

4.431 

       

Westbound       

 Number of 
observ. 

Average 
(St. dev.) t statistic Number of 

observ. 
Average 
(St. dev.) t statistic 

Mean speed       

VMS on 3,215 117.245 
(11.070) 2,346 121.398 

(9.030) 

VMS off 1,744 120.925 
(8.901) 

-12.732 
1,023 123.442 

(7.202) 

-6.992 

Speed deviation       

VMS on 3,215 12.684 
(3.243) 2,345 10.860 

(1.769) 

VMS off 1,744 11.907 
(3.096) 

8.297 
1,023 10.666 

(1.387) 

3.410 

The four-equation system in (13.1) is estimated with 3SLS for the VMS site and the results 
for each equation in turn are presented in Tables 13.2–5, with the corresponding reduced form 
coefficients calculated from (13.3). The estimated equation system in Tables 13.2–5 has a system 

2R  = 0.76335. The two westbound equations in (13.1) are estimated with 3SLS for the non-
VMS site to study the effect and significance of the VMSs outside the immediate VMS site. The 



 205 

 

estimation results along with calculated reduced form coefficients are presented in Tables 13.6–
7; this system has a system 2R  = 0.65172. 

Table 13.2: Cross-sectional eastbound mean speed equation at the VMS site, 3SLS estimates and 
computed reduced form coefficients. 

Variable 

3SLS 
estimated 
coefficient 

Standard 
error t - statistic 

Reduced 
form 

coefficient 

Constant 168.640 2.852 59.136 116.938 

Speed deviation -2.982 0.148 -20.096  

Variable message sign -20.990 0.877 -23.922 -18.022 

[Percentage of heavy trucks]    -18.192 

Flow more than 400 vph 
indicator -3.245 0.490 -6.617 1.106 

Weekend indicator -0.654 0.284 -2.307 0.379 

Autumn indicator 
(Sept., Oct., Nov.) -8.345 1.166 -7.160 12.319 

Spring indicator 
(March, April, May) 9.763 0.425 22.974 6.050 

PM peak indicator 
(4:01 – 6:59 PM) 4.926 0.615 8.014 -0.205 

Evening/night indicator 
(7:01 PM – 5:59 AM) -1.977 0.250 -7.916 -4.861 

 

R2 0.779    

Corr. R2 0.779    

Sum of squared residuals 273,062    

Std. error of the regression 7.621    

Mean of dependent variable 109.056    

Number of observations 4,711    
Indicator variables are 1 if the condition given by their name holds, 0 otherwise. 
Variables in italics are instrumented because of possible endogeneity. 
Variables in bold are dependent variables in another equation in the system. 
Variables in [brackets] enter the equation in the reduced form only. 
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Table 13.3: Cross-sectional eastbound speed deviation equation at the VMS site, 3SLS estimates 
and computed reduced form coefficients 

Variable 

3SLS 
estimated 
coefficient 

Standard 
error t - statistic 

Reduced 
form 

coefficient 

Constant 40.606 2.385 17.027 17.337 

Mean speed -0.199 0.020 -10.074  

Variable message sign -4.581 0.466 -9.831 -0.995 

Percentage of heavy trucks 2.481 0.985 2.518 6.100 

Flow more than 400 vph 
indicator -1.239 0.159 -7.791 -1.459 

Weekend indicator -0.271 0.133 -2.041 -0.347 

Autumn indicator 
(Sept., Oct., Nov.) -4.478 0.328 -13.652 -6.930 

Spring indicator 
(March, April, May) 2.449 0.187 13.076 1.245 

PM peak indicator 
(4:01 – 6:59 PM) 1.680 0.207 8.128 1.721 

[Evening/night indicator 
(7:01 PM – 5:59 AM)]    0.967 

 

R2 0.752    

Corr. R2 0.752    

Sum of squared residuals 32,889    

Std. error of the regression 2.645    

Mean of dependent variable 14.396    

Number of observations 4,711    
Indicator variables are 1 if the condition given by their name holds, 0 otherwise. 
Variables in italics are instrumented because of possible endogeneity. 
Variables in bold are dependent variables in another equation in the system.  
Variables in [brackets] enter the equation in the reduced form only. 
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Table 13.4: Cross-sectional westbound mean speed equation at the VMS site, 3SLS estimates 
and computed reduced form coefficients 

Variable 

3SLS 
estimated 
coefficient 

Standard 
error t - statistic 

Reduced 
form 

coefficient 

Constant 170.329 1.626 104.786 142.013 

Speed deviation -2.529 0.112 -22.646  

Variable message sign -26.339 1.707 -15.430 -32.370 

[Percentage of heavy trucks]    -13.761 

[Flow less than 100 vph 
indicator]    1.006 

Autumn indicator 
(Sept., Oct., Nov.) -4.380 0.509 -8.609 4.305 

Spring indicator 
(March, April, May) 3.446 0.253 13.595 3.974 

[AM peak indicator 
(6:01 – 9:59 AM)]    -0.955 

Evening/night indicator 
(7:01 PM – 5:59 AM) -2.166 0.186 -11.625 -4.296 

 

R2 0.724    

Corr. R2 0.724    

Sum of squared residuals 121,739    

Std. error of the regression 5.087    

Mean of dependent variable 119.231    

Number of observations 4,711    
Indicator variables are 1 if the condition given by their name holds, 0 otherwise. 
Variables in italics are instrumented because of possible endogeneity. 
Variables in bold are dependent variables in another equation in the system.  
Variables in [brackets] enter the equation in the reduced form only. 
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Table 13.5: Cross-sectional westbound speed deviation equation at the VMS site, 3SLS estimates 
and computed reduced form coefficients 

Variable 

3SLS 
estimated 
coefficient 

Standard 
error t - statistic 

Reduced 
form 

coefficient 

Constant 39.039 1.667 23.413 11.197 

Mean speed -0.196 0.012 -16.815  

Variable message sign -3.961 0.608 -6.520 2.385 

Percentage of heavy trucks 2.744 0.353 7.780 5.442 

Flow less than 100 vph 
indicator -0.201 0.077 -2.607 -0.398 

Autumn indicator 
(Sept., Oct., Nov.) -2.590 0.133 -19.483 -3.434 

Spring indicator 
(March, April, May) 0.570 0.090 6.303 -0.209 

AM peak indicator 
(6:01 – 9:59 AM) 0.190 0.058 3.299 0.378 

[Evening/night indicator 
(7:01 PM – 5:59 AM)]    0.842 

 

R2 0.751    

Corr. R2 0.751    

Sum of squared residuals 11,712.7    

Std. error of the regression 1.578    

Mean of dependent variable 12.260    

Number of observations 4,711    
Indicator variables are 1 if the condition given by their name holds, 0 otherwise. 
Variables in italics are instrumented because of possible endogeneity. 
Variables in bold are dependent variables in another equation in the system.  
Variables in [brackets] enter the equation in the reduced form only. 
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Table 13.6: Cross-sectional westbound mean speed equation at the non-VMS site, 3SLS 
estimates and computed reduced form coefficients 

Variable 

3SLS 
estimated 
coefficient 

Standard 
error t - statistic 

Reduced 
form 

coefficient 

Constant 171.650 5.951 28.843 112.258 

Speed deviation -3.753 0.172 -21.801  

Variable message sign -11.496 8.464 -1.358 17.650 

[Percentage of heavy trucks]    -14.143 

[Flow less than 100 vph 
indicator]    1.130 

Autumn indicator 
(Sept., Oct., Nov.) -0.731 2.181 -0.335 7.255 

Spring indicator 
(March, April, May) 0.629 0.301 2.093 2.856 

[AM peak indicator 
(6:01 – 9:59 AM)]    -0.356 

Evening/night indicator 
(7:01 PM – 5:59 AM) -0.970 0.206 -4.712 -3.361 

 

R2 0.652    

Corr. R2 0.651    

Sum of squared residuals 29,597.3    

Std. error of the regression 3.067    

Mean of dependent variable 123.366    

Number of observations 3,152    
Indicator variables are 1 if the condition given by their name holds, 0 otherwise. 
Variables in italics are instrumented because of possible endogeneity. 
Variables in bold are dependent variables in another equation in the system.  
Variables in [brackets] enter the equation in the reduced form only. 
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Table 13.7: Cross-sectional westbound speed deviation equation at the non-VMS site, 3SLS 
estimates and computed reduced form coefficients 

Variable 

3SLS 
estimated 
coefficient 

Standard 
error t - statistic 

Reduced 
form 

coefficient 

Constant 37.107 1.903 19.504 15.827 

Mean speed -0.190 0.009 -21.120  

Variable message sign -4.421 2.620 -1.688 -7.767 

Percentage of heavy trucks 1.088 0.257 4.229 3.769 

Flow less than 100 vph 
indicator -0.087 0.044 -1.964 -0.301 

Autumn indicator 
(Sept., Oct., Nov.) -0.753 0.690 -1.092 -2.128 

Spring indicator 
(March, April, May) -0.052 0.108 -0.480 -0.593 

AM peak indicator 
(6:01 – 9:59 AM) 0.027 0.038 0.729 0.095 

[Evening/night indicator 
(7:01 PM – 5:59 AM)]    0.637 

 

R2 0.649    

Corr. R2 0.648    

Sum of squared residuals 1,712.53    

Std. error of the regression 0.738    

Mean of dependent variable 10.563    

Number of observations 3,152    
Indicator variables are 1 if the condition given by their name holds, 0 otherwise. 
Variables in italics are instrumented because of possible endogeneity. 
Variables in bold are dependent variables in another equation in the system.  
Variables in [brackets] enter the equation in the reduced form only. 

Tables 13.2–5 show that mean speed and speed deviation are significant in each other 
equations, with higher mean speed reducing speed deviation, and higher speed deviation 
reducing mean speed. This relationship between mean speed and speed deviation has, for 
example, been observed in a driving simulator study by Ulfarsson (1997). The instrumented 
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VMS variable is significant in all four equations, but with a negative sign in all of them. 
Contradicting the aggregate results in Table 13.1, which show that speed deviation is higher 
when VMSs are on. The computed reduced form coefficients show that when the effect of the 
mean speed equation is accounted for the VMSs have a slightly negative effect in the eastbound 
equation and a positive effect in the westbound equation. The VMSs therefore appear to 
significantly reduce mean speed at the VMS site, but they can increase speed deviations slightly. 
This is not surprising since drivers can be expected to follow VMS directions to different 
degrees and thereby increase speed deviation. The reduced form coefficients on the season 
indicators (autumn and spring) show higher mean speeds during those times relative to winter. 
This captures the effect of more adverse winter weather, such as snow, ice, and rain. The speed 
deviations are lower in autumn than during winter and spring, which also fits the expected effect 
of weather during those times. The reduced form coefficients for the eastbound PM peak and the 
westbound AM peak show lower mean speeds and higher speed deviations during those times. 
The nighttime mean speed is also lower and nighttime speed deviation is higher. The higher the 
percentage of heavy trucks (wheelbases 40 ft or longer) reduces the mean speed and increases 
the speed deviation as can be logically expected. The effect is greater eastbound, which is uphill, 
than in the downhill westbound direction, in fact the percentage of heavy trucks remained 
insignificant in the 3SLS westbound mean speed equation. The reduced form for high flow 
eastbound is associated with higher mean speed and reduced speed deviation, and low flow 
westbound is similarly associated with higher mean speed and reduced speed deviation. 

When comparing the results at the VMS site with the results for the non-VMS site (recall it is 
about 10 km west of the VMS site downhill towards Seattle) in Tables 13.6–7 we see first that 
the effect of the instrumented VMS variable is of low significance at the non-VMS site in both 
the mean speed and speed deviation equations. This lack of significance in the 3SLS results 
suggests the VMS variable doesn’t belong in the model at the non-VMS site. Other notable 
difference is the lack of strong significance of the seasonal indicators for autumn and spring. 
This is explainable because the effect of adverse winter weather is considered to be the main 
cause behind lower winter speeds and higher winter speed deviation, and the non-VMS site 
being 10 km west of the VMS site is further down the mountain and therefore doesn’t have 
nearly the same amount of snowfall than the VMS site up in the Snoqualmie Pass.  

The lack of significance of the VMS variable at the non-VMS site in the westbound direction 
suggests the effect of the VMSs do not last long after drivers see the last sign. This is supported 
by the aggregate results in Table 13.1 that show average mean speed at the non-VMS site when 
VMSs are on to be closely similar to the average mean speed when the signs are off. The small 
difference in average mean speeds, although significant, cannot, according to Tables 13.6–7, be 
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attributed to the effect of the VMSs. An important result from this is that drivers drive at 
significantly lower mean speeds at the VMS site when the VMSs are on then when they are off, 
but their speeds at the non-VMS site are similar in both cases. It suggests compensatory driver 
behavior; drivers accelerate faster between the VMS site and the non-VMS site when VMSs are 
on than when they are off. Greater acceleration between these sites could possibly increase 
accident frequency in that area and this aspect warrants a separate study.  

The results of the tests of transferability of westbound 3SLS coefficients estimated at the 
VMS site to the non-VMS site, and of the westbound reduced form coefficients at the VMS site 
to the non-VMS site for separately for the mean speed and speed deviation equations are shown 
in Table 13.8. It shows that for all cases there is evidence to reject the hypothesis of 
transferability of coefficients, as the p-values are all virtually zero. 

Table 13.8: Results for tests of transferability of westbound VMS site coefficients to the non-
VMS site data. 

Transferability of: Unrestricted 
SSR 

Restricted 
SSR 

Number of 
restrictions 

Degrees of 
freedom 

F 
statistic 

p 
value 

3SLS estimated 
coefficients 

31,310 42,560 14 3138 80.536 0 

Mean speed computed 
reduced form coefficients 

53,511 263,515 8 3144 1,542 0 

Speed deviation computed 
reduced form coefficients 

3,456 36,822 8 3144 3,793 0 

 

Conclusions and recommendations 

The results show that the endogenous relationship between mean speed and speed deviation 
was significant and valid. The variable message signs (VMS) were shown to significantly reduce 
mean speed but they also significantly increased speed deviation. The increase in speed deviation 
can possibly work towards increasing accident frequencies at the VMS site and thereby 
tempering the effect of the lower mean speeds, which work to reduce accident severities and 
frequencies. The effect of the VMSs is not found to be significant at a site 10 km west of the 
VMS site. This, along with the simple aggregate results for average mean speeds and average 
speed deviation, suggests that drivers show compensatory behavior. The difference in average 
mean speed at the non-VMS site is small between the times when VMSs are on and off at the 
VMS site, and the lack of significance of the VMSs in the models at the non-VMS site support 
that. To achieve this, drivers must accelerate more quickly between the VMS site and the non-
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VMS site when the VMSs are on to compensate for their lower mean speed, as compared to 
when the VMSs are off. 

Compensatory behavior like this could increase accident frequencies in the area between 
the sites and reduce or negate the safety benefits of lower mean speeds when the VMSs are on. A 
separate study to examine this effect is necessary to fully understand the safety effects of the 
VMSs on I-90 at Snoqualmie Pass, Washington. 

 



 

Part VI 

Conclusions 
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In this final Part a summary of the preceding information will be given.  First, there is a short 
summary of the evaluation approach followed by a summary of the results and implications of 
the research described in this report. 
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Chapter 14 

Summary of evaluation approach 

As the preceding discussion indicates, data has been collected from a number of sources.  
Also, there is some redundancy built into the data collection effort (e.g., between in-field and 
laboratory simulations) that allows us to statistically establish the validity of our evaluations.  
That is, it will determine the extent of the transferability of our laboratory simulation results to 
the field and the validity of our using post-crossing diaries for IVU users instead of detailed 
speed and/or point speed data. A summary of all proposed and actual data sources, collection 
dates, and evaluation uses is presented in Table 14.1.  We feel the current data collection effort 
has been more than adequate to arrive at statistically defensible results. 
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Table 14.1:  Summary of data sources and use 

Source Dates Collected Use 

Accident records 1987-on _ Evaluation of before and after VMS and 
VSL impacts 

Speed data from magnetic 
loops and sign radars 

Fall 1994-on _ Evaluation of before and after VMS and 
VSL impacts 

In-depth accident analysis Fall 1995-on _ Determine cause of accident for IVU 
equipped vehicles 

System component reliability 
records 

Fall 1997-on _ Evaluate the reliability records of system 
components (i.e. IVUs, VMSs, VSLs, 
weather stations, etc.) 

Laboratory simulations Summer 1997-on _ Evaluation of IVUs alone 
  _ Evaluation of VMSs and VSLs alone 
  _ Evaluation of IVUs, VMSs and VSLs in 

combination 

Post-crossing survey of non-
IVU users 

Spring 1998-on _ Evaluation of VMSs and VSLs 

GPS-equipped vehicles Undecided _ Evaluation of IVU use and VMSs and 
VSLs impact on speeds 

  _ Evaluation of the effects of IVUs, VMSs 
and VSLs in Winter 1995-96 

Post-crossing diary for IVU 
users 

Undecided _ Evaluation of IVU use alone and impact on 
speeds (possible 30-day period) 

  _ Evaluation of the combined effects of 
IVUs, VMSs and VSLs 

In-service assessment of VMS 
at Snoqualmie Pass 

1997 to 1999 --  Evaluation of VMS on relationships 
between mean time-mean speeds and mean 
time-mean speed deviations 

  --   Evaluation of spatial transferability of 
speed-speed deviation relationships under 
VMS.  That is, is there is a shift between 
VMS and non-VMS zones? 

 



218 

Chapter 15 

Summary of results and implications 

The analysis of the historical accident data lead to a general model that can be used to 
examine accident frequency as a function of geometric and weather-related variables.  This 
model can be used to examine the effect of VMSs and IVUs on accident frequency by collecting 
accident data after these systems have been introduced and then estimating a model similar to the 
ones done in this research. The coefficients, or factors, in the model can then be compared to 
examine the effect of the VMSs and IVUs. If accident frequencies have changed, this method 
will also show why by showing which coefficients have been significantly changed.  This is 
important to ensure accuracy of the comparison of before and after data. It is also possible to 
perform an analysis of coefficient elasticities. The elasticity of a coefficient, tells by how many 
percent the outcome changes when the input is changed by 1%. This gives more information 
about the actual size of the effect of the VMSs and IVUs.  

Some of the general results of this research were that sections with grade exceeding 2% have 
a significantly higher number of accidents than flatter sections. Maximum rainfall and the 
number of rainy days significantly increase accident frequency. 

The historical accident data was also used in a model that analyses accident severity as a 
function of various geometric, weather and human factors. The model can be used to examine if 
the VMSs lead to a significant shift towards less severe accidents when it is compared with a 
comparable model using data collected after the installation of VMSs.  This can provide basis for 
research into changes of accident cost, which can lead to information regarding accident cost 
savings with the use of the VMSs. 

Speed data was collected at a single site and used to examine lane mean speeds and speed 
deviations from the mean before the introduction of VMSs and IVUs. Relationships between 
lane speeds and speed deviations were found and they were statistically valid.  Lane speed is 
affected by adjacent lane speed and the lane speed deviations are affected by adjacent lane speed 
deviations, the speed in the lane and the speeds in adjacent lanes.  This research shows that this 
method of modeling mean speeds is promising. Future research should explore variations in the 
geometric, seasonal, and weather variables that may vary between different sites.  Also, more 
microscopic data could be used to try to uncover dynamic effects in the traffic flow.  The study 
performed here offers generic information and it would be beneficial for planning purposes with 
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the added understanding of cause-effect relationship between lane mean speed and lane speed 
deviations. 

Among the studies performed on the data from the simulation experiment was the modeling 
of mean speed and deviation by estimating an endogenous system of equations.  That study 
focused on the effect of geometric and socioeconomic variables on mean speed and deviation 
along a 12 mile stretch of a computer simulated version of I-90 at Snoqualmie Pass.  The effects 
of VMSs and IVUs were also tested.  The effect is seen through the variable speed limit set by 
the messages on the VMSs and IVUs.  The drivers with IVU only were found to have higher 
mean speeds than the other drivers.  They do change their speed when the IVU message informs 
of an upcoming snowplow but, still, have a higher mean speed than those without a system.  The 
drivers with VMSs only have higher mean speeds than those with neither system in the areas 
without snowplows but their mean speed is similar in the snowplow regions.  Drivers with both 
IVU and VMSs drive slower than the other drivers.  Their speed deviations where higher than 
for drivers with IVU only, VMS only, or drivers without a system.  This indicates that drivers 
put some trust in the system and drive faster when the system does not indicate danger than do 
drivers without a system, which must be on the lookout themselves.  It is interesting that the 
mean speed was lower for those with both IVU and VMSs and the deviation was highest for this 
group.  These results must be taken with a grain of salt, because they stem from a simulator 
study and the drivers know they will not be injured or harmed by reckless driving.  They also 
know there are no other vehicles on the road except for snowplows.  These results indicate that 
erroneous messages may prove to be more dangerous than no messages.  Further research into 
the effect of inaccurate messages on drivers is therefore needed.  These results also show that the 
VMSs and IVUs may increase speed deviation. This can lead to safety concerns, especially if the 
traffic stream is mixed, that is, made up of drivers without information systems and drivers with 
systems, because these two groups are likely to have different speed profiles and this may 
incrase accident risk. Further research into the effect of IVUs in a mixed traffic stream is 
therefore necessary. 

To further analyze the accident frequency and severity a model of reported speed reduction 
under adverse weather conditions was estimated by using survey data.  This study found that 
drivers reported driving at very diverse speeds under adverse conditions such as on wet or icy 
road.  It is hoped that the installation of VMSs and/or IVUs that set variable speed limits would 
limit this diversity and therefore increase safety. 

However, as was found by the previously mentioned simulation study the speed deviation of 
drivers using VMSs and/or IVUs was larger than for those without such a system.  There are two 
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comments on this.  First, it is not the difference between drivers with IVUs and those without 
IVUs that is expected to be reduced, but rather, the speed deviation within the whole group of 
drivers using the system.  To find this a much larger sample of subjects must be used for it to be 
statistically valid to compare them to each other.  Another angle that might be taken to analyze 
this further would be to examine the mean speed and speed deviation on a smaller scale to isolate 
the speed between messages from the message areas.  Such research might answer the hypothesis 
that drivers with VMSs and/or IVUs drive with less speed deviation as a group on the sections 
between messages, but if there is a message giving a different speed limit in a section the speed 
deviation is increased for that section. 

The survey study found many relationships between the socioeconomic factors and the 
reported speed reductions.  One general conclusion was that drivers generally drive as fast as the 
law allows and give little consideration to road conditions.  The variable speed limits set by the 
VMSs and IVUs should therefore increase safety by setting the limits according to the current 
conditions.  This will, however, not work if drivers get the feeling that the VSLs are merely 
suggestions but not a legal limit that is enforced.  Enforcement is therefore likely to play a big 
part of the success of VSLs. 

The survey was also used to analyze whether drivers would use an IVU and what 
socioeconomic factors contribute to that decision.  It was found that perception of conditions 
played a big role.  Drivers indicated that they would generally only obey if they conditions 
warranted, especially for the command to put on chains.  Putting on chains is so onerous that 
drivers need more than an IVU telling them to put them on if they do not perceive their need.  
These results can then be compared with the results from a similar survey collected from the 
participants in the simulator study. 

In-service evaluation of variable message signs on mean speeds and speed deviations showed 
that the endogenous relationship between mean speed and speed deviation was significant and 
valid under ITS. The variable message signs (VMS) were shown to significantly reduce mean 
speed but they also significantly increased speed deviation. The increase in speed deviation can 
possibly work towards increasing accident frequencies at the VMS site and thereby tempering 
the effect of the lower mean speeds, which work to reduce accident severities and frequencies. 
The effect of the VMSs is not found to be significant at a site 10 km west of the VMS site. This, 
along with the simple aggregate results for average mean speeds and average speed deviation, 
suggests that drivers show compensatory behavior. The difference in average mean speed at the 
non-VMS site is small between the times when VMSs are on and off at the VMS site, and the 
lack of significance of the VMSs in the models at the non-VMS site support that. To achieve 
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this, drivers must accelerate more quickly between the VMS site and the non-VMS site when the 
VMSs are on to compensate for their lower mean speed, as compared to when the VMSs are off. 

Compensatory behavior like this could increase accident frequencies in the area between 
the sites and reduce or negate the safety benefits of lower mean speeds when the VMSs are on. A 
separate study to examine this effect is necessary to fully understand the safety effects of the 
VMSs on I-90 at Snoqualmie Pass, Washington. 
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Appendix A 

Snoqualmie Pass survey response summary 

The number of responses and statistics are in bold type. 

 

Washington 
State 
Department of 
Transportation  

University 
of  
Washington  

Washington 
State 
Transportatio
n Center 

 

Snoqualmie Pass Traveler Information Project Survey 

The Washington State Department of Transportation and the Washington State 
Transportation Center at the University of Washington are working together to study travel 
behavior and traveler information needs on Interstate 90 near Snoqualmie Pass.  We would like 
to understand your travel preferences and your perception of traveler information and its 
effectiveness. 

Please give this survey to the person in your household who most often drives on Interstate 
90 between North Bend and Cle Elum.  In this survey, I-90 between North Bend and Cle Elum is 
considered as Snoqualmie Pass.  Ask him or her to fill out the survey and return it by mail by 
June 15, 1995.  No postage is necessary.  We appreciate your response.  This survey is 
anonymous and your answers will not be associated with your name. 

Your Trip 

 1. How many people (including yourself) are usually in the vehicle when you drive on 
Snoqualmie Pass? 

(Check only one) 

100 √1 209 √2 55 √3 43 √4 15 √5 or more 

 2. Approximately how many times each season do you drive on Snoqualmie Pass? 

During the winter (Dec. - Feb.) _____ times 

During the summer (Jun. - Aug.) _____ times 
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During the spring (Mar - May) _____ times 

During the autumn (Sep. - Nov.) _____ times 

Variable Mean Median Std. Dev. 

Winter 11.1 2 19.8 

Spring 8.7 2 17.5 

Summer 8.5 2 17.5 

Fall 8.0 2 17.5 

 3. Estimate your average speed for Snoqualmie Pass trips when road is: (Check only 
one per line)  

dry: √less than 35 √35-44 √45-54 √55-64 √65-74 √75 mph or more 

wet: √less than 35 √35-44 √45-54 √55-64 √65-74 √75 mph or more 

icy: √less than 35 √35-44 √45-54 √55-64 √65-74 √75 mph or more 

Average 29.5 39.5 49.5 59.5 69.5 79.5 

Variable Mean Median Std. Dev. 

Dryspd 63.3 69.5 10.6 

Wetspd 55.9 59.5 13.2 

Icespd 40.3 39.5 13.2 

 4. What is your primary purpose for driving on Snoqualmie Pass?  (Check only one) 

 158 √Recreation 84 √Business 115 √Visit family 

 14 √Errands 38 √Other 

 5. Have you ever had an accident on I-90 on Snoqualmie Pass? 

 410 √No - skip to the next section. 21 √Yes => how many?  ____(1)____ 
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 6. During your Snoqualmie Pass trip, how important is . . .  

 (Check one box in each row) 

  Very Moderate Not 

  Important Importance Important 

  √1 √2 √3 √4 √5 

  Saving trip time?  121 78 164 39 23 

  Increasing trip safety?  275 88 45 10 8 

 7. How often do you wear seatbelts while driving? (Check only one)  

 395 √all the time 26 √most of the time 

 4 √some of the time 5 √rarely 

 3 √never 

 8. How important is the following weather information for helping you plan your 
Snoqualmie Pass trip? 

(Check one box in each row) 

 Very Moderate Not 

 Important Importance Important 

 √1 √2 √3 √4 √5 

Current weather conditions? 

(snow, rain, etc.) 284 73 50 11 14 

Snow/ice accumulations on road? 318 47 35 11 16 

Weather forecast? 189 88 90 34 27 
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 9. How important is the following roadway information for helping you plan your 
Snoqualmie Pass trip? 

(Check one box in each row) 

 Very Moderate Not 

 Important Importance Important 

 √1 √2 √3 √4 √5 

Presence of hazard/accident 243 84 75 16 10 

Number of lanes closed/blocked 212 110 81 15 8 

Type of accident / hazard 151 102 120 35 16 

Level of congestion 153 136 105 22 12 

 

 10. From which one of the following sources do you most prefer to obtain road and weather 
information?  

(Check only one) 

 7 √CB radio 

 29 √Commercial TV station 

 5 √Cellular phone 

 25 √Electronic message signs on freeway 

 86 √Commercial radio station 

 11 √Observation of traffic conditions 

 162 √Advisory radio indicated by flashing lights on highway signs 

 2 √Talking to other drivers 

 43 √Other ___________________ 
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Your Opinions 

 11. Please indicate the extent to which you agree or disagree with the following statements. 

 Strongly 
Disagree 

Disagree Neutral  Strongly 
Agree 

Agree 

In good weather conditions, 
Snoqualmie Pass is more dangerous 
than other sections of I-90. 

100 196 68 51 14 

Trucks present a higher danger on 
Snoqualmie Pass than other sections 
of I-90.  

37 123 76 142 53 

In snow or rain, Snoqualmie Pass is 
more dangerous than other sections 
of I-90.  

18 64 59 210 80 

On snow or ice, four-wheel-drive 
vehicles can safely be driven faster 
than two-wheel-drive vehicles.  

154 134 61 67 17 

Under dry road conditions a 65 mph 
speed limit on Snoqualmie Pass is 
safe.  

9 27 26 238 131 

In rainy road conditions a 65 mph 
speed limit on Snoqualmie Pass is 
safe.  

30 155 91 126 28 

Under most wintry road conditions a 
65 mph speed limit on Snoqualmie 
Pass is safe.  

139 193 44 48 8 

 

Let’s say you were given an in-vehicle traffic information system (e.g., a small computer 
screen in your vehicle), that had the capability to show you current traffic conditions and up-
coming road conditions. 

 12. Would you use it? 394 √ Yes  37 √ No 

 13. Would you obey the system if it told you to: 

(Check only one per line)  

Slow down 243 Yes, immediately 179 Only if conditions warrant 5 No 

Put on chains 158 Yes, immediately 248 Only if conditions warrant 13 No 
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Yourself 

 14. Are you?  (Check one box) 

 271 √Male  155 √Female 

 15. Are you?  (Check one box) 

 263 √Married 96 √Single 

 16. What is your age? 

 9 √Under 21 19 √22-25 24 √26-30 22 √31-34 58 √35-40 57 √41-45 

 60 √46-50 56 √51-55 35 √56-60  28 √61-65 30 √66-70 33 √Over 70 

 17. What is your approximate annual household income? 

 3 no income 13 √under $10,000 22 √$10,000-19,999 

 36 √$20,000-29,999 65 √$30,000-39,999 67 √$40,000-49,999 

 102 √$50,000-74,999 54 √$75,000-100,000 33 √over $100,000 

 18. What is your highest level of education? 

 10 √some high school 67 √technical college degree (A.A.) 

 113 √high school diploma 140 √college degree 

 95 √post graduate degree 

Mean Median Std. Dev. 

 19. Including yourself, how many people live in your household? 2.8 2 1.4 

 20. How many children living in your household are under age 6? 0.2 0 0.5 

 21. How many children living in your household are aged 6 to 16?  0.5 0 0.9 

 22. How many people living in your household work outside the home? 1.4 2 1.0 

 23. How many licensed and operable motor vehicles do you have? 2.5 2 1.3 

 24. What is the zip code of your work place? ________ your home?  ________ 
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 25. Are you willing to participate in further research activities, such as an interview or 
perhaps a simulation experiment?  260 √Yes  165 √No 

 26. Are you willing to use an in-vehicle traffic information unit that will provide weather and 
traffic information to you while crossing Snoqualmie Pass? 311 √Yes 113 √No 

If you answered “Yes” to either of the two preceding questions, please include your 
name and address below so that we may contact you for further information and 
assistance. 

Please use this space for any comments:   

 No Comment 128 

 Negative comment 9 

 Neutral Comment 32 

 Positive Comment 5 

 Name & Address 259 

Thank you for taking the time to complete this survey.  When you are finished, please fold the survey 

form so that the “University of Washington” address is displayed, tape the survey form closed, and drop it in 

a mailbox before June 15, 1995.  Remember, no postage is necessary. 
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Appendix B 

Instructions for participants 

If there was No Variable Message on the road and the participant DID NOT view an In-
vehicle unit while driving, the instructions were as follows: 

(Paragraph 1) Thank you for participating in this experiment.  Your input will provide 
valuable insight into the needs of drivers as they travel over different road conditions. 

(Paragraph 2) Today, you will be driving through a graphical representation of a 3 lane 
mountainous road that is similar to the Snoqualmie Pass on Interstate-90.   

About the car simulator: 

(Paragraph 3) You need to turn on the lights to get the simulator ready.  The simulator will 
start as soon as you turn on the ignition.  As in a regular car, you use the brake pedal to slow 
down, the gas pedal to speed up, and the steering wheel to maneuver between lanes. 

(Paragraph 4) You will be given a 5 minute practice session to familiarize yourself with how 
the simulator works and to see what the scenes look like.  As you drive through this road, you 
may observe different fog conditions, and encounter snow plows at varying points.  Your task is 
to drive through the road scenes safely and as you typically would in normal driving conditions. 

(Paragraph 5) If you feel comfortable with using the simulator after the practice session, we 
will start the actual experiment.  If not, we can continue the practice session for another 5 mile 
loop. 

(Paragraph 6) If there are any question at this time, please let me know. 

If the participants viewed variable message signs while driving, then Paragraph 5 changed 
to: 

(Paragraph 5) You will be given a 5 minute practice session to familiarize yourself with how 
the simulator works and to see what the scenes look like.  As you drive through this road, you 
will observe different fog conditions, and encounter snow plows at varying points.  In addition, 
you will see variable message signs that will alert you of anything that you., as a driver, may 
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need to know about.  Your task is to drive through the road scenes safely and as you typically 
would in normal driving conditions. 

If they viewed messages on an In-vehicle unit while driving through the simulator, the 
following instructions were added after Paragraph 3 

About the in-vehicle unit 

This first scene is a map of where you are going (eastbound on I-90).  You will be driving 
through the first quadrant only (milepost 35 to 47), so if you want to zoom in on that quadrant, 
press 1. 

Messages will appear in the lower right side of the screen. Whenever a new message is sent, 
you will hear a beep.  The recommended speed limit appears on the lower left side of the screen. 
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Appendix C 

Survey on the Trafficmaster in-vehicle unit 

Survey on TrafficMaster In-vehicle Unit 

Please rate the usefulness of the following items on the in-vehicle unit: 

 Extremely 
useful 

Of considerable 
use 

Of use Not 
very 

useful 

Of no 
use 

Didn’t 
notice it 

1. The beep ___ ___ ___ ___ ___ ___ 

2. The on-road traffic 
messages 

 
___ 

 
___ 

 
___ 

 
___ 

 
___ 

 
___ 

3. The map display ___ ___ ___ ___ ___ ___ 

4. The pre-trip 
information (e.g, 
weather, incident 
info) 

 

___ 

 

___ 

 

___ 

 

___ 

 

___ 

 

___ 

5. The speed limit 
information 

___ ___ ___ ___ ___ ___ 

 6. The screen appearance was  

___ Extremely good  

___ Reasonably good 

___ So-So 

___ Reasonably poor  

___ Extremely poor 

 7. Compared to variable message signs 
on the road, this system was  

___ Much better 

___ Slightly better 

___ Same 

___ Slightly worse 

___ Much worse 
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 8. Operating this in-vehicle system 
was:  

___ Very easy 

___ Easy 

___ Borderline 

___ Difficult 

___ Very difficult 

 9. Overall, I think this system was: 

___ Extremely good  

___ Reasonably good 

___ So-So 

___ Reasonably poor  

___ Extremely poor 

 10. If this in-vehicle unit was on the market today, and available for your primary route, 
would you buy it? (Check only one)  

___ Yes __  No 

  If yes, how much would you pay for this unit (total)? $ ______ 

 11. If the services provided to the unit (i.e. mapping, weather, traffic information) were 
available as a pay per month service (like a cellular phone), would you pay for it? (Check 
only one) 

___ Yes __  No 

  If yes, how much much would you pay for the services (per month)? $______ per month 
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Appendix D 

Snoqualmie Pass traveler information project survey 

Snoqualmie Pass Traveler Information Project Survey 

Your Trip 

 1. How many people (including yourself) are usually in the vehicle when you drive on 
Snoqualmie Pass? 

(Check only one) 

� 1 �2 �3 �4 �5 or more 

 2. Approximately how many times each season do you drive on Snoqualmie Pass? 

During the winter (Dec. - Feb.) _____ times 

During the summer (Jun. - Aug.) _____ times 

During the spring (Mar - May) _____ times 

During the autumn (Sep. - Nov.) _____ times 

 3. Estimate your average speed for Snoqualmie Pass trips when road is: (Check only 
one per line)  

dry: �less than 35 �35-44 �45-54 �55-64 �65-74 �75 mph or more 

wet: �less than 35 �35-44 �45-54 �55-64 �65-74 �75 mph or more 

icy: �less than 35 �35-44 �45-54 �55-64 �65-74 �75 mph or more 

 4. What is your primary purpose for driving on Snoqualmie Pass?  (Check only one) 

 Recreation Business �Visit family 

 Errands Other 
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 5. Have you ever had an accident on I-90 on Snoqualmie Pass? 

 No Yes => how many?  ________ 

 6. During your Snoqualmie Pass trip, how important is . . .  

 (Check one box in each row) 

  Very Moderate Not 

  Important Importance Important 

 Saving trip time?  1 �2 �3 �4 �5 

 Increasing trip safety?  1 �2 �3 �4 �5 

 7. How often do you wear seatbelts while driving? 
(Check only one) 

 all the time most of the time 

 some of the time rarely 

 never 

 8. How important is the following weather information for helping you plan your 
Snoqualmie Pass trip? 

(Check one box in each row) 

 Very Moderate Not 

 Important Importance Important 

Current weather conditions? 

(snow, rain, etc.) 1 �2 �3 �4 �5 

Snow/ice accumulations on road? 1 �2 �3 �4 �5 

Weather forecast? 1 �2 �3 �4 �5 

 9. How important is the following roadway information for helping you plan your 
Snoqualmie Pass trip? 
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(Check one box in each row) 

 Very Moderate Not 

 Important Importance Important 

Presence of hazard/accident 1 �2 �3 �4 �5 

Number of lanes closed/blocked 1 �2 �3 �4 �5 

Type of accident / hazard 1 �2 �3 �4 �5 

Level of congestion 1 �2 �3 �4 �5 

 10. From which one of the following sources do you most prefer to obtain road and weather 
information?  

(Check only one) 

 CB radio 

 Commercial TV station 

 Cellular phone 

 Electronic message signs on freeway 

 Commercial radio station 

 Observation of traffic conditions 

 Advisory radio indicated by flashing lights on highway signs 

 Talking to other drivers 

 Other ___________________ 
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Your Opinions 

 11. Please indicate the extent to which you agree or disagree with the following statements. 

 Strongly 
Disagree 

Disagree Neutral  Strongly 
Agree 

Agree 

In good weather conditions, 
Snoqualmie Pass is more dangerous 
than other sections of I-90. 

 
 

___ 

 
 

___ 

 
 

___ 

 
 

___ 

 
 

___ 

Trucks present a higher danger on 
Snoqualmie Pass than other sections 
of I-90.  

 
___ 

 
___ 

 
___ 

 
___ 

 
___ 

In severe weather conditions (e.g., 
snow, or heavy rain), Snoqualmie 
Pass is more dangerous than other 
sections of I-90 

 
 

___ 

 
 

___ 

 
 

___ 

 
 

___ 

 
 

___ 

On snow or ice, four-wheel-drive 
vehicles can safely be driven faster 
than two-wheel-drive vehicles.  

 
 

___ 

 
 

___ 

 
 

___ 

 
 

___ 

 
 

___ 

Under dry road conditions a 65 mph 
speed limit on Snoqualmie Pass is 
safe.  

 
___ 

 
___ 

 
___ 

 
___ 

 
___ 

In rainy road conditions a 65 mph 
speed limit on Snoqualmie Pass is 
safe.  

 
___ 

 
___ 

 
___ 

 
___ 

 
___ 

In foggy road conditions a 65 mph 
speed limit on Snoqualmie Pass is 
safe. 

 
___ 

 
___ 

 
___ 

 
___ 

 
___ 

Under most wintry road conditions a 
65 mph speed limit on Snoqualmie 
Pass is safe.  

 
 

___ 

 
 

___ 

 
 

___ 

 
 

___ 

 
 

___ 
 

Let’s say you were given an in-vehicle traffic information system (e.g., a small computer 
screen in your vehicle), that had the capability to show you current traffic conditions and up-
coming road conditions. 

 12. Would you use it? Yes �No 

 13. Would you obey the system if it told you to: 

(Check only one per line)  

Slow down 
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 __ Yes, immediately __ Only if conditions warrant __ No 

Put on chains 

 __ Yes, immediately __ Only if conditions warrant __ No 

Yourself 

 14. Are you?  (Check one) 

Male Female 

 15. Are you?  (Check one) 

Married �Single Divorced Separated Other 

 16. What is your age? _______ 

 17. What is your approximate annual household income? 

 no income �under $10,000 �$10,000-19,999 

 �$20,000-29,999 �$30,000-39,999 �$40,000-49,999 

 �$50,000-74,999 �$75,000-100,000 over $100,000 

 18. What is your highest level of education? 

 some high school technical college degree (A.A.) 

 high school diploma college degree 

 post graduate degree 

 19. Including yourself, how many people live in your household? _____ 

 20. How many children living in your household are under age 6? _____ 

 21. How many children living in your household are aged 6 to 16? _____ 

 22. How many people living in your household work outside the home? _____ 

 23. How many licensed and operable motor vehicles do you have? _____ 

 24. What is the zip code of your work place? ________ your home?  ________ 
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THANK YOU FOR YOUR TIME! 
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Appendix E 

Variable messages used 

Table E.1 contains the four different message series used. Each run that uses VMSs contains 
eight signs. Since the runs differ in the placement of fog and snow plows there is need for 
different series of VMSs. These messages are also sent to the simulator's in-vehicle unit when it 
is in use with one difference, the "Curvy Road - Drive Slowly" message was accompanied by a 
speed limit of 88.5 km/h (55 mph) in the IVU. 

The participants in the study receive the messages in three different ways or to at all as 
directed by the four different types of runs (see Table 9.2). 
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Table E.1:  The four different series (a – d) of variable messages used. 

Sign # Message Sign # Message 

 a  b 

1 FOG AHEAD 1 CURVY ROAD 

 SLOW DOWN 45 MPH  DRIVE SLOWLY 

2 FOG AHEAD 2 CURVY ROAD 

 SLOW DOWN 45 MPH  DRIVE SLOWLY 

3 FOG AHEAD 3 CURVY ROAD 

 SLOW DOWN 45 MPH  DRIVE SLOWLY 

4 SNOW PLOWS AHEAD 4 SNOW PLOWS AHEAD 

 SLOW DOWN 35 MPH  SLOW DOWN 35 MPH 

5 CURVY ROAD 5 FOG AHEAD 

 DRIVE SLOWLY  SLOW DOWN 45 MPH 

6 SNOW PLOWS AHEAD 6 FOG AHEAD 

 SLOW DOWN 35 MPH  SLOW DOWN 45 MPH 

7 CURVY ROAD 7 FOG AHEAD 

 DRIVE SLOWLY  SLOW DOWN 45 MPH 

8 CURVY ROAD 8 SNOW PLOWS AHEAD 

 DRIVE SLOWLY  SLOW DOWN 35 MPH 

(Continued) 
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Table E.1:  The four different series (a – d) of variable messages used.  (Continued). 

Sign # Message Sign # Message 

 c  d 

1 FOG AHEAD 1 CURVY ROAD 

 SLOW DOWN 45 MPH  DRIVE SLOWLY 

2 SNOW PLOWS AHEAD 2 SNOW PLOWS AHEAD 

 SLOW DOWN 35 MPH  SLOW DOWN 35 MPH 

3 FOG AHEAD 3 CURVY ROAD 

 SLOW DOWN 45 MPH  DRIVE SLOWLY 

4 FOG AHEAD 4 CURVY ROAD 

 SLOW DOWN 45 MPH  DRIVE SLOWLY 

5 CURVY ROAD 5 FOG AHEAD 

 DRIVE SLOWLY  SLOW DOWN 45 MPH 

6 CURVY ROAD 6 SNOW PLOWS AHEAD 

 DRIVE SLOWLY  SLOW DOWN 35 MPH 

7 CURVY ROAD 7 FOG AHEAD 

 DRIVE SLOWLY  SLOW DOWN 45 MPH 

8 SNOW PLOWS AHEAD 8 FOG AHEAD 

 SLOW DOWN 35 MPH  SLOW DOWN 45 MPH 
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Appendix F 

Geometric Configuration of the Simulation Highway 

Table F.1:  Geometric configuration of the simulation highway. 

Type Length 

m 

Radius of 
horizontal 

curve 

m 

Angle of 
horizontal 

curve 

˚ 

Radius of 
vertical curve 

m 

Angle of 
vertical curve 

˚ 

Final grade 

˚ 

straight 144.78    0 0 

straight 123.44    0 0 

straight 126.49    0 0 

horizontal 191.51 609.6 -18  0 0 

straight 289.56    0 0 

vertical 386.18   22126.58 1 1 

horizontal 138.31 609.6 13  0 1 

straight 193.24    0 1 

horizontal 63.84 609.6 6  0 1 

horizontal 614.43 502.92 -70  0 1 

vertical 209.09   3993.38 3 4 

horizontal 52.13 597.41 5  0 4 

horizontal 52.13 597.41 5  0 4 

vertical 321.87   -4610.43 -4 0 

horizontal 184.33 502.92 21  0 0 

straight 321.87    0 0 

horizontal 223.43 609.6 21  0 0 

horizontal 180.87 609.6 17  0 0 

vertical 160.93   9220.86 1 1 
(Continued) 
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Table F.1:  Geometric configuration of the simulation highway. (Continued). 

Type Length 

m 

Radius of 
horizontal 

curve 

m 

Angle of 
horizontal 

curve 

˚ 

Radius of 
vertical curve 

m 

Angle of 
vertical curve 

˚ 

Final grade 

˚ 

vertical 128.63   -7369.7 -1 0 

horizontal 139.64 381 -21  0 0 

straight 335.58    0 0 

horizontal 127.67 609.6 12  0 0 

horizontal 53.2 609.6 5  0 0 

vertical 273.71   7841.23 2 2 

horizontal 212.79 304.8 -40  0 2 

vertical 611.43   -11677.43 -3 -1 

straight 482.8    0 -1 

horizontal 74.48 609.6 -7  0 -1 

vertical 256.64   7352.24 2 1 

horizontal 53.2 609.6 5  0 1 

horizontal 95.76 609.6 9  0 1 

horizontal 42.56 609.6 4  0 1 

straight 434.64    0 1 

vertical 160.93   4610.43 2 3 

horizontal 108.31 620.57 10  0 3 

vertical 209.09   11980.14 1 4 

horizontal 386.58 598.63 -37  0 4 

vertical 80.47   -1152.61 -4 0 

straight 579.42    0 0 

horizontal 113.04 381 17  0 0 

vertical 160.93   9220.86 1 1 

horizontal 457.5 609.6 -43  0 1 

straight 257.56    0 1 
(Continued) 
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Table F.1:  Geometric configuration of the simulation highway. (Continued). 

Type Length 

m 

Radius of 
horizontal 

curve 

m 

Angle of 
horizontal 

curve 

˚ 

Radius of 
vertical curve 

m 

Angle of 
vertical curve 

˚ 

Final grade 

˚ 

horizontal 99.03 436.47 13  0 1 

straight 241.4    0 1 

horizontal 297.91 609.6 -28  0 1 

vertical 241.4   13831.29 1 2 

horizontal 182.57 316.99 33  0 2 

straight 402.34    0 2 

straight 112.78    0 2 

horizontal 191.51 609.6 -18  0 2 

straight 193.24    0 2 

horizontal 201.56 312.12 37  0 2 

vertical 418.49   23977.73 1 3 

vertical 128.63   -7369.7 -1 2 

horizontal 191.51 457.2 -24  0 2 

vertical 96.62   -5536.01 -1 1 

straight 310.9    0 1 

vertical 139.6   3999.2 2 3 

horizontal 340.46 609.6 32  0 3 

horizontal 21.28 609.6 2  0 3 

vertical 193.24   -5536.01 -2 1 

horizontal 63.84 609.6 -6  0 1 

vertical 402.34   7684.05 3 4 

vertical 386.18   -22126.58 -1 3 

vertical 321.87   -18441.72 -1 2 

horizontal 134.51 592.84 13  0 2 

straight 314.25    0 2 
(Continued) 
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Table F.1:  Geometric configuration of the simulation highway. (Continued). 

Type Length 

m 

Radius of 
horizontal 

curve 

m 

Angle of 
horizontal 

curve 

˚ 

Radius of 
vertical curve 

m 

Angle of 
vertical curve 

˚ 

Final grade 

˚ 

horizontal 127.67 609.6 12  0 2 

vertical 193.24   5536.01 2 4 

horizontal 191.51 609.6 18  0 4 

straight 294.74    0 4 

horizontal 95.76 609.6 -9  0 4 

vertical 231.04   -6618.76 -2 2 

straight 396.54    0 2 

straight 321.87    0 2 

horizontal 148.95 609.6 -14  0 2 

horizontal 106.4 609.6 -10  0 2 

vertical 154.23    1 3 

horizontal 106.4 609.6 -10  0 3 

vertical 186.23   -5335.18 -2 1 

straight 177.09    0 1 

horizontal 563.89 609.6 53  0 1 

straight 203.3    0 1 

vertical 180.44   3446.18 3 4 

horizontal 90.12 469.39 -11  0 4 

vertical 498.96   9529.39 -3 1 

Total 19710.87      
 



256 

Appendix G 

Sample data 

A sample of the data written from the driving simulator showing the change from fog to no 
fog. The level of fog increases gradually to 0.007 which stands for 800 meters of visibility. 

Table G.1:  Sample data from the driving simulator. 

Time Position Speed Lane Gas Gear Brake Fog 

 Stretch # decimal mph      

6:39 44 0.4 69.59 2 31 4 0 0 

6:40 44 0.6 68.87 2 27 4 0 0 

6:41 44 0.7 66.73 2 0 4 0 0 

6:42 44 0.8 63.46 2 0 4 0 0 

6:43 44 0.9 60.56 2 0 4 0 0 

6:44 45 0.1 57.12 2 0 4 0 0.001 

6:45 45 0.4 54.55 2 4 3 0 0.001 

6:46 45 0.5 52.18 2 0 3 0 0.001 

6:47 45 0.7 50.03 2 11 3 0 0.001 

6:48 46 0.0 49.33 2 11 3 0 0.002 

6:49 46 0.1 50.33 2 26 3 0 0.002 

6:50 46 0.2 52.32 2 24 3 0 0.002 
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Appendix H 

Scenes from the simulator 

This Appendix contains a number of scenes from the simulator showing examples of the 
good weather conditions (see Figure H.1), road signs (see Figure H.2, H.3, and H.4), the variable 
message signs (see Figures H.5, H.6 and H.8), the snow plows (see Figures H.7, H.6, and H.10) 
and the fog conditions (see Figure H.9). The scenes are taken from one of the runs used and are 
shown in the order seen while driving that particular run. The other runs contained the same 
scenes but in a different order as shown by the four series of VMS and IVU messages in 
Appendix E. 

The 0 that can be seen, below and to the left of the middle of the figures, represents the 
number zero and it is the current speed in mph as seen by the driver. To accurately take pictures 
of these scenes the vehicle had to stop and therefore no speed in the figures. 

 

Figure H.1:  A typical section of road during good weather conditions. 
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Figure H.2:  An example of the I-90 sign.  

 

Figure H.3:  An example of the speed limit sign. 
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Figure H.4:  An example of the IVU indicator sign. 

 

Figure H.5:  The curvy road VMS. 
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Figure H.6:  The snow plow ahead VMS. 

 

Figure H.7:  A yellow snow plow blocking the two left most lanes. 
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Figure H.8:  The fog ahead VMS. 

 

Figure H.9:  A typical section of road during fog conditions. 
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Figure H.10:  A yellow snow plow blocking the two right most lanes during the fog condition. 
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Appendix I 

ANOVA calculations 

Table I.1:  ANOVA, expected mean square calculations. 

  F=0 R=1 F=0 F=0 R=1  

 df i=4 j=12 k=2 l=2 m=1 EMS 

Signi 3 0 12 2 2 1 σ2
ε + 4σ2 δ+4σ2

Subj+48φ Sign 

Subj(i)j 44 1 1 2 2 1 σ2
ε +4σ2 δ+ 4σ2 Subj 

δ(ij) 0 1 1 2 2 1 σ2
ε + 4σ2 δ  

(not retrievable) 

Weatherk (W k) 1 4 12 0 2 1 σ2
ε+ 2σ2 Subj*W +96φW 

Sign*Wik 3 0 12 0 2 1 σ2
ε+2σ2

Subj*W+24φSign*W 

Subj*W (i)jk 44 1 1 0 2 1 σ2
ε + 2σ2 Subj*W 

Vehiclesl (V l) 1 4 12 2 0 1 σ2
ε+2σ2

Subj*V +96φV 

Sign*V il 3 0 12 2 0 1 σ2
ε+2σ2

Subj*V+24φSign*V 

Subj*V(i)jl 44 1 1 2 0 1 σ2
ε + 2σ2 Subj*V 

W*V kl 1 4 12 0 0 1 σ2
ε+σ2

Subj*W*V+48φW*V 

Sign*W*V ikl 3 0 12 0 0 1 σ2
ε+σ2

Subj*W*V+12φSign*W*
V 

Subj*W*V(i)jkl 44 1 1 0 0 1 σ2
ε + σ2

Subj*W*V 

ε(ijklm) 0 1 1 1 1 1 σ2
ε (not retrievable) 
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Appendix J 

Sample of actual WSDOT configurations of Snoqualmie 
Pass 

 




