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Executive Summary 

Traffic metering or perimeter control is an effective means to mitigate congestion on urban-

street networks. Bimodal traffic signals (i.e., green and red indications only) can be placed at the 

borders of congested areas, similar to the way on-ramps regulate the flow of vehicles. The 

objectives of this study was to develop a methodology for metering traffic on urban street networks 

and to study the effects of traffic metering on traffic operations on such networks. 

This study developed an optimization program that aims to increase the number of 

completed trips on urban street networks by controlling traffic metering rates. We used the Benders 

decomposition technique and proposed a solution technique that could solve the program within 

an optimality bound. The case study results for a network of 20 intersections showed that traffic 

metering significantly improved traffic operations by reducing the travel time of vehicles inside 

the network by 30.8 percent and 34.2 percent in comparison to a no-metering strategy. Some 

vehicles were delayed at the metering signals; however, traffic metering reduced system-level 

travel times by 2.7 percent and 5.4 percent. 

While the solution technique proved effective at providing metering strategies very close 

to the optimal ones, it did not scale well with the size of the problem, and its runtime increased. 

This issue was addressed by developing a distributed model predictive control approach. The 

distributed approach decomposed the network to several sub-networks and allocated 

computational resources to each sub-network. Each sub-network estimated vehicle density across 

all of its links at a time step, optimized the metering rate over a planning horizon in the future, 

shared information with other subnetworks and used the received information in its future 

optimizations, implemented the optimal metering rates only for the next time step, and then 
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repeated the process. In our tests, the distributed solution technique found solutions in real time 

that were at most 2.2 percent different that the optimal solutions.  

Sensitivity analysis on the market penetration rate of connected vehicles in a 

microsimulation environment showed that network performance with traffic metering, in 

comparison to the no-metering strategy, improved significantly as the penetration rate increased 

from 0 percent to 30 percent. However, the improvements were negligible for penetration rates of 

more than 30 percent.  
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Chapter 1: Introduction 

A study of 83 urban areas in the U.S. by the Harvard Center for Risk Analysis projected a 

$96 billion cost in wasted time due to congestion by 2030 (Levy et al., 2010). Traffic congestion 

is a major contributing factor to excessive travel delay, fuel consumption, and air pollution in urban 

areas. Researchers have studied several traffic congestion management strategies to mitigate traffic 

congestion in urban street networks, such as traffic signal timing (Han et al., 2016; Hosseini and 

Savla, 2016; Islam et al., 2020; Islam and Hajbabaie, 2017; Liang et al., 2020; Medina et al., 2011, 

2010; Mehrabipour and Hajbabaie, 2017; Mohebifard and Hajbabaie, 2019; Nilsson et al., 2015; 

Stevanovic et al., 2007; Yan et al., 2019; Yang et al., 2016), variable speed limits and speed 

harmonization (Lee et al., 2006; Li et al., 2015; Tajalli et al., 2020; Tajalli and Hajbabaie, 2018a, 

2018b; Zhu and Ukkusuri, 2014), and traffic assignment (Aziz and Ukkusuri, 2012; Jafari et al., 

2017; Levin et al., 2016; Mehrabipour et al., 2019; Samaranayake et al., 2018). Traffic metering 

is another promising strategy for managing traffic congestion that can prevent queue spillovers 

and gridlocks that can occur in oversaturated conditions. (Mahmassani et al., 2013).  

1.1. Background 

Daganzo (2007) utilized the idea of macroscopic fundamental diagrams (MFDs) (Godfrey, 

1900; Herman and Prigogine, 1979; Mahmassani et al., 1984) to explain the dynamics of vehicle 

accumulation inside an urban network and vehicle throughput. According to Daganzo (2007), the 

dynamics of an urban network vary between two extremes of single-link and single-ring systems. 

In a single-link system, the number of vehicles in a link and the number of exiting vehicles have a 

relationship similar to that shown in figure 1-1 (a). Therefore, the outflow increases with the 

density of the link (i.e., number of vehicles in the link) up to the density 𝐷𝐷𝐶𝐶  corresponding the link 

capacity 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚. Figure 1-1 shows the declining part of the diagram with a dashed line because this 
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part represents congestion that occurs because of restrictions on outflows, such as downstream 

queue spillbacks. In other words, the declining part does not happen because of further increases 

of inflow. On the other hand, in the single-ring system of figure 1-1 (b), increases in inflow, and 

accordingly the density of the system, more than 𝐷𝐷𝐶𝐶  create a decline. In the congested region of a 

single-ring system, the outflows can be reduced to zero by increasing the inflow and its density to 

the jam density 𝐷𝐷𝐽𝐽. Therefore, the declining part of the figure is created by the occurrence of 

gridlock.  

 
Figure 1-1. . (a) Single-link and (b) single-ring systems with their corresponding triangular fundamental 

diagrams (Daganzo, 2007) 
 

The dynamics of real networks are somewhere between the dynamics of single-link and 

single-ring systems. Therefore, the diagram of real networks may have a generic shape similar to 

that in figure 1-2. In real networks, gridlock happens, but it does not last long because of the nature 
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of transportation networks. Therefore, the maximum observed density 𝐷𝐷𝑣𝑣 inside the network can 

be somewhere between 𝐷𝐷𝐶𝐶  and 𝐷𝐷𝐽𝐽 (Daganzo, 2007).  

 
Figure 1-2.  A generic fundamental diagram for real transportation networks (Daganzo, 2007) 

 

Consequently, an opportunity exists in a transportation network to control its density and 

prevent outflow drops. For instance, keeping the density between 𝐷𝐷 and 𝐷𝐷 in a network with a 

generic fundament diagram like figure 1-2 ensures that the network can process the maximum 

number of vehicles without an outflow drop due to excessive congestion. Once the number of entry 

vehicles to a network has surpassed the optimal accumulation interval �𝐷𝐷,𝐷𝐷�, “metering signals” 

will be activated to reduce the excessive number of entry vehicles.  

Figure 1-3 shows a portion of an urban network that is equipped with metering signals at 

the borders of a region that needs to be protected from oversaturated flow conditions. Bimodal 

traffic signals (with green and red indications) can be placed at the borders of congested areas to 

regulate the inflow of vehicles. The metering signals can also be traffic signals at intersections, 

whose timings can be modified to accomlish traffic metering through prolonged red signal 

indications. Note that the inbound approaches of such intersections should have enough capacity 

to hold possible queues of vehicles. Otherwise, queue spillovers from the metering signals may 

deteriorate upstream network performance. 
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Figure 1-3.. Metering gates that are placed at the borders of a region that needs to be protected 

from oversaturated flow conditions  

1.2. Research Objectives  

The goal of traffic metering on urban street networks is to regulate the number of vehicles 

entering congested parts of the networks to achieve the highest throughput. Most of the available 

metering approaches directly use the control theory fundamental diagrams discussed above to 

maintain the number of vehicles within a predefined accumulation interval (e.g., Haddad and 

Geroliminis, 2012; Keyvan-Ekbatani et al., 2012). While such approaches are easy to implement 

for large-scale networks, their efficiency relies on the accuracy of optimal accumulation 

estimation. In other words, the available approaches assume that a well-defined macroscopic 

fundamental diagram (MFD) that provides an accurate estimate for the optimal vehicle 

accumulation can be derived for each urban network (or its sub-networks). However, deriving such 

diagrams for urban networks is not an easy task. Moreover, the complex dynamics of 

transportation networks cannot be accurately represented with a single accumulation interval (or 
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multiple intervals for networks with several sub-networks). Therefore, the objective of this study 

was to develop a methodology for traffic metering on urban street networks. The study was 

intended to  

• Develop an optimization program with explicit representation of traffic dynamics to 

optimize metering rates at individual network metering signals 

• Develop a solution technique that could solve the program with tight optimality bounds 

• Develop a distributed model predictive control approach to find metering strategies in 

real time 

• Evaluate the effects of traffic metering on traffic operations on urban street networks.  

Accordingly, we developed an optimization program and two solution techniques to 

optimize traffic metering strategies by explicitly capturing traffic dynamics within the optimization 

program. The program employs the cell transmission model (CTM) (Daganzo, 1995, 1994) to 

capture traffic dynamics and maximizes network throughput by optimizing traffic metering rates 

at predefined gate locations. Because the program has large dimensions, it cannot be solved with 

regular optimization techniques. Therefore, we proposed a Benders decomposition-based 

approach (Benders, 1962; Geoffrion, 1972) to solve the program. The results of this approach are 

near-optimal traffic metering strategies for all metering signals over the entire analysis period, 

regardless of whether or not they can be found in real time.  

We addressed the runtime limitation of the solution technique by proposing distributed 

optimization and coordination algorithms (DOCA) for dynamic traffic metering (DTM). The 

DOCA-DTM method decomposes a network into smaller sub-networks and allow each sub-

network to optimize its own traffic metering rates and share information with other sub-networks 

to coordinate their decisions. In addition, the DOCA-DTM is implemented within a model 
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predictive control (MPC) structure to further reduce the problem complexity and find solutions in 

real time. Thus, the DOCA-DTM collects connected vehicle and loop detector data at discretized 

time steps, integrates them and estimates density over the network links, optimizes metering rates 

over a prediction period (several time steps), implements the optimized metering rates for the next 

time step, and continues the process over the entire study period. Like to other adaptive approaches 

(e.g., Hajibabai and Ouyang, 2016; Mirheli et al., 2020; Mirheli and Hajibabai, 2020) MPC allows 

the methodology to be responsive to dynamic changes in traffic demand and network state.  

1.3. Report Organization  

This report includes seven chapters. An extensive literature review on available traffic 

metering approaches, their strengths, and their limitations are discussed in Chapter 2. The 

mathematical formulation of the traffic metering optimization program is detailed in Chapter 3. A 

Benders decomposition-based solution technique to solve the traffic metering program centrally is 

developed in Chapter 4. Chapter 5 presents distributed optimization and coordination algorithms 

for traffic metering that allows metering strategies to be found in real time. Numerical experiments, 

including the effects of traffic metering on network performance, the optimality bounds of the 

central solution technique, the runtime and solution quality of the distributed approach, and the 

effects of the market penetration rate of connected vehicles on traffic metering, are presented in 

Chapter 6. Finally, Chapter 7 concludes this report with a summary of the key findings and trends 

for further research.  
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Chapter 2: Literature Review 

This chapter presents a review of available traffic metering approaches. These approaches 

are categorized into scenario- and MFD-based studies. The details of each category follow.  

2.1. Scenario-Based Traffic Metering 

Scenario-based approaches evaluate improvements in network performance that can be 

achieved by using predefined metering scenarios. These scenarios can be fixed percentages of 

reductions in the traffic flows passing through the metering signals. Rathi and Lieberman (1989) 

simulated a portion of Manhattan, New York, and tested different entry volumes. The simulation 

results indicated that traffic metering had positive effects on improving network performance. 

Rathi and Lieberman (1989) did not consider the effects of traffic metering on the vehicles delayed 

at the metering signals and suggested further study for better evaluation of traffic metering 

benefits.  

Hajbabaie and Benekohal (2011) evaluated several metering scenarios. They optimized 

traffic signals for several traffic metering scenarios so that the operational benefits of traffic 

metering could be better evaluated. They did not find optimal metering levels, but their results 

indicated that a metering level existed at which the network would have the best performance. A 

similar analysis by Medina et al. (2013) suggested that dynamic metering rates offered more 

efficient network performance than fixed metering levels.  

2.2. MFD-Based Traffic Metering  

The majority of traffic metering studies have been based on macroscopic fundamental 

diagrams (MFDs) for urban networks (Daganzo, 2007; Geroliminis and Daganzo, 2008). MFDs 

provide a relationship between the number of vehicles inside a network and its throughput (see 

Chapter 1 for more details). Therefore, traffic metering controllers can be designed to maintain the 
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number of vehicles in the network within the range that corresponds to the highest throughput. 

Moreover, accurate estimation of the optimal range requires a low scattered and well-defined 

MFD, which can be expected for networks with a homogenous distribution of traffic. Hence, the 

primary step in designing the controllers is to divide a network into homogenous sub-networks 

and estimate a well-defined MFD for each sub-network.  

Geroliminis and Sun (2011) stated that despite several empirical studies on the existence 

of MFDs, these diagrams might not exist for all networks. Moreover, they stated that the shape 

and scatteredness of such diagrams were a function of a network and its control. Furthermore, they 

empirically and analytically showed that the spatial distribution of vehicle density was a key 

component that affected the shape and scatteredness of an MFD.  

Zhang et al. (2013) used the stochastic cellular automaton model (De Gier et al., 2011) to 

compare the MFDs of a network under various conditions of adaptive signal settings and demand 

rates. Their simulation-based analysis showed that the shape of MFDs was influenced by the 

demand rate such that their case study network reached its capacity at higher densities when 

demand was more uniformly distributed in the network rather than when demand was non-

uniformly distributed. They also observed that traffic signal settings that distributed density in the 

network uniformly resulted in an MFD with higher capacity and outflows than an adaptive signal 

control system.  

Ji and Geroliminis (2012) proposed a clustering algorithm so that a heterogeneous network 

could be divided into several sub-networks, each with smaller link density variances than the 

original network. This approach allowed sub-networks with well-defined MFDs to be found so 

that each sub-network could be controlled with its own boundary gates.  
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Keyvan-Ekbatani et al. (2012) designed a feedback-based controller that maintained the 

number of vehicles in a network with the optimal range that could be found from the network 

MFD. They represented the network dynamics with a first-order, non-linear system that was 

linearized around the optimal accumulation range. The controller determined the total inflows (the 

number of vehicles that should be allowed to enter the network), and each gate processed a fraction 

of the total inflow proportional to its saturation flow rate.  

Geroliminis et al. (2013) used MFDs to represent the dynamics of a two-region urban 

network. They formulated an optimal control problem for this system such that the number of 

completed trips was maximized by regulating the flow of vehicles at the shared boundaries of 

regions. Hence, the decision variables of the problem were the total number of vehicles that should 

be allowed to move between the regions. They solved the problem with model predictive control 

(MPC) so that the errors in the MFD and demand estimation could be considered in the perimeter 

control decisions. This approach was a high-level control problem that determined the overall 

metered flows rather than optimizing metering rates for each gate. Moreover, the application of 

this formulation to a real or simulated network required a detailed enough representation of flow 

dynamics that the effect of gate locations, metering rates at each gate, and the queues of vehicles 

at the gates could be captured to indicate network performance.  

Haddad et al. (2013) considered perimeter and ramp metering problems on a mixed urban 

and freeway network. They considered a two-region urban network and one freeway facility that 

received or sent vehicles to each of those regions. They captured traffic dynamics in the urban 

regions with MFDs and used an asymmetric cell transmission model (Gomes and Horowitz, 2006) 

for the freeway facility. Although this study provided invaluable insights about controlling a large-

scale and mixed traffic system, the proposed formulation and its MPC-based solution technique 
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could not capture detailed traffic dynamics and the interactions between the systems. For instance, 

the effect of queues at the freeway on-ramps was not captured for the dynamics of urban regions. 

Moreover, the perimeter control between the regions was represented by the total flow that should 

transfer between the regions, and therefore the effects of gate locations, queues, and traffic 

metering rates at each gate were not considered in this modeling approach.  

Haddad and Shraiber (2014) stated that the previously discussed MFD-based controllers 

could regulate the flow of vehicles around a predefined accumulation setpoint, which was the 

accumulation that corresponded to the highest network throughput in a network’s MFD. However, 

this study linearized the non-linear MFD-based system dynamics around a stochastic setpoint in 

such a way that uncertainties in the MFD-based dynamics could be considered in the controller 

design. The numerical analysis of this study showed that the performance of the designed 

controller was superior for different congestion levels, unlike previous controllers that were 

effective only once the congestion level had reached the setpoint. This study concluded that 

translating the optimized metered flows into signal indications at metering signals required further 

study.  

Keyvan-Ekbatani et al. (2015) stated that different parts of a network might experience 

congestion at different times. Hence, they designed MFD-based controllers for concentric urban 

networks in which congestion spread from the innermost to outermost regions. Accordingly, 

different perimeter controllers would protect each region according to its own MFD and desired 

congestion level. The authors also proposed a policy based on queue lengths at the gates so that 

the total gated flows could be divided among gates by converting flows to signal indications. 

However, the proposed flow distribution approach might not be optimal because the controllers 

did not optimize the gate flows for each gate individually. Moreover, the gates could not enforce 
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the same gated flows as were optimized by the controllers because of the conversion of flows to 

signal indications.  

Haddad and Mirkin (2017) stated that central controllers for multi-region networks were 

not robust in the face of data collection and communication failures. Therefore, they designed local 

adaptive perimeter controllers that could share upper-level information about the desired setpoints 

of regions with each other. This information could help with coordination amongthe regions and 

improve overall system performance. However, this coordination did not ensure the capacity 

restriction of neighboring regions. Therefore, congestion might spread from a downstream region 

to its upstream region, and the controllers would fail to maintain vehicle accumulation around the 

desired setpoints.  

Kouvelas et al. (2017) said that the dynamics of multi-region networks were complex, and 

defining setpoints according to the MFD of each region might not be optimal for the entire 

network. In other words, some regions might need to held vehicle accumulation to a level more or 

less than their desired setpoint to favor other regions and to improve the overall operation of the 

network. Therefore, they proposed an adaptive approach based on network conditions to finding 

controller parameters such as setpoints, rather than using fixed values for the entire study period. 

Although their numerical analysis in a microsimulation environment showed the capability of this 

approach to improve network performance, the approach did not ensure the optimality of the 

parameters. Moreover, the optimized metering rates were distributed between the gates in 

proportion to their saturation flow rates.   

Fu et al. (2017) stated that applying perimeter controls to networks with high demand that 

created heterogeneity in a network might not improve network performance. Therefore, they 

proposed a hierarchical perimeter control approach for a two-region network that allowed upper 
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and lower bounds to be found for the flow control variables in the first level to ensure system 

stability. Each of the two regions were further divided into sub-regions, and sub-regional-level 

perimeter controllers regulated the flow of vehicles with the objective of minimizing the 

heterogeneity among the sub-regions. The sub-regions were defined by a clustering algorithm and 

used a genetic algorithm to solve the non-linear control problem. However, the proposed bounds 

could not be ensured because the control problem optimized the total metered flows, but the flows 

had to be divided among gates and converted to traffic signals so that they could be implemented 

in a network. These steps created approximations that might violate the stability conditions.  

A numerical analysis by Haddad (2017) of a two-region network with MFD-based 

dynamics showed that the capacity of gates to hold queued vehicles had a significant effect on 

perimeter control policies. He proposed a control model with explicit constraints on the aggregated 

gate capacities at the boundaries between regions. The limited capacity of the boundary gates could 

be captured explicitly in the perimeter control policies. However, the capacity restrictions were 

considered to be an aggregated measure in the model. Therefore, the model did not enforce the 

capacity restrictions of individual gates. In other words, gates could have different capacities, 

vehicle flows, and metering rates. Therefore, the aggregated capacity limits did not account for the 

locations and capacity of gates.  

Ding et al. (2017) proposed an approach to simultaneously consider perimeter control and 

route guidance in multi-region networks using MFD-based dynamics. They captured the effect of 

route guidance by estimating the rate of drivers who would comply with suggested alternative 

routes that passed through less congested regions. The proposed algorithm had a hierarchical 

structure such that route guidance and perimeter control minimized the average delay of vehicles 

sequentially. The proposed approach required predefined homogenous sub-regions and gate 
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locations, while traffic guidance changed the distribution of traffic in a network and hence the 

shape of the MFD’s, number of sub-regions, and gate locations.  

Sirmatel and Geroliminis (2017) developed an MPC for perimeter control and route 

guidance using MFD-based network dynamics. They argued that keeping vehicle accumulation at 

predefined setpoints in multi-region networks might be infeasible for perimeter controllers. 

Moreover, the accumulation-based objective did not necessarily result in the best network 

performance. Hence, they minimized the total travel time in the MPC formulation. The proposed 

formulation in this study was a mixed-integer, non-linear program that was solved with an 

optimization engine. However, the quality of the solutions in terms of optimality bounds was not 

discussed in the study.   

Yang et al. (2019) considered social welfare besides operational performance to be the 

objectives of perimeter control. They considered priority lanes that could be assigned dynamically 

to different traffic modes. The tolls for the priority lanes were optimized according to the lane 

choice information for connected vehicles. Analysis results showed that the proposed approach 

could distribute the total costs of delays and tolls more uniformly than a case without priority that 

showed improvements in social welfare.  

2.3. Summary 

The reviewed literature showed that scenario-based techniques do not provide dynamic 

metering rates, and their efficiency depends on the quality of the pre-defined scenarios. On the 

other hand, MFD-based techniques regulate the flow of vehicles dynamically and are suitable for 

large-scale transportation networks. However, they rely on well-defined MFDs for a network or 

its sub-networks. Although several algorithms have been developed to divide a network into 

several sub-networks, each with well-defined MFDs, these algorithms are rather heuristics, and 
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their accuracy depends on network geometry and spatial vehicle density distributions in the 

network. In addition, the MFD-based techniques find aggregated metering rates for all gates of a 

protected area. The aggregated rates require a post-processing step to be converted into the 

metering rates for each individual gate. The gate-level metering rates can be found by distributing 

the aggregated rates in proportional to the queue lengths of vehicles at the gates or to their 

saturation flow rates. Therefore, a gap exists in the traffic metering literature that can be filled with 

an approach that explicitly captures traffic dynamics instead of using MFDs and that optimizes 

traffic metering rates for each individual gate dynamically.  
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Chapter 3: Problem Formulation 

The developed program for optimizing traffic metering rates is discussed in this chapter. 

The model is based on the cell transmission model (CTM) (Daganzo, 1995, 1994). The CTM 

discretizes both time and space and provides numerical solutions to the hydrodynamic traffic flow 

model presented by Lighthill and Whitham (1955) and Richards (1956). The discretization makes 

the CTM easy to implement, with the ability to consider different traffic flow regimes ranging 

from undersaturated to oversaturated and gridlock conditions in urban street networks (Mohebifard 

and Hajbabaie, 2018a). CTM divides each network link into homogenous segments that are called 

“cells.” Figure 3-1 shows a simple network of four intersections with twelve one-way links that 

are represented by 52 cells according to the CTM. 

 

Figure 3-1. Cell representation of a sample network 
 

We define five cell types, shown in figure 3-2. Gate cells represent the entry points to a 

network. The inflow to gates follows a predefined demand profile, while the outflow of the gates 
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will be defined on the basis of the optimized traffic metering rates. Sink cells absorb the flow of 

vehicles leaving the network. Merge cells receive vehicles from multiple immediate upstream 

cells, and diverge cells send vehicles to multiple immediate downstream cells. Ordinary cells are 

the cells that receive vehicles from and send vehicles to only one immediate cell. We also use 

intersection cells, which are like ordinary cells but with a variable saturation flow rate that 

represents the effect of signals. The notations for the set of all the cells are as follows: network 𝐶𝐶, 

gate 𝐶𝐶𝐺𝐺 , sink 𝐶𝐶𝑆𝑆, merge 𝐶𝐶𝑀𝑀, diverge 𝐶𝐶𝐷𝐷, and intersection 𝐶𝐶𝐼𝐼.  Therefore, the set of ordinary cells 

over all other cells is 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝑀𝑀 ,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼}. In addition, the successor and predecessor cells of cell 

𝑖𝑖 ∈ 𝐶𝐶 are indicated by 𝑆𝑆(𝑖𝑖) and 𝑃𝑃(𝑖𝑖), respectively. The predecessor cells of cell 𝑖𝑖 ∈ 𝐶𝐶 are those 

that are immediately upstream and successor cells are those that are immediately downstream.  

 

Figure 3-2. Types of cells according to the CTM 
 

We explain a mixed-integer, non-linear program (MINLP) to optimize traffic metering 

rates at each metering signal. The decision variables of the program are the number of vehicles 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡  

that should be allowed to leave gate cell 𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺  to its successor cell 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖) at time step 𝑡𝑡 ∈ 𝑇𝑇. 

Constraints (3-1) through (3-6) ensure that the gate flows do not violate the flow feasibility 

conditions. Constraint (3-1) ensures that that gate flows 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡  do not exceed the available number of 

vehicles 𝑥𝑥𝑖𝑖𝑡𝑡 in gate cell 𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺  at each time step 𝑡𝑡 ∈ 𝑇𝑇. Moreover, the gate flows should not be 
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more than the available capacity 𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡� of receiving cell 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), as shown in constraint (3-

2). In these constraints, 𝑁𝑁𝑖𝑖 is the capacity of a cell in terms of the number of vehicles it can hold, 

and 𝛿𝛿 is the ratio of backward to forward shockwave speeds (Daganzo, 1994). Constraints (3-3) 

and (3-4) guarantee that the gate flows are less than or equal to the saturated flow rates 𝑄𝑄𝑖𝑖𝑡𝑡 and 𝑄𝑄𝑖𝑖𝑡𝑡 

of the sending and receiving cells, respectively. The number of vehicles 𝑥𝑥𝑖𝑖𝑡𝑡 in gate cell 𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺 

needs to be less than gate capacity 𝑁𝑁𝑖𝑖 for holding a queue of vehicles (see constraint (3-5)). 

Constraint (3-6) shows the non-negativity requirements of the gate flows.  

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑥𝑥𝑖𝑖𝑡𝑡 ∀𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺 , 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (3-1) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡� ∀𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺 , 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (3-2) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑄𝑄𝑖𝑖𝑡𝑡 ∀𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺  , 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇  (3-3) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑄𝑄𝑖𝑖𝑡𝑡 ∀𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺  , 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇  (3-4) 

𝑥𝑥𝑖𝑖𝑡𝑡 ≤ 𝑁𝑁𝑖𝑖 ∀𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺 , 𝑡𝑡 ∈ 𝑇𝑇   (3-5) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≥ 0 ∀𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺 , 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (3-6) 

 

The flow of vehicles between all other cells except the gate cells should follow the flow-

density diagram of the CTM that is shown by flow feasibility (constraints (3-7) through (3-10). 

Constraint (3-7) ensures that the flow of vehicles in ordinary cells 𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆 ,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼} should be 

equal to the minimum of 𝑥𝑥𝑖𝑖𝑡𝑡, 𝑄𝑄𝑖𝑖𝑡𝑡, 𝑄𝑄𝑖𝑖𝑡𝑡, and 𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡�. Note that cell 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖) is successor to cell 𝑖𝑖. 

The min (. ) function guarantees that the flows follow the flow-density diagram of CTM (Daganzo, 

1995), and the flow holding-back problem is eliminated (Lo, 1999; Mohebifard and Hajbabaie, 

2019). Constraint (3-8) uses the variable saturation flow rates 𝑔𝑔𝑖𝑖𝑡𝑡𝑄𝑄𝑖𝑖𝑡𝑡 instead of 𝑄𝑄𝑖𝑖𝑡𝑡 to account for 

the effect of signal indications 𝑔𝑔𝑖𝑖𝑡𝑡 on the saturation flow rate of intersection cells 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼. The signal 
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indication 𝑔𝑔𝑖𝑖𝑡𝑡 is a binary parameter that is 1.0 for green signals and 0.0 otherwise. Note that the 

signal indications are input to this constraint and should be defined on the basis of the signal 

settings of a case study network before the traffic metering problem is solved.  

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 = min�𝑥𝑥𝑖𝑖𝑡𝑡 ,𝑄𝑄𝑖𝑖𝑡𝑡 ,𝑄𝑄𝑖𝑖𝑡𝑡 ,𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡�� 
∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼}, 
𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (3-7) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 = min�𝑥𝑥𝑖𝑖𝑡𝑡 ,𝑔𝑔𝑖𝑖𝑡𝑡𝑄𝑄𝑖𝑖𝑡𝑡 ,𝑄𝑄𝑖𝑖𝑡𝑡 ,𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡�� ∀𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼 , 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (3-8) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 = 𝛽𝛽𝑖𝑖𝑡𝑡min

⎩
⎪
⎨

⎪
⎧𝑥𝑥𝑖𝑖𝑡𝑡  ,𝑄𝑄𝑖𝑖𝑡𝑡 ,

𝑄𝑄𝑖𝑖𝑡𝑡

𝛽𝛽𝑖𝑖𝑡𝑡
,
𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡�

𝛽𝛽𝑖𝑖𝑡𝑡
,
𝑄𝑄𝑘𝑘𝑡𝑡

𝛽𝛽𝑘𝑘𝑡𝑡
,
𝛿𝛿(𝑁𝑁𝑘𝑘 − 𝑥𝑥𝑘𝑘𝑡𝑡 )

𝛽𝛽𝑘𝑘𝑡𝑡
,

𝑄𝑄𝑚𝑚𝑡𝑡

𝛽𝛽𝑚𝑚𝑡𝑡
,
𝛿𝛿(𝑁𝑁𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑡𝑡 )

𝛽𝛽𝑚𝑚𝑡𝑡 ⎭
⎪
⎬

⎪
⎫

 ∀𝑖𝑖 ∈ 𝐶𝐶𝐷𝐷, 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖),𝑘𝑘 ∈ 𝑆𝑆(𝑖𝑖), 
𝑚𝑚 ∈ 𝑆𝑆(𝑖𝑖), 𝑗𝑗 ≠ 𝑘𝑘 ≠ 𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇 (3-9) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 = min{𝑥𝑥𝑖𝑖𝑡𝑡 ,𝑄𝑄𝑖𝑖𝑡𝑡} min �1,
min�𝑄𝑄𝑖𝑖𝑡𝑡, 𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡��
∑ min{𝑥𝑥𝑘𝑘𝑡𝑡 ,𝑄𝑄𝑘𝑘𝑡𝑡 }𝑘𝑘∈𝑃𝑃(𝑖𝑖)

� ∀𝑗𝑗 ∈ 𝐶𝐶𝑀𝑀 , 𝑖𝑖 ∈ 𝑃𝑃(𝑗𝑗), 𝑡𝑡 ∈ 𝑇𝑇 (3-10
) 

 

Constraint (3-9) shows the flow-feasibility conditions for divergent cells 𝑖𝑖 ∈ 𝐶𝐶𝐷𝐷 based on 

dynamic turning ratios 𝛽𝛽𝑖𝑖𝑡𝑡, 𝛽𝛽𝑘𝑘𝑡𝑡 , and 𝛽𝛽𝑚𝑚𝑡𝑡  for distinct successor cells 𝑗𝑗, 𝑘𝑘, 𝑚𝑚 ∈ 𝑆𝑆(𝑖𝑖). For divergent 

cells with two successor cells, the 𝑚𝑚 index should be removed from these constraints. Figure 3-3 

illustrates constraints for a divergent cell with two and three downstream cells. Dynamic turning 

ratios 𝛽𝛽𝑖𝑖𝑡𝑡, 𝛽𝛽𝑘𝑘𝑡𝑡 , and 𝛽𝛽𝑚𝑚𝑡𝑡  are time dependent and input to the constraint, and they show the fraction of 

flow that enters each of the downstream cells. Hence, the summation of the turning ratios should 

add up to 1.0, i.e., 𝛽𝛽𝑖𝑖𝑡𝑡 + 𝛽𝛽𝑘𝑘𝑡𝑡 + 𝛽𝛽𝑚𝑚𝑡𝑡 = 1. Furthermore, constraint (3-9) ensures the first-in-first-out 

conditions for divergent cells. In other words, if cell 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖) is full and cannot accommodate any 

vehicles, then the flow of other downstream cells will be 0.0. This condition captures the capacity 

reductions at intersections due to queue spillovers or spillbacks.  
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Figure 3-3. Illustration of the flow-feasibility constraints for two divergent cells with two and three 
downstream cells 

 

The flow feasibility conditions of merge cells 𝑗𝑗 ∈ 𝐶𝐶𝑀𝑀 are shown by constraint (3-10): the 

available capacity of the merge cell min�𝑄𝑄𝑖𝑖𝑡𝑡, 𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡�� will be divided among its upstream cells 

𝑘𝑘 ∈ 𝑃𝑃(𝑗𝑗) in proportion to their flows min{𝑥𝑥𝑘𝑘𝑡𝑡 ,𝑄𝑄𝑘𝑘𝑡𝑡 }. This constraint is further illustrated in figure 3-

4.  

 

Figure 3-4. Illustration of the flow-feasibility conditions for merge cells with two and three upstream 
cells 
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The flow conservation concept is shown by constraints (3-11) through (3-13) for different 

cell types. The number of vehicles 𝑥𝑥𝑖𝑖𝑡𝑡+1 in gate cell 𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺  at time step 𝑡𝑡 + 1 ∈ 𝑇𝑇 is equal to the 

number of vehicles 𝑥𝑥𝑖𝑖𝑡𝑡 that were available in the cell in the previous time step 𝑡𝑡 plus the network 

demand 𝐷𝐷𝑖𝑖𝑡𝑡 minus the number of vehicles ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖∈𝑆𝑆(𝑖𝑖)  that leave the gate cell to its downstream cells 

𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖). In this constraint, the number of vehicles entering the gate cells is determined by a 

predefined and time-dependent demand profile 𝐷𝐷𝑖𝑖𝑡𝑡, and the number of vehicles that leave the gate 

cells is indeed the optimized gate flow. Constraint (3-12) shows the flow conservation for sink cell 

𝑗𝑗 ∈ 𝐶𝐶𝑆𝑆. The sink cells are assumed to have infinite capacity and absorb all the vehicles that leave 

the network. With this representation, the summation of vehicles in all sink cells at each time step 

shows the accumulated number of completed trips up to that time step. Constraint (3-13) shows 

the flow conservation concept for ordinary cells.   

𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝐷𝐷𝑖𝑖𝑡𝑡 − � 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡
𝑖𝑖∈𝑆𝑆(𝑖𝑖)

 ∀𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺 , 𝑡𝑡 ∈ 𝑇𝑇 (3-11
) 

𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + � 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡
𝑖𝑖∈𝑃𝑃(𝑖𝑖)

 ∀𝑗𝑗 ∈ 𝐶𝐶𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇 (3-12
) 

𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + � 𝑦𝑦𝑘𝑘𝑖𝑖𝑡𝑡
𝑘𝑘∈𝑃𝑃(𝑖𝑖)

− � 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡
𝑖𝑖∈𝑆𝑆(𝑖𝑖)

 ∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝑆𝑆,𝐶𝐶𝐺𝐺}, 𝑡𝑡 ∈ 𝑇𝑇 (3-13
) 

 

The objective function of the problem is shown in (3-14); it maximizes the cumulative 

number of vehicles in all sink cells. This objective function maximizes the network throughput 

and is equivalent to the minimization of the total travel time.  Previous research showed that 

network throughput maximization is a suitable objective function for oversaturated conditions 

(Hajbabaie, 2012; Hajbabaie et al., 2011, 2010; A Hajbabaie and Benekohal, 2011).  
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maximize 𝑍𝑍 =  � � 𝑥𝑥𝑖𝑖𝑡𝑡
∀𝑡𝑡∈𝑇𝑇∀𝑖𝑖∈𝐶𝐶𝑆𝑆

 (3-14
) 

 

Given the discussed constraints and objective function, the program for optimizing the gate 

flows can be summarized as program (P1).  

(P1) maximize 𝑍𝑍 = ∑ ∑ 𝑥𝑥𝑖𝑖𝑡𝑡∀𝑡𝑡∈𝑇𝑇∀𝑖𝑖∈𝐶𝐶𝑆𝑆  subject to (3-1)-(3-13) (3-15
) 
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Chapter 4: Optimal Solutions of the Traffic Metering Problem 

This section presents an approach that finds the optimal solutions of program (P1) within 

an optimality gap. Note that (P1) is a complex optimization program because of the excessive 

number of mixed-integer decision variables and nonlinear constraints. The decision variables of 

the program are continuous, but the representation of the min(.) operators in the flow-feasibility 

constraints (3-7)-(3-10) requires adding auxiliary dummy variables to the program. For instance, 

the standard representation of constraint (3-7) is equivalent to constraints (4-1) through (4-10) 

using the big-M technique. Constraints (4-1) through (4-4) ensure the flow feasibility conditions, 

while constraints (4-4) through (4-10) ensure that the flow of vehicles 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡  from each cell 𝑖𝑖 ∈

𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼} to cell 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖) at each time step 𝑡𝑡 ∈ 𝑇𝑇 is exactly equal to either 𝑥𝑥𝑖𝑖𝑡𝑡, 𝑄𝑄𝑖𝑖𝑡𝑡, 𝑄𝑄𝑖𝑖𝑡𝑡 or 

𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡�. In other words, the addition of constraints (4-4) through (4-10) with auxiliary binary 

variables 𝜃𝜃𝑖𝑖𝑖𝑖𝑡𝑡 , 𝜗𝜗𝑖𝑖𝑖𝑖𝑡𝑡 , 𝜓𝜓𝑖𝑖𝑖𝑖𝑡𝑡 , and 𝜒𝜒𝑖𝑖𝑖𝑖𝑡𝑡  sets the flow of vehicles equal to one of the right-hand side values 

of constraints (4-1) through (4-4). In the latter constraints, 𝑀𝑀 is an arbitrarily large number.  

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑥𝑥𝑖𝑖𝑡𝑡  ∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼}, 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (4-1) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑄𝑄𝑖𝑖𝑡𝑡 ∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼}, 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (4-2) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑄𝑄𝑖𝑖𝑡𝑡 ∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼}, 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (4-3) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡� ∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼}, 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (4-4) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≥ 𝑥𝑥𝑖𝑖𝑡𝑡 − 𝑀𝑀�1 − 𝜃𝜃𝑖𝑖𝑖𝑖𝑡𝑡 �  ∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼}, 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (4-5) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≥ 𝑄𝑄𝑖𝑖𝑡𝑡 − 𝑀𝑀�1 − 𝜗𝜗𝑖𝑖𝑖𝑖𝑡𝑡 � ∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼}, 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (4-6) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≥ 𝑄𝑄𝑖𝑖𝑡𝑡 − 𝑀𝑀�1 −𝜓𝜓𝑖𝑖𝑖𝑖𝑡𝑡 � ∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼}, 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (4-7) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≥ 𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡� − 𝑀𝑀�1 − 𝜒𝜒𝑖𝑖𝑖𝑖𝑡𝑡 � ∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼}, 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (4-8) 
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𝜃𝜃𝑖𝑖𝑖𝑖𝑡𝑡 + 𝜗𝜗𝑖𝑖𝑖𝑖𝑡𝑡 + 𝜓𝜓𝑖𝑖𝑖𝑖𝑡𝑡 + 𝜒𝜒𝑖𝑖𝑖𝑖𝑡𝑡 = 1 ∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼}, 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (4-9) 

𝜃𝜃𝑖𝑖𝑖𝑖𝑡𝑡 ,𝜗𝜗𝑖𝑖𝑖𝑖𝑡𝑡 ,𝜓𝜓𝑖𝑖𝑖𝑖𝑡𝑡 , 𝜒𝜒𝑖𝑖𝑖𝑖𝑡𝑡 ∈ {0,1} ∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝐺𝐺 ,𝐶𝐶𝑆𝑆,𝐶𝐶𝐷𝐷,𝐶𝐶𝐼𝐼}, 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (4-10
) 

 
Once the flow-feasibility constraints have been converted to standard constraints with the 

big-M technique, many auxiliary binary variables will be added to the program and will 

significantly increase the problem complexity. Hence, the conventional optimization techniques 

in commercial solvers such as CPLEX (CPLEX, 2009) cannot solve the program for medium-

sized networks in a reasonable amount of time. We tackled this issue by developing a novel 

decomposition solution technique to solve (P1) more efficiently. Decomposition techniques have 

been used widely to solve complex transportation problems (e.g., Hajibabai et al., 2014; Hajibabai 

and Ouyang, 2013; Hajibabai and Saha, 2019). 

The general idea of the solution technique is that once the gate flows are known, all other 

variables of the program can be determined with a CTM simulation without solving any 

optimization programs. Figure 4-1 shows the idea of the solution technique for a link with one 

gate. According to the figure, the gate can be separated from the rest of the link by relaxing the 

constraints that connect gate cell 𝑖𝑖 to its successor cell 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖). Then, an optimization program 

for the gate can be solved to find gate flows 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡  and use them as input for the rest of the link to 

find all other variables. Then, by connecting the two steps and iterating between them, the optimal 

solution can be found.  

 
Figure 4-1. General decomposition idea for one link  
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We utilized the generalized Benders decomposition technique (Benders, 1962; Geoffrion, 

1972) to implement the discussed ideas to ensure the convergence and optimality of the solution 

technique. The Benders decomposition technique was developed to address a class of complex 

optimization programs that can be solved efficiently once a set of decision variables has been 

temporarily set to predefined values. In other words, by fixing the values of the complicating 

decision variables, the remaining optimization program can be solved more easily than the original 

problem.  

The Benders technique decomposes the original problem into a primal and a master 

problem. The primal problem is equivalent to the original problem in which the values of the 

complicating variables have been temporarily fixed. The solutions of the primal problem are the 

optimal values of the non-complicating variables, the optimized value of the objective function, 

and the dual values of the constraints that include both complicating and non-complicating 

variables. These values are used to construct the master problem. The master problem is the relaxed 

dual of the original problem, and its decision variables are the complicating variables that were 

fixed in the primal problem. Moreover, the master problem has the constraints of the original 

problem, which include only the complicating variables because those constraints were redundant 

in the primal problem because the values of all their variables were fixed. The master problem also 

includes several constraints that are added to the problem iteratively on the basis of the solutions 

of the primal problem. These constraints are called Benders cuts and reduce the feasible region of 

the master problem iteratively until the optimal solutions are found. The solution of the primal 

problem provides the lower bounds for the optimal solution of the original problem, ad the solution 

of the master problem provides the upper bounds. Hence, iterating between the problems continues 

until an acceptable gap has been achieved.   
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Chapter 5: Real-Time Solutions for the Traffic Metering Problem 

This chapter describes the use of distributed optimization techniques and location 

information for connected vehicles to develop an approach to optimize traffic metering rates in 

real time. The approach has a model predictive control (MPC) structure that uses a simulated 

transportation network (or a real network) to collect the required information on the system state 

at discretized time steps (e.g., every six seconds), makes predictions about the system state over a 

prediction horizon (e.g., 120 seconds) that is several time steps ahead of its current time, optimizes 

traffic metering rates with a distributed architecture over the horizon, and implements the first 

optimized traffic metering rates in the next time step. This procedure continues until the study 

period is over (Mohebifard and Hajbabaie, 2018b). Different components of the proposed solution 

technique are shown in figure 5-1. 

Figure 5-1 shows that the proposed solution technique collects location information from 

connected vehicles and vehicle counts from loop detectors to estimate the distribution of vehicles 

across the network links (Section 5.1). The state estimations are used in the distributed 

optimization component that optimizes traffic metering rates in real-time (Section 5-2). This task 

is performed by decomposing the central optimization program (P1) into several sub-network-

level optimization programs. The sub-network level programs cooperatively optimizes traffic 

metering rates by sharing the required information among each other. Once the optimized traffic 

metering rates have been found, the metering rates are converted into green and red gate signal 

indications (Section 5.3). The signals are then transferred to the network for implementation. The 

details of each component follow.  
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Figure 5-1. The proposed solution technique for real-time and distributed traffic metering rate 
optimization 

 

5.1. System State Estimation  

The initial system state in terms of cell occupancies 𝑥𝑥𝑖𝑖0 for all 𝑖𝑖 ∈ 𝐶𝐶 at time zero should be 

input to the optimization program. Hence, the location of vehicles in the network should be 

converted into cell occupancies. We used location information from connected vehicles (CV) and 

vehicle counts from loop detectors to estimate the cell occupancies.  

Consider the link in figure 5-2. The link includes several CVs that are equipped with 

onboard units that can transmit different information, such as the location of CVs in relation to 

roadside units in a network. If the penetration rate (𝑃𝑃𝑃𝑃) of connected vehicles is 100 percent, then 

the state estimation is straightforward. The locations of vehicles will be mapped to their 

corresponding cells, and the cell occupancies will be the summation of vehicles in the cells. 
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However, the locations of unequipped vehicles must be estimated once the penetration rate is less 

than 100 percent.  

 

 

Figure 5-2. A link with the corresponding cells, including both equipped (CV) and unequipped (non-CV) 
vehicles 

 

The proposed approach for system state estimation is the integration of two different 

estimation techniques (Mohebifard and Hajbabaie, 2018c). The first technique approximates the 

density distribution of vehicles in each network link with a vehicle sample that includes CVs. The 

second technique uses flow feasibility and conservation of CTM to estimate cell occupancies. 

These two estimations are averaged on the basis of the market penetration rate of CVs.  

5.1.1. State Estimation Using Location Information from CVs  

The distribution of vehicles in each network link can be estimated by using Equation (5-

1). In the equation, 𝑥𝑥𝑥𝑥𝑖𝑖𝑡𝑡 is the number of CVs in cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇. By dividing 𝑥𝑥𝑥𝑥𝑖𝑖𝑡𝑡 over 

the total number of CVs in the link 𝑙𝑙 ∈ 𝐿𝐿 that contains cell 𝑖𝑖, the distribution of CVs in the link can 

be found. In this equation, 𝐿𝐿 represents the set of all network links. By multiplying the estimated 

distribution of CVs by the total number of vehicles in the link 𝑉𝑉𝑙𝑙𝑡𝑡, the distribution of both CVs and 

non-CVs can be found. The total number of vehicles in each link can be estimated by tracking the 

inflow and outflow of each link such that 𝑉𝑉𝑙𝑙𝑡𝑡 will be equal to the cumulative outflow minus the 
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cumulative inflow of each link up to time step 𝑡𝑡 ∈ 𝑇𝑇, assuming that all links are equipped with 

stop-bar detectors.  

𝑥𝑥𝑖𝑖
𝑡𝑡,𝐶𝐶𝑉𝑉 = 𝑉𝑉𝑙𝑙𝑡𝑡

𝑥𝑥𝑥𝑥𝑖𝑖𝑡𝑡

∑ 𝑥𝑥𝑥𝑥𝑖𝑖𝑡𝑡𝑖𝑖∈𝑙𝑙
 ∀𝑖𝑖 ∈ 𝐶𝐶, 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇 (5-1) 

 

Note that as the penetration rate of CVs increases, the distribution estimation error 

decreases because the sample size of CVs increases and better represents the distribution of 

vehicles in a link. However, the estimation error increases with low penetration rates. To address 

this issue, we used the CTM flow conservation and feasibility equations to adjust estimations for 

low penetration rates.  

5.1.2. State Estimation Using CTM Flow Feasibility and Conservation Principles 

With this technique, we used the flow feasibility and conservation equations (3-7) through 

(3-13) to track cell occupancies in each link. For more clarification, consider figure 5-2 again. The 

cell occupancies will be initialized to zero at the beginning of the study when the network is empty. 

As vehicles enter the network, the loop detectors can track vehicles entering and exiting each link. 

This information can be utilized to simulate each link with the demand rate equal to total vehicle 

counts of the link’s upstream stop-bar detectors. If we assume the flow of vehicles follows the 

flow conservation and feasibility equations (3-7) through (3-13), we can estimate the cell 

occupancies 𝑥𝑥𝑖𝑖
𝑡𝑡,𝐶𝐶𝑇𝑇𝑀𝑀 for each cell 𝑖𝑖 ∈ 𝐶𝐶 and time step 𝑡𝑡 ∈ 𝑇𝑇. Note that this approach does not require 

any information from CVs and relies only on vehicle counts of loop detectors, assuming that all 

links are equipped with stop-bar detectors.  

5.1.3. Combined CV and CTM State Estimations  

Once the estimations of 𝑥𝑥𝑖𝑖
𝑡𝑡,𝐶𝐶𝑉𝑉  and 𝑥𝑥𝑖𝑖

𝑡𝑡,𝐶𝐶𝑇𝑇𝑀𝑀 have been found with the proposed approaches in 

sections 5.1.2 and 5.1.3, then the estimations are combined by using Equation (5-2). In this 
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equation, the state estimations are adjusted by the penetration rate 0 ≤ 𝑃𝑃𝑃𝑃 ≤ 1 of CVs. This 

adjustment gives higher weights to estimations based on CVs because those estimations are more 

accurate, but with low penetration rates, the estimations of the CTM-based approach will have 

more weight. Moreover, the estimated cell occupancies cannot increase the capacity of the cell 𝑁𝑁𝑖𝑖.  

𝑥𝑥𝑖𝑖𝑡𝑡 = min�𝑃𝑃𝑃𝑃𝑥𝑥𝑖𝑖
𝑡𝑡,𝐶𝐶𝑉𝑉 + (1 − 𝑃𝑃𝑃𝑃)𝑥𝑥𝑖𝑖

𝑡𝑡,𝐶𝐶𝑇𝑇𝑀𝑀 ,𝑁𝑁𝑖𝑖� ∀𝑖𝑖 ∈ 𝐶𝐶, 𝑙𝑙 ∈ 𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇 (5-2) 

 

5.2. Distributed Traffic Metering Optimization  

Once the initial cell occupancies have been estimated, traffic metering rates for each gate 

can be optimized. This optimization can be achieved by solving (P1) that optimizes all metering 

rates centrally. However, the solutions might not be found in real time. Moreover, as the spatial 

scale of a network increases, finding the optimal solutions requires more computation time. 

Therefore, we developed the Distributed Optimization and Coordination Algorithms for Dynamic 

Traffic Metering (DOCA-DTM) method, which can optimize traffic metering rates in real time. 

The DOCA-DTM has two main components, distributed optimization and distributed 

coordination. In distributed optimization, a network is divided into smaller sub-networks. The 

central optimization program is also decomposed into several sub-network programs. Each sub-

network program optimizes traffic metering rates for its corresponding sub-network. The 

distributed coordination component shares information about the predicted number of vehicles that 

enter the sub-networks and the available capacity for receiving vehicles among all sub-networks. 

This information is incorporated as several constraints into the sub-network programs so that they 

can coordinate their decisions and push their local solutions toward the system-wide optimal 

solutions.  
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5.2.1. Distributed Optimization  

The first step in the distributed optimization technique is to define appropriate sub-

networks that can serve as computational nodes, and then decompose the optimization model 

according to the defined sub-networks.  

5.2.1.1. Model Decomposition 

Defining appropriate computational nodes is a critical factor in the efficiency of the 

solution technique. Although intersection-level decomposition has been used widely in traffic 

operations (Mehrabipour, 2018), traffic metering decision variables are distributed at the boundary 

of a network. Therefore, we proposed to use arterial-level sub-networks that start from the gates 

and end at the network sinks. To clarify the point, figure 5-3 shows a sample network that is 

decomposed into six arterial-level sub-networks.  

 
Figure 5-3. Spatial decomposition of a network into six sub-networks  

 

Once the sub-networks have been defined, the central optimization program should be 

decomposed accordingly. The optimization model can be decomposed by relaxing flow feasibility 

constraints (3-7) through (3-10) on the links that connect cells 𝑖𝑖 ∈ 𝐶𝐶𝑠𝑠 and 𝑗𝑗 ∈ 𝐶𝐶𝑝𝑝in such a way that 
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cells 𝑖𝑖 and 𝑗𝑗 belong to two neighboring sub-networks 𝑠𝑠,𝑝𝑝 ∈ 𝒮𝒮. Thus, each sub-network will have 

a stand-alone optimization program that can be solved independently to optimize traffic metering 

rates for the gates within each sub-network. Note that solutions for the sub-network programs will 

be local optimal solutions, as the interactions of the sub-networks are ignored. We discuss later in 

this chapter how these relaxed constraints can be reenforced to coordinate the sub-networks and 

push the local solutions toward the global optimal solutions.  

5.2.1.2. Linearization of Sub-Network Programs  

Although spatial decomposition of the central program (P1) produces several sub-network 

programs that each have lower complexity than the original problem, they are still MINLPs that 

are hard to solve. However, the sub-networks have a simple cycle-free structure. Therefore, we 

can linearize the sub-problems by replacing non-linear flow-feasibility constraints (3-7) through 

(3-10) with linear constraints and modifying the objective function to eliminate the flow hold-back 

problem with the approach proposed by Zhu and Ukkusuri (2013). In other words, the min(.) 

operators in constraints (3-7) through (3-10) can be replaced by several linear “inequality” 

constraints and still prevent the flow-hold back problem, provided that the objective function of 

the program is modified. In this approach, the objective function is modified by assigning 

appropriate weights to the cells. The modified objective function of a sub-problem 𝑠𝑠 ∈ 𝒮𝒮 is shown 

in (5-3). 

 maximize 𝑍𝑍𝑠𝑠 = � � 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑡𝑡
∀𝑡𝑡∈𝑇𝑇∀𝑖𝑖∈𝐶𝐶𝑠𝑠

 (5-3) 

 

The weights 𝑤𝑤𝑖𝑖 should be defined in such a way that the weight of an upstream cell is lower 

than the downstream cell. For instance, figure 5-4 shows a sub-network with 14 cells whose 

weights are also shown. The weights are assigned in such a way that the sink of the sub-network 
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has a very high weight in comparison to those of the other cells. The objective function still 

maximizes the throughput of the sub-network (and hence the network). Moreover, the weight of 

the cells that send flow to the sub-network is one unit higher than the weight of all other cells 

except the sink cell that is also the network sink. In this way, a vehicle will be sent to the network 

if it can move to the sink cell without holding back; otherwise, it will stay in the gate cells that 

represent the traffic metering concept.  

 

Figure 5-4. A sample sub-network with the weights assigned to each cell  
 

Note that cell weights can be found for a sub-network without cycles according to the 

concept of topological ordering (Ahuja et al., 1993; Mohebifard et al., 2019). Figure 5-5 shows the 

proposed algorithm for finding cell weights according to the discussed characteristics of the 

weights. In this algorithm, 𝑀𝑀 is an arbitrarily large number.  
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Algorithm segment cell weights; 
Begin 
 unmark all cells in the segment 
 mark the gate cell; 
 next: = 1; 
 LIST: = gate cell; 
 while LIST ≠ ∅ do 
 begin 
  select a cell 𝑖𝑖 in LIST; 

  if cell 𝑖𝑖 is incident to an arc (𝑖𝑖, 𝑗𝑗) and is admissible 
then 

   begin 
    mark cell 𝑗𝑗 ; 
    next: = next +1; 
     𝑤𝑤𝑖𝑖: = next; 
    add cell 𝑗𝑗 to LIST; 
   end 
   else delete cell 𝑖𝑖 from LIST; 
  end 
 end 
 for all gate and source cells  
 begin 
  select a cell 𝑖𝑖; 
  𝑤𝑤𝑖𝑖: = next+1; 
 end 
 for all sink cells  
 begin 
  select a cell 𝑖𝑖; 
  𝑤𝑤𝑖𝑖: = 𝑀𝑀; 
 end 
end 

Figure 5-5.. Pseudocode for the topological ordering of cells in each sub-network  
 

With the discussed modification, linearized sub-problem 𝑠𝑠 ∈ 𝒮𝒮 can be written as the 

optimization problem (P4). 

(P4) maximize 𝑍𝑍𝑠𝑠 = � � 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑡𝑡
∀𝑡𝑡∈𝑇𝑇∀𝑖𝑖∈𝐶𝐶𝑠𝑠

 (5-3) 

Subject to:  

� 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡
𝑖𝑖∈𝑆𝑆(𝑖𝑖)

≤ 𝑥𝑥𝑖𝑖𝑡𝑡 ∀𝑖𝑖 ∈ 𝐶𝐶𝑠𝑠\𝐶𝐶𝑆𝑆𝑠𝑠, 𝑡𝑡 ∈ 𝑇𝑇 (5-4) 

� 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡
𝑖𝑖∈𝑆𝑆(𝑖𝑖)

≤ 𝑄𝑄𝑖𝑖 ∀𝑖𝑖 ∈ 𝐶𝐶𝑠𝑠\𝐶𝐶𝑆𝑆𝑠𝑠, 𝑡𝑡 ∈ 𝑇𝑇 (5-5) 
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� 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡
𝑖𝑖∈𝑃𝑃(𝑖𝑖)

≤ 𝑄𝑄𝑖𝑖 ∀𝑗𝑗 ∈ 𝐶𝐶𝑠𝑠\𝐶𝐶𝐺𝐺𝑠𝑠, 𝑡𝑡 ∈ 𝑇𝑇  (5-6) 

� 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡
𝑖𝑖∈𝑃𝑃(𝑖𝑖)

≤ 𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡� ∀𝑗𝑗 ∈ 𝐶𝐶𝑠𝑠\𝐶𝐶𝐺𝐺𝑠𝑠 , 𝑡𝑡 ∈ 𝑇𝑇  (5-7) 

𝑥𝑥𝑖𝑖𝑡𝑡 ≤ 𝑁𝑁𝑖𝑖 ∀𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺𝑠𝑠, 𝑡𝑡 ∈ 𝑇𝑇   (5-8) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 = 𝛽𝛽𝑖𝑖 � 𝑦𝑦𝑖𝑖𝑘𝑘𝑡𝑡
𝑘𝑘∈𝑆𝑆(𝑖𝑖)

 ∀𝑖𝑖 ∈ 𝐶𝐶𝐷𝐷𝑠𝑠 , 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (5-9) 

� 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡
𝑖𝑖∈𝑆𝑆(𝑖𝑖)

≤ 𝑔𝑔𝑖𝑖𝑡𝑡𝑄𝑄𝑖𝑖𝑡𝑡  ∀𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼𝑠𝑠, 𝑡𝑡 ∈ 𝑇𝑇 (5-10
) 

𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝐷𝐷𝑖𝑖𝑡𝑡 − � 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡
𝑖𝑖∈𝑆𝑆(𝑖𝑖)

 ∀𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺𝑠𝑠, 𝑡𝑡 ∈ 𝑇𝑇 (5-11
) 

𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + � 𝑦𝑦𝑖𝑖𝑘𝑘𝑡𝑡
𝑖𝑖∈𝑃𝑃(𝑖𝑖)

 ∀𝑗𝑗 ∈ 𝐶𝐶𝑆𝑆𝑠𝑠, 𝑡𝑡 ∈ 𝑇𝑇 (5-12
) 

𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + � 𝑦𝑦𝑘𝑘𝑖𝑖𝑡𝑡
𝑘𝑘∈𝑃𝑃(𝑖𝑖)

− � 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡
𝑖𝑖∈𝑆𝑆(𝑖𝑖)

 ∀𝑖𝑖 ∈ 𝐶𝐶\{𝐶𝐶𝑆𝑆𝑠𝑠,𝐶𝐶𝐺𝐺𝑠𝑠}, 𝑡𝑡 ∈ 𝑇𝑇 (5-13
) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡 ≥ 0 ∀𝑖𝑖 ∈ 𝐶𝐶𝑠𝑠\𝐶𝐶𝑆𝑆𝑠𝑠, 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖), 𝑡𝑡 ∈ 𝑇𝑇 (5-14
) 

 

Note that sub-problem (P4) is a linear program with much less computational complexity 

than the original problem. This sub-problem will be solved by each sub-network (computational 

nodes) to optimize traffic metering rates.  

5.2.2. Distributed Coordination  

We decompose the central formulation (P1) into several sub-network programs (P4) by 

relaxing the flow-feasibility constraints on the links between boundary cells of neighboring sub-

networks. However, those constraints are critical for coordinating the sub-networks and avoiding 

sub-optimal operations. Therefore, we developed a distributed coordination algorithm that 

modifies the sub-network program (P4) by adding dummy source and sink cells and two additional 

constraints. The objective of this modification is to allow sub-networks to share information about 

the predicted number of vehicles that will enter a sub-network and the available capacity of a sub-

network for receiving vehicles. To clarify the point, consider Sub-network 1 in figure 5-6. Sub-
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network 1 has cells number 1 to 12, while this sub-network receives vehicles from cell 16 of sub-

network 2 and sends vehicles to cell 26 of sub-network 3. In decomposing the central problem 

(P1), the flow feasibility constraints on links that connect cells 16 to 5 and cells 7 to 26 are relaxed. 

Therefore, dummy cell 16́ is added as a dummy source, and cell 26́ is added as a dummy sink cell 

to sub-network 1 to capture their effects on the traffic metering rate optimization.  

 

 

Figure 5-6. Illustration of dummy source and sink cells for sub-network 1 
 

Accordingly, the number of vehicles that are predicted to enter sub-network 1 from sub-

network 2 can be represented by adding constraint (5-15) to (P4), and the available capacity of 

sub-network 3 to receive vehicles from sub-network 1 can be represented by adding constraint (5-

16) to (P4).  

𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝑥𝑥�𝑖𝑖𝑡𝑡+1 − � 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡
𝑖𝑖∈𝑆𝑆(𝑖𝑖)

  ∀𝑖𝑖 ∈ 𝐶𝐶𝐷𝐷𝐺𝐺𝑠𝑠 , 𝑡𝑡 ∈ 𝑇𝑇 (5-15
) 

� 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡
𝑖𝑖∈𝑃𝑃(𝑖𝑖)

≤ 𝛿𝛿�𝑁𝑁𝑖𝑖 − 𝑥𝑥�𝑖𝑖𝑡𝑡� ∀𝑗𝑗 ∈ 𝐶𝐶𝐷𝐷𝑆𝑆𝑠𝑠 , 𝑡𝑡 ∈ 𝑇𝑇  (5-16
) 

 

In Constraint (5-15), 𝐶𝐶𝐷𝐷𝐺𝐺𝑠𝑠  is the set of dummy gate cells that are added to a sub-network 

𝑠𝑠 ∈ 𝒮𝒮, and 𝑥𝑥�𝑖𝑖𝑡𝑡+1 is the predicted number of vehicles in dummy gate cell 𝑖𝑖 ∈ 𝐶𝐶𝐷𝐷𝐺𝐺𝑠𝑠  at time step 𝑡𝑡 ∈
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𝑇𝑇. Similarly, 𝐶𝐶𝐷𝐷𝑆𝑆𝑠𝑠 is the set of added dummy sink cells to the sub-network 𝑠𝑠 ∈ 𝒮𝒮, and 𝑥𝑥�𝑖𝑖𝑡𝑡 is the 

predicted number of vehicles in the cell. The addition of these two constraints to (P1) allows each 

sub-network to coordinate its decisions on the basis of the available information from its 

neighboring sub-networks.  

Parameters 𝑥𝑥�𝑖𝑖𝑡𝑡+1 and 𝑥𝑥�𝑖𝑖𝑡𝑡 in constraints (5-15) and (5-16) need to be predicted before the 

optimization problem (P4) can be solved. We use a CTM simulation for this prediction. In the 

absence of any optimized traffic metering rates, the network will be simulated with the network 

demand. The result of this simulation is the number of vehicles in each cell at each time step. Then 

these cell occupancies are used for 𝑥𝑥�𝑖𝑖𝑡𝑡+1 and 𝑥𝑥�𝑖𝑖𝑡𝑡 in constraints (5-15) and (5-16). Once these values 

have been found, the sub-network-level optimization program is solved, and traffic metering rates 

are optimized. If optimized traffic metering rates are available, the CTM simulation uses the 

optimized number of entry vehicles to the network instead of network demand for flow prediction.  

5.3. Gate Signal Control Structure  

The optimization model determines the number of vehicles that should enter the network 

from each gate at each time step. We use signalized gates, similar to those implemented for on-

ramps, to control the number of vehicles entering the network. By utilizing loop detectors placed 

at gate signal stop-bars, the number of vehicles that leave the gates can be determined. 

Accordingly, we track the number of vehicles that leave a gate and compare it to the number of 

vehicles that should enter the network according to the optimized rates. On the basis of this 

comparison, we determine whether the signal should be green or red. Figure 5-7 shows the control 

structure for the gate signals.  
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Figure 5-7. The control structure for each gate signal 
 

On the basis of this simple control structure, a gate signal will remain green while the 

number of vehicles leaving a gate is less than the optimal number of vehicles that should enter the 

network. As soon as the number of vehicles that have passed a gate becomes greater than the 

optimal rate, the signal turns red. Notice that the optimization model updates the gate flows at each 

time step. Therefore, the state of the gate signals can change every time step on the basis of the 

updated solutions.  
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Chapter 6: Case Study and Numerical Results 

6.1. Case Study Network 

We used a portion of the urban street network in downtown Springfield, Illinois to evaluate 

the proposed traffic metering methodologies. The case study network is shown in figure 6-1. This 

network consisted of 20 intersections with a combination of one-way and two-way streets. The 

number of lanes in the streets varied between 1 to 3, as is shown in figure 6.1. We placed 13 gates 

at the boundary of this network to regulate the flow of vehicles entering the network according to 

the optimized metering rates. The network was analyzed with two demand profiles that are shown 

in figure 6.2. The total analysis period was 750 time steps (75 minutes), with 150 time steps for 

network loading. In addition, we optimized the signal timings of the intersections inside the 

network with the approach presented by Hajbabaie and Benekohal (2013, 2015) for each demand 

profile so that the effects of traffic metering on the network performance could be better evaluated. 

Other information on the case study network, such as cell characteristics, is summarized in table 

6-1. 
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Figure 6-1. Downtown Springfield, Illinois, used as the case study network 

 

 

Figure 6-2. The demand profiles that were used for the analysis of the case study network  
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Table 6-1. Characteristics of the case study network 

Element Value 

Free-flow speed (mph) 25 

Saturation flow rate of links (veh/hr/lane) 1800 

Time step duration (s) 6 

Prediction horizon (min) 15 

Total number of cells 316 

Length of cells (ft) 225 

Saturation flow rate of cells (veh/lane/time step) 3 

Jam density of cells (veh/lane/cell) 12 

 

6.2. Analysis Scenarios  

For the presented analyses, the turning percentages at the intersections and penetration rate 

of connected vehicles were, respectively, set to 20 percent and 100 percent unless otherwise stated. 

We compared different performance measures under the following scenarios:  

1. Simulation (SIM): This scenario showed network performance under the network’s current 

conditions. In other words, we simulated the network without any traffic metering and 

calculated different performance measures. The results of this scenario were the do-nothing 

or no-metering performance measures in the case study. 

2. Optimal Metering (OPT): We used the traffic metering approach proposed in Chapter 4 to 

find the optimal traffic metering rates for this scenario. This scenario showed network 

performance once the optimal traffic metering rates had been found centrally with the 

Benders decomposition-based optimization approach over the entire analysis period.  

3. Distributed Optimization and Coordinated Algorithms for Dynamic Traffic Metering  

(DOCA-DTM): This scenario was designed to evaluate the efficiency of the distributed and 

coordination algorithms for traffic metering discussed in Chapter 5 once CTM had been 
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used in both the plant and optimization models. Hence, the results of this scenario could be 

directly compared to those of the OPT scenario to evaluate the optimality gaps between the 

real-time distributed solutions and the central optimal solutions.  

6.3. Optimal Traffic Metering Results 

We evaluated the performance of the case study network in the simulation (SIM) and 

optimal metering (OPT) scenarios for two demand profiles. The results in table 6-2 show that 

traffic metering in the OPT scenario increased the network throughput by 5.5 percent in Demand 

Profile 1 and by 3.4 percent in Demand Profile 2. In addition, the travel time of vehicles inside the 

network (excluding delayed vehicles at the gates) was reduced by 34.2 percent in Demand Profile 

1 and by 30.8 percent in Demand Profile 2. Similarly, use of traffic metering decreased delay of 

vehicles inside the network by 42.3 percent and 37.2 percent, respectively, in comparison to the 

simulation scenarios in the two demand profiles. These results indicated that traffic metering could 

significantly improve operations of the case study network inside the region protected by gates. 

The discussed improvements were achieved by delaying some vehicles at the gates. The 

delay of vehicles at the gates increased in the OPT by 2.3 percent for Demand Profile 1 and by 5.2 

percent for Demand Profile 2 in comparison to the SIM scenario. However, if all vehicles are 

considered, including vehicles at the gates and inside the network, the overall system-level delay 

was reduced by 5.7 percent and 2.9 percent, respectively, as a result of traffic metering (see table 

6-2). 

Note that the benefits of traffic metering shown in table 6-2 are in fact the improvements 

that could be achieved in addition to signal timing optimization (see Section 6.1). In other words, 

the traffic signal timings of the network were optimized before the application of traffic metering. 
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Hence, we could achieve further improvement in traffic operations with another level of control 

using traffic metering.  

Table 6-2. Network performance measures for different scenarios 

Criterion Simulation (SIM) Optimal 
Metering (OPT) % Difference 

 Demand Profile 1 

Completed trips (veh) 18,681 19,708 5.5 

Travel time of vehicles inside the network (min) 141,088 92,861 -34.2 

Travel time of vehicles at the gates (min) 530,493 542,715 2.3 

System-level travel time (min) 671,581 635,576 -5.4 

Delay of vehicles inside the network (veh-min) 116,508 67,252 -42.3 

Delay of vehicles at the gates (veh-min) 527,672 539,894 2.3 

System-level delay (veh-min) 644,180 607,146 -5.7 

System-level average speed (mph) 1.4 1.5 10.3 

 Demand Profile 2 

Number of completed trips (veh) 19,265 19,926 3.4 

Travel time of vehicles inside the network (min) 147,183 101,917 -30.8 

Travel time of vehicles at the gates (min) 518,380 545,426 5.2 

System-level travel time (min) 665,563 647,343 -2.7 

Delay of vehicles inside the network (veh-min) 123,193 77,406 -37.2 

Delay of vehicles at the gates (veh-min) 516,062 543,107 5.2 

System-level delay (veh-min) 639,255 620,513 -2.9 

System-level average speed (mph) 1.3 1.4 5.2 

    

 

 Figures 6-3 (a) and (c) show the network throughput, and figures 6-3 (b) and (d) show the 

gate flows for Demand Profiles 1 and 2 over time. Figures 6-3 (a) and (c) show that the Optimal 

Metering scenario could maintain higher network throughput than the Simulation scenario over 
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time. This improvement was achieved by reducing the number of vehicles inside the network once 

traffic metering had been applied at the beginning of the analysis at time step 150 (see figure 6-3s 

(b) and (d)). Note that the network was loaded from time step 0 to 150 without traffic metering, 

and the metering gates were activated from time step 150 until the end of the analysis period. After 

a significant reduction in the gate flows at time step 150, the gate flows in the Optimal Metering 

scenario fluctuated over a time that represented the traffic metering application.  

 

 

(a) Network throughput, Demand Profile 1 

 

(b) Gate flows, Demand Profile 1 
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(c) Network throughput, Demand Profile 2 

 

(d) Gate flows, Demand Profile 2 

Figure 6-3. Network throughput and gate flows for two demand profiles  
 

The flow reductions and traffic metering could be better observed by comparing the density 

profiles of a sample arterial street in the Simulation and Optimal Metering scenarios. Figure 6-4 

shows the density profiles on 5th Street (figure 6-1) in the mentioned scenarios. The profiles in 

figure 6-4 show that the Simulation scenario resulted in high densities over an extended section of 

5th Street. However, traffic metering reduced both spatial and temporal density profiles.   
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(a) Simulation, Demand Profile 1 

 
(b) Optimal Metering, Demand Profile 1 

 
(c) Simulation, Demand Profile 2 

 
(d) Optimal Metering, Demand Profile 2 

Figure 6-4. Density diagram for one arterial street 
 

We set the convergence criterion of the optimal traffic metering algorithm to a 1 percent 

gap between the upper bound and lower bounds (see figure 6-3), and the algorithm was terminated 

once the criterion had been met. Figure 6-5 shows the bounds and their gap over the iterations. In 

the beginning, the gap between the bounds was relatively large, but the gap was reduced iteratively. 

The algorithm required 310 iterations to converge for Demand Profile 1 and 190 iterations for 

Demand Profile 2. Although the criterion was met after those iterations, the algorithm reduced the 
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gap significantly over the first 50 iterations. Therefore, we could terminate the algorithm after 50 

iterations and find good solutions relatively quickly. The runtime for finding a solutions for 

Demand Profile 1 was 6.8 hours and for Demand Profile 2 was 4.7 hours on a quad-core PC with 

18 GB of memory.  

 

 

(a) Demand Profile 1 

 

(b) Demand Profile 2 

Figure 6-5. Convergence diagram of the algorithm 
 

6.4. Real-Time Traffic Metering Results 

While the optimal traffic metering solutions provided optimality bounds for the traffic 

metering solutions, they could not be found in real time (6.8 hours for Demand Profile 1 and 4.7 
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hours for Demand Profile 2 on a quad-core PC with 18 GB of memory). The Distributed 

Optimization and Coordination Algorithms (DOCA) approach compromises optimality to gain 

runtime efficiency. Therefore, it was critical to evaluate the quality of the DOCA-DTM solutions 

to ensure that the solutions were near-optimal. We designed different cases by changing the turning 

percentages in the case study to 5 percent, 10 percent, 15 percent, and 20 percent. We also used 

CTM as the plant model to make a fair comparison between the solutions of the DOCA-DTM and 

Optimal Metering apporaches.  Table 6-3 shows the objective values of the DOCA-DTM and 

upper and lower bounds of the Optimal Metering solutions for different turning percentages and 

demand profiles. Table 6-3 shows that the solutions of the DOCA-DTM were less than 2.2 percent 

different from the upper bound solutions that could be found in the Optimal Metering scenario. 

Note that the upper bound solutions did not represent feasible solutions to the traffic metering 

problem. On the other hand, the gap between the solutions of the DOCA-DTM and the lower 

bound solutions (feasible solutions) was less than 1.2 percent. These results indicated that the 

DOCA-DTM found near-optimal solutions and performed well in the evaluated scenarios.  

Table 6-3. Values of the DOCA-DTM and benchmark objective function 

Percentage of Turning Movements 5% 10% 15% 20% 

 Demand Profile 1 

DOCA-DTM (veh) 7,601,215 7,434,969 7,045,405 7,230,630 

Optimal 
Metering 

Lower Bound (LB, veh) 7,673,203 7,507,528 7,130,123 7,221,560 

Upper Bound (UB, veh) 7,750,663 7,583,315 7,202,112 7,294,204 

Gap LB/UB 1.00 1.00 1.00 1.00 

 % Difference DOCA-DTM / LB -0.94 -0.97 -1.19 0.13 

 % Difference DOCA-DTM / UB -1.93 -1.96 -2.18 -0.87 

 Demand Profile 2 

DOCA-DTM (veh) 8,043,261 7,691,545 7,434,150 7,374,010 
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Percentage of Turning Movements 5% 10% 15% 20% 

Optimal 
Metering 

Lower Bound (LB, veh) 8,107,692 7,757,333 7,515,236 7,349,618 

Upper Bound (UB, veh) 8,186,066 7,835,667 7,591,137 7,423,570 

Gap LB/UB 0.96 1.00 1.00 1.00 

% Difference DOCA-DTM / LB -0.79 -0.85 -1.08 0.33 

% Difference DOCA-DTM / UB -1.74 -1.84 -2.07 -0.67 

 

We further compared different performance measures resulting from the DOCA-DTM and 

the feasible solutions of the Optimal Metering scenario, shown in table 6-4. The table shows that 

in all evaluated scenarios, the number of completed trips was very close to that of the Optimal 

Metering solutions. Additionally, the total travel time and delay of vehicles in the DOCA-DTM 

cases were at most 1.5 percent higher than those of the Optimal Metering solutions (see table 6-

4).  The results of table 6-4 indicate that the DOCA-DTM found near-optimal solutions.  

Table 6-4. Network-level performance measures in different scenarios 

Performance Measure 
Demand Profile 1 with 5% left turns Demand Profile 1 with 10% left turns 

Optimal 
Metering 

DOCA-
DTM 

% 
Difference 

Optimal 
Metering 

DOCA-
DTM 

% 
Difference 

Completed trips (veh) 21,400 21,144 -1.2 20,804 20,546 -1.2 

Total travel time 
(min) 590,794 598,272 1.3 607,314 614,897 1.2 

Total delay (veh-min) 560,090 568,087 1.4 577,283 585,417 1.4 

Performance Measure 
Demand Profile 1 with 15% left turns Demand Profile 1 with 20% left turns 

Optimal 
Metering 

DOCA-
DTM 

% 
Difference 

Optimal 
Metering 

DOCA-
DTM 

% 
Difference 

Completed trips (veh) 19,549 19,337 -1.1 19,708 19,777 0.4 

Total travel time 
(min) 645,538 653,853 1.3 635,576 635,331 0.0 
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Total delay (veh-min) 617,277 626,038 1.4 607,146 606,687 -0.1 

Performance Measure 
Demand Profile 2 with 5% left turns Demand Profile 2 with 10% left turns 

Optimal 
Metering 

DOCA-
DTM 

% 
Difference 

Optimal 
Metering 

DOCA-
DTM 

% 
Difference 

Completed trips (veh) 22,030 21,768 -1.2 21,159 20,840 -1.5 

Total travel time 
(min) 572,288 578,883 1.2 606,438 614,054 1.3 

Total delay (veh-min) 542,625 549,620 1.3 577,704 586,129 1.5 

Performance Measure 
Demand Profile 2 with 15% left turns Demand Profile 2 with 20% left turns 

Optimal 
Metering 

DOCA-
DTM 

% 
Difference 

Optimal 
Metering 

DOCA-
DTM 

% 
Difference 

Completed trips (veh) 20,194 19,935 -1.3 19,926 20,073 0.7 

Total travel time 
(min) 631,356 639,794 1.3 647,343 645,808 -0.2 

Total delay (veh-min) 604,057 612,918 1.5 620,513 618,692 -0.3 

 

Table 6-5 shows different network performance measures of the DOCA-DTM in 

comparison to those of the Simulation solutions once the turning percentages had been set to 15 

percent and 20 percent. Like the improvement trends that were observed for the Optimal Metering 

solutions shown in table 6-2, the DOCA-DTM increased network throughput by 2.8 percent to 5.9 

percent in comparison to throughput under the Simulation scenario in different cases. The system-

level travel time also decreased by 2.3 percent to 5.4 percent in the DOCA-DTM in comparison to 

travel time under the Simulation scenario. The results in table 6-5 indicate that the DOCA-DTM 

could effectively improve traffic operations in the case study under various demand profiles and 

turning percentages.  
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Table 6-5. Network performance measures compared with No-Metering  

Performance Measure 
Demand Profile 1 with 15% left turns Demand Profile 1 with 20% left turns 

Simulation DOCA-
DTM 

% 
Difference Simulation DOCA-

DTM 
% 

Difference 

Completed trips (veh) 18,726 19,337 3.3 18,681 19,777 5.9 

Travel time of vehicles 
inside the network (min) 136,965 58,429 -57.3 141,088 61,459 -56.4 

Travel time of vehicles at 
the gates (min) 534,940 595,425 11.3 530,493 573,872 8.2 

System-level travel time 
(min) 671,905 653,853 -2.7 671,581 635,331 -5.4 

Delay of vehicles inside 
the network (veh-min) 112,407 33,435 -70.3 116,508 35,636 -69.4 

Delay of vehicles at the 
gates (veh-min) 532,119 592,604 11.4 527,672 571,051 8.2 

System-level delay (veh-
min) 644,526 626,038 -2.9 644,180 606,687 -5.8 

Performance Measure 
Demand Profile 2 with 15% left turns Demand Profile 2 with 20% left turns 

Simulation DOCA-
DTM 

% 
Difference Simulation DOCA-

DTM 
% 

Difference 

Completed trips (veh) 19,388 19,935 2.8 19,265 20,073 4.2 

Travel time of vehicles 
inside the network (min) 139,105 62,423 -55.1 147,183 63,481 -56.9 

Travel time of vehicles at 
the gates (min) 515,894 577,371 11.9 518,380 582,327 12.3 

System-level travel time 
(min) 654,999 639,794 -2.3 665,563 645,808 -3.0 

Delay of vehicles inside 
the network (veh-min) 114,908 37,866 -67.0 123,193 38,684 -68.6 

Delay of vehicles at the 
gates (veh-min) 513,575 575,052 12.0 516,062 580,008 12.4 

System-level delay (veh-
min) 628,483 612,918 -2.5 639,255 618,692 -3.2 

 

The previous results were derived on a CTM-based plant with the same demand and turning 

percentages that were used in the optimization problems of the DOCA-DTM. Our purpose for 

using the same parameters was to be able to evaluate the solution quality of the DOCA-DTM. We 
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set the network demand to Demand Profile 1 and the turning percentages to 20 percent in the 

DOCA-DTM, but the network demand and the turning percentages were randomly (uniform 

distribution) changed, respectively, between 0.9 to 1.1 (10 percent change) and 0.95 to 1.05 (5 

percent change) of the set parameters of the DOCA-DTM in the plant (i.e., the actual network). 

This case was designed to emphasize that we might not have the perfect estimations for actual 

network parameters (parameters of the plant), and we used only estimated parameters (demand 

rate and turning percentages) in the optimization programs of the DOCA-DTM. Thus, this case 

showed the performance of the DOCA-DTM once some errors existed in the estimated parameters.  

Table 6-6 shows a comparison between the network performance measures of the DOCA-

DTM and those of the Simulation scenarios. The results showed similar improvement trends in 

this condition, as such the DOCA-DTM increased the number of completed trips by 8.1 percent 

and decreased the system-level travel time by 4.6 percent. Moreover, this scenario indicated that 

even if an error existed between the parameters of the prediction model and the plant, which is the 

case for most real-world applications, the DOCA-DTM could effectively enhance network 

performance. 

Table 6-6. Network performance measures when different parameters were used in the plant and DOCA-
DTM 

Performance Measure Simulation DOCA-DTM % Difference 

Completed trips (veh) 16,288 17,615 8.1 

Travel time of vehicles inside the network (min) 140,733 53,751 -61.8 

Travel time of vehicles at the gates (min) 592,280 645,713 9.0 

System-level travel time (min) 733,012 699,463 -4.6 

Delay of vehicles inside the network (veh-min) 119,950 31,398 -73.8 

Delay of vehicles at the gates (veh-min) 589,456 642,889 9.1 

System-level delay (veh-min) 709,406 674,288 -5.0 
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Figure 6-6 shows the runtimes for solving the optimization programs in the DOCA-DTM 

for two of the sub-networks (Monroe Street and 9th Street). The runtimes were found by solving 

the DOCA-DTM on a PC with a quad-core processor and 16 GB of memory. The runtimes 

fluctuated between 1.00 and 2.00 seconds. Although we did not consider communication times, 

given that the time step was 6 seconds (see table 6-1), there was still a reasonable margin for all 

other processes that might be involved to ensure the real-time performance of the algorithm. In 

other words, the runtimes in figure 6-6 suggest that the DOCA-DTM was able to find solutions in 

real time.  

 

Figure 6-6. The runtime for solving the segment optimization model for two sub-networks 
 

6.5. Effects of Connected Vehicles Penetration Rate on Traffic Metering 

The results discussed in section 6.4 were for a 100 percent connected vehiclemarket share 

in a CTM plant model. We also evaluated the effects of different market penetration rates on traffic 

metering. We used the Vissim microscopic traffic simulator (PTV Group, 2013) as the plant and 

solved the DOCA-DTM for market penetration rates of 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 

100 percent.  
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The penetration rate of CVs affected the accuracy of the estimated cell occupancies at the 

onset of solving the sub-network-level optimization programs because the programs in the DOCA-

DTM required initial cell occupancies, the predicted number of vehicles entering the dummy gate 

cells, and the available capacity of the dummy sink cells (see Chapter 5). Hence, the market 

penetration rate of CVs had direct effects on these estimations. Figure 6-7 shows the actual cell 

occupancies versus the DOCA-DTM estimations for four penetration rates and two demand 

profiles. The colors of the figures show the density of points in different regions of the figures: a 

darker color shows a higher density of points. Figures 6-7 (a) and (e) show that once the penetration 

rate was almost zero, the predicted R-squared of the fitted regression line on the data had low 

values of 0.39, meaning that occupancy prediction in the absence of CV information was not 

accurate enough. However, as the penetration rate increased to 20 percent, the R-squared values 

significantly increased to 0.74 in Demand Profile 1 and 0.71 in Demand Profile 2  (see figure 6-7 

(b) and (f)). Hence, only a 20 percent increase in the penetration rated had a significant effect on 

accuracy prediction. Once the penetration rate was 60 percent, the R-squared values were more 

than 0.9. Figures 6-7 (a) to (h) show that increasing the market penetration rate had a positive 

effect on occupancy prediction for the traffic metering application.  
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(a) Demand Profile 1, 1% penetration rate (b) Demand Profile 1, 20% penetration rate 

  
(c) Demand Profile 1, 40% penetration rate (d) Demand Profile 1, 60% penetration rate 

  
(e) Demand Profile 2, 1% penetration rate (f) Demand Profile 2, 20% penetration rate 
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(g) Demand Profile 2, 40% penetration rate (h) Demand Profile 2, 60% penetration rate 

Figure 6-7. Prediction accuracy with respect to different penetration rates of CVs 
 

We evaluated the effect of occupancy estimation accuracy on the solutions of the DOCA-

DTM (figure 6-8). As shown in the figure, we normalized the values of different performance 

measures to be between 0.0 and 1.0. The normalization allowed us to show total delay, total travel 

time, average speed, throughput, and the total number of stops with unit-less values on the same 

vertical axis in figures 6-8 (a) and (b). The performance of the network improved with an 

increasing penetration rate of CVs: total delay and travel time decreased, and average speed and 

network throughput increased.  

The results of figure 6-8 also show that increasing the market penetration rate from 1 

percent to 30 percent significantly improved network performance, while the improvements 

beyond 30 percent were not significant. Hence, we can conclude that in our case studies, a 30 

percent market penetration rate was critical for traffic.    
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(a) Demand Profile 1 

 
(b) Demand Profile 2 

Figure 6-8. Normalized performance measures of the case study for different penetration rates of 
connected vehicles 
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Chapter 7: Summary and Conclusions 

Traffic congestion is one of the factors that contribute to excessive air pollution, traveler 

delay, and fuel consumption in urban street networks. As traffic congestion increases, the network 

capability to process vehicles decreases because of queue spillovers and gridlocks. Therefore, 

regulating the flow of vehicles entering congested areas allows the network to operate at its 

optimum level. 

Traffic metering or perimeter control is one of the traffic congestion management strategies 

that improves traffic operations by preventing gridlock and queue spillbacks. Bimodal traffic 

signals can be placed at the borders of congested areas to regulate the flow of vehicles.   

Thus far, the available traffic metering approaches have either failed to provide dynamic 

optimal metering rates or have required well-defined MFDs that cannot be easily derived for 

general transportation networks. This study filled this gap by developing a traffic metering 

formulation and two solution techniques to dynamically optimize traffic metering rates for 

predefined gate locations.  

In this study, we developed a mixed-integer, non-linear optimization program that 

maximized the number of completed trips by optimizing traffic metering rates. The program used 

the cell transmission model to capture traffic flow dynamics. The non-linear flow conservation 

and feasibility constraints of the program made solving the program such a very challenging task 

that commercial optimization solvers could not solve the program for a reasonable-sized network.  

Therefore, we employed the Benders decomposition technique, utilized the special 

structure of the problem, and proposed a solution technique that could solve the program within 

an optimality bound. The objective of this solution technique was to provide the capability of 

solving the program to a certain optimality level regardless of its runtime efficiency. The results 
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of applying this approach on a case study network showed that traffic metering significantly 

improved traffic operations by reducing the travel time of vehicles inside the protected area by 

30.8 percent and 34.2 percent in comparison to a no-metering strategy. Some vehicles were 

delayed at the network gates because of traffic metering, but traffic metering reduced the system-

level travel times, including vehicles both inside and at the gates of the network by 2.7 percent and 

5.4 percent. These results indicated that traffic metering improved traffic operations by regulating 

the flow of vehicles at the gates. The solution technique reached an optimality gap of 1 percent for 

different tested demand profiles. These solutions were found in several hours of computation time. 

However, traffic operations require control strategies that can be implemented in real time.  

To address the runtime issue, we presented a distributed model predictive control approach. 

The approach distributed the network-level traffic metering problem to several sub-network level 

problems with an allocated computational node and coordinated their decisions. The density of 

vehicles across network links was estimated by using connected vehicles and loop detector data at 

discretized time steps. The estimated densities were shared with the computational nodes, and each 

node optimized traffic metering rates for its assigned gates. Then, the first optimized values were 

implemented at the gates as red or green gate signal indications. This solution technique 

significantly reduced runtime. We performed several analyses and compared the results of this 

solution technique with the optimal solutions: the results showed that the solutions of this approach 

were only 2.2 percent different from the optimal solutions while they were found in realtime.  

Furthermore, sensitivity analysis on the market penetration rate of connected vehicles in a 

microscopic simulation environment showed that the density estimation accuracy increased with 

the connected vehicle penetration rate. The network performance also improved with the market 

penetration rate. The increase in performance was significant from a 0 percent to 30 percent CV 
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market share. However, improvements were negligible for penetration rates of more than 30%. 

Therefore, the proposed traffic metering approach required at least a 30 percent penetration rate of 

connected vehicles in our case studies. 

Connected automated vehicles are expected to bring significant changes to transportation 

systems, as studies show considerable improvements in intersection operations (Mirheli et al., 

2019, 2018; Niroumand et al., 2020). It is important and interesting to study traffic metering effects 

on traffic operations in the presence of connected automated vehicles.  
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Appendix A. List of Notations 

Table A-1 List of notations 

Sets 

𝑇𝑇 set of all time steps 

𝐶𝐶 set of all network cells 

𝐶𝐶𝐺𝐺  set of all gate cells 

𝐶𝐶𝑆𝑆 set of all sink cells 

𝐶𝐶𝐼𝐼 set of all intersection cells 

𝐶𝐶𝐷𝐷 set of all diverge cells 

𝐶𝐶𝑀𝑀 set of all merge cells 

𝐶𝐶𝐴𝐴 set of cells immediately downstream of gate cells 

𝐶𝐶𝐷𝐷𝐺𝐺 set of all dummy resource cells 

𝐶𝐶𝐷𝐷𝑆𝑆 set of all dummy sink cells 

𝐿𝐿 set of all network links 

𝑆𝑆(𝑖𝑖) set of all successor cells of cell 𝑖𝑖 ∈ 𝐶𝐶 

𝑃𝑃(𝑖𝑖) set of all predecessor cells of cell 𝑖𝑖 ∈ 𝐶𝐶 

𝒮𝒮 set of all sub-networks 

Decision (control) variables 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡  number of vehicles advancing from gate cell 𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺  to cell  𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖) at time 
step 𝑡𝑡 ∈ 𝑇𝑇 

Variables 

𝑥𝑥𝑖𝑖𝑡𝑡 state variables; number of vehicles in cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡  number of vehicles advancing from cell 𝑖𝑖 ∈ 𝐶𝐶\𝐶𝐶𝐺𝐺  to cell  𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖) at time step 
𝑡𝑡 ∈ 𝑇𝑇 

𝑍𝑍 objective value of the traffic metering program 

𝜇𝜇 objective value of the master problem 

𝜃𝜃𝑖𝑖𝑖𝑖𝑡𝑡 ,𝜗𝜗𝑖𝑖𝑖𝑖𝑡𝑡 ,𝜓𝜓𝑖𝑖𝑖𝑖𝑡𝑡 , 𝜒𝜒𝑖𝑖𝑖𝑖𝑡𝑡  binary variables 

Parameters 

𝐷𝐷𝑖𝑖𝑡𝑡 demand of gate cell 𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺 at time step 𝑡𝑡 ∈ 𝑇𝑇 

𝑄𝑄𝑖𝑖𝑡𝑡 saturation flow rate in cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇 
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𝑁𝑁𝑖𝑖 capacity of cell 𝑖𝑖 ∈ 𝐶𝐶 in terms of the number of vehicles it can hold 

𝛽𝛽𝑖𝑖𝑡𝑡      portion of flow entering intersection cell 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼 at time step 𝑡𝑡 ∈ 𝑇𝑇 from the total 
flow leaving its upstream diverge cell 

𝑔𝑔𝑖𝑖𝑡𝑡      signal state of cell 𝑖𝑖 ∈ 𝐶𝐶𝐼𝐼 at time step 𝑡𝑡 ∈ 𝑇𝑇 that  is equal to one for green and 
zero for red indications 

𝑦𝑦�𝑖𝑖𝑖𝑖𝑡𝑡  temporarily fixed values if gate flows leaving gate 𝑖𝑖 ∈ 𝐶𝐶𝐺𝐺  to cell 𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖) at 
time step 𝑡𝑡 ∈ 𝑇𝑇 

𝑥𝑥∗𝑖𝑖
𝑡𝑡 optimized number of vehicles in cell 𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇 

𝑦𝑦∗𝑖𝑖𝑖𝑖
𝑡𝑡  optimized number of vehicles advancing from cell 𝑖𝑖 ∈ 𝐶𝐶 to cell  𝑗𝑗 ∈ 𝑆𝑆(𝑖𝑖) at 

time step 𝑡𝑡 ∈ 𝑇𝑇 
𝜆𝜆∗𝑖𝑖

𝑡𝑡 dual values of constraint 𝑖𝑖 at time step 𝑡𝑡 ∈ 𝑇𝑇 

𝑃𝑃𝑃𝑃 penetration rate of connected vehicles 

𝑥𝑥𝑥𝑥𝑖𝑖𝑡𝑡 number of equipped vehicles with onboard units (connected vehicles) in cell 
𝑖𝑖 ∈ 𝐶𝐶 at time step 𝑡𝑡 ∈ 𝑇𝑇 

𝑉𝑉𝑙𝑙𝑡𝑡 total number of vehicles in each link 𝑙𝑙 ∈ 𝐿𝐿 at time step 𝑡𝑡 ∈ 𝑇𝑇 

𝑥𝑥𝑖𝑖
𝑡𝑡,𝐶𝐶𝑉𝑉 ,𝑥𝑥𝑖𝑖

𝑡𝑡,𝐶𝐶𝑇𝑇𝑀𝑀 estimated occupancy based on connected vehicle location information and 
CTM flow conservation and feasibility conditions, respectively, for cell 𝑖𝑖 ∈ 𝐶𝐶 
at time step 𝑡𝑡 ∈ 𝑇𝑇 

𝐹𝐹,𝐷𝐷𝐽𝐽 flow rate and jam density 

𝑣𝑣,𝑤𝑤 speed of respectively forward and backward shockwave speeds 

𝛿𝛿 ratio of backward shockwave speed to the free flow speed, 𝛿𝛿 = 𝑤𝑤/𝑣𝑣 

𝑤𝑤𝑖𝑖 weight factor for cell 𝑖𝑖 ∈ 𝐶𝐶  

𝑀𝑀 the big-M 

𝜌𝜌 penalty parameter  
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