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Executive Summary 

 Recent quasi-experimental commercial motor vehicle (CMV) driver hours-of-service 

(HOS) studies published through the Federal Motor Carrier Safety Administration (FMCSA) in 

2011 readily identified consistent increases in crash odds as driving time increased. These studies 

identified time-on-task as a significant indicator of the potential for a safety critical event (SCE) 

(crash, near crash, or crash-relevant event). However, while these studies may have provided 

indication of a relationship between HOS and the probability of an SCE, they largely failed to 

account for many potential confounding factors. This study sought to uncover existing 

relationships between the HOS observations and a set of potential confounding factors related to 

time of day.  To achieve this objective, the current study utilized a survey issued to large truck 

drivers that deliver goods in the Pacific Northwest.  

Because of data heterogeneity, advanced econometric methods were applied, namely 

random parameters binary logit approaches and a multivariate probit approach to produce the most 

accurate estimates and to make inferences appropriately. In this study, three main questions of 

interest were used to better understand the effect of HOS on large truck drivers’ safety. Of 

particular interest were questions related to issues of finding safe and adequate parking, using a 

cell phone while driving, and lane changing behavior. From a policy standpoint, agencies can enact 

policies at the strategic operating level for private carriers to address factors that influence large 

truck drivers’ performance. For instance, this study showed that factors related to fatigue and 

driving hours management, such as restrictions on the number of hours worked or schedules that 

enable drivers to easily take breaks when fatigued, are effective at reducing the likelihood that a 

truck driver will be involved in SCEs. Moreover, CMV carriers can develop and enforce similar 



xiv 

policies within their companies to reduce the occurrence of distracted driving among their truck 

drivers. 

Conclusions drawn from HOS-related studies such as those mentioned herein affect 

millions of people and can have economic impacts in the billions.  Faulty scientific inference from 

these studies can have high human and economic costs.  Therefore, the work described in this 

study was needed to validate the findings of these studies, as well as other studies using similar 

designs and variables.  In addition, the work described could lead to deeper insights into 

commercial motor vehicle crash risk and causation, with safety implications and applications 

beyond HOS regulations. We foresee the following entities benefiting from this work: federal 

regulators, trucking industry groups, carriers, academia, insurance companies, and anyone 

interested in understanding crash causation.  

 

  

 

 

 

 

 

 

 



 

1 

1.0  Introduction 

1.1 Background 

Recent quasi-experimental commercial motor vehicle (CMV) driver hours-of-service 

(HOS) studies published through the Federal Motor Carrier Safety Administration (FMCSA) in 

2011 readily identified consistent increases in crash odds as driving time increased. These were 

observed by Jovanis et al. (2012) as gradual increases from 1-10 hours, followed by a marked jump 

after 10 hours. Blanco et al. (2011) similarly identified that time-on-task was a significant indicator 

of the potential for a safety critical event (SCE) (crash, near crash, or crash-relevant event). 

However, while these studies may have provided indication of a relationship between HOS and 

the probability of an SCE, they largely failed to account for many potential confounding factors. 

The HOS relationship is frequently attributable to the fatigue of the driver. Confounding factors, 

however, are factors that may also contribute to the likelihood of an incident and potentially create 

a systematic bias or contribute to measured error. Such factors include time of day (TOD), 

circadian status, time on task, total time awake, roadway infrastructure attributes, weather, and 

other driver behavior and traffic density factors related to both the driver and the external 

conditions experienced by the driver.  

The Transportation Research Board’s Committee on Truck and Bus Safety (ANB70) has 

identified driver performance and other causal mechanisms in quasi-experimental HOS studies as 

a key research need. In its needs statement, ANB70 suggested the need to validate and elucidate 

the findings from the above cited quasi-experimental studies. It identified limitations of the studies 

as stemming from their lack of controls for likely co-varying, confounding factors and failure to 

analyze underlying causal mechanisms. This study sought to correct several components of the 

omissions and to validate their findings. The works of Jovanis et al. (2012) and Blanco et al. 
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(2011), along with others, began with the premise that parameters associated with HOS, namely 

hours off duty, hours driving, hours working, breaks, and recovery are predictors of SCEs through 

fatigue. However, fatigue is a construct not directly observable. Rather, it is assumed to exist;  

consequently, it is presumed that the HOS effect on fatigue is mediated by observable changes in 

sleep time, time awake, or other physiologically based changes or biochemical intermediary 

1.2 Confounding Factors 

1.2.1 Time on Task 

Analyzing Naturalistic Truck Driving Study (NTDS) data from 97 drivers using mixed-

effect negative binomial regression, Blanco et al. (2011) found that the odds for an SCE are 

significantly higher in the eleventh driving hour than in the first or second driving hour. Also, a 

longer work day increases the odds of an SCE toward the end of a driver’s workday, as the driver 

is exhausted by the performance of non-driving tasks earlier in the workday. In addition, taking a 

non-working break (rest during duty period or off duty) reduces the SCE rate by half, when the 

SCE rate is compared with the one-hour window immediately before the break and the one-hour 

window immediately after the break. However, the authors did not control for these confounding 

factors using econometric methods.  

Chen and Xie (2015a) modeled heterogeneity among freight companies and individual 

drivers by using a discrete-time multilevel mixed logit model, which allowed drivers within the 

same company or the same driver operating in different hours to share the same unobserved risk 

factors.  Consistent with the above finding, they found that the eleventh hour of driving was 

significantly riskier than other hours, but this may have been due to driving in peak hours on local 

roads when the driver was stressed toward the end of his shift because of HOS time limits, rather 

than the eleventh hour of driving itself. When the confounding effects were controlled for, 
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uncertainty existed as to whether the last hour of driving, by itself, significantly contributed to 

increased odds, as Chen and Xie (2015a) mentioned that “all these factors may contribute to the 

higher crash odds for the 11th driving hours.” While their model identified daytime driving as 

causing more crashes (that is, 4:00 – 20:00 measured in 4-hour blocks), it is possible that such 

causality was noisy and susceptible to other confounding factors, such as higher traffic density 

during the daytime, rather than daylight itself causing the truck crashes to occur. Therefore, simply 

controlling for time-of-day as another explanatory variable, without allowing it to create 

differential impacts on the causal effects of driving hours on crash odds, is overly restrictive, and 

this is why stratification based on time-of-day has been called upon and tested for, as we shall see 

in the next section. 

1.2.2 Time of Day 

Pahukula et al. (2015) analyzed large truck crashes on urban roadways in Texas between 

2006 and 2010 by using five separated random parameter, mixed logit models, which accounted 

for heterogeneous effects and correlation in unobserved factors and that were stratified by time of 

day (i.e., early morning, morning, mid-day, afternoon and evening).  Using log-likelihood ratio 

tests, they found that the stratified time-of-day models provided more information than the 

unstratified full model with statistically different estimates, and each time-of-day strata had 

different contributing factors to large truck crashes. For example, indicator variables for changing 

lanes, median width, and speeding were only significant in the mid-day model, presumably 

because traffic density is lower in between the morning and afternoon rush hours, and drivers are 

more inclined to overtake other vehicles when shoulders are wide. Therefore, the authors called 

for planning tools to mitigate the impacts of severe truck crashes that addressed time-of-day 

differences. Other authors have also identified that although most large truck crashes occur during 
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the daytime because most truck operations occur during the day (Belzer et al., 2002) and because 

traffic volume and density are higher (Hickman et al., 2014), truck crashes occurring at nighttime 

are, in general, more severe than those occurring during the daytime because higher traffic flow 

during the rush hours retards the speeds of trucks when traffic accidents occur (Islam and 

Hernandez, 2013).  

1.3 Need for Study 

This study sought to uncover existing relationships between HOS observations and a set of 

potential confounding factors related to TOD. These relationships were addressed by controlling 

for confounds. Within the TOD confound, we examined two primary competing factors: circadian 

rhythm and traffic density variation. Where a confound was not directly observable, a suitable 

instrument was sought and implemented. Following the development of the relationships between 

SCEs and the above factors, we explored opportunities for, and constraints to, the deployment of 

operational adjustments to reduce SCEs. These operational adjustments included actions by both 

industry and transportation agencies. Such actions included delivery schedule adjustments to avoid 

highest risk TOD and HOS interactions, should such interactions be demonstrated as significant. 

Conclusions drawn from HOS-related studies may affect millions of people and have 

economic impacts in the billions.  Faulty scientific inferences from these studies could have high 

human and economic costs.  Therefore, the work described in this study is needed to validate the 

findings of these studies, as well as other studies using similar designs and variables.  In addition, 

the work described could lead to deeper insights into commercial motor vehicle crash risk and 

causation, with safety implications and applications beyond HOS regulations. We foresee the 

following entities benefiting from this work: federal regulators, trucking industry groups, carriers, 

academia, insurance companies, and anyone interested in understanding crash causation.  
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2.0  Literature Review 

2.1 Hours of Service 

The FMCSA released  a report on the final ruling of hours of service for drivers (Federal 

Motor Carrier Safety Administration, 2011). The goal of the ruling was to limit the hours of drivers 

to reduce driver fatigue, improve health conditions, and decrease crash risk. The rulings limit the 

use of a 34-hour rest period to once every 168 hours. Everyone using a 34-hour rest period must 

have two consecutive overnight periods, defined as 1:00 am to 5:00 am. Truckers may drive if they 

have had a 30-minute break in the previous 8 hours. The daily driving limit remains 11 hours, and 

the 60- and 70-hours limits are unchanged. Many studies have looked at the HOS rules specifically. 

Goel and Vidal created an optimization algorithm to minimize transportation costs that considered 

business hours and HOS  (Goel and Vidal, 2014). The method assessed the impacts that different 

hours of service could have on a carrier. To determine the impacts of different HOS regulations 

on carriers, the research compared the HOS rulings in different countries.  

The study noted the differences in HOS rules between the United States, Canada, the EU, 

and Australia. Canada has separate rules based on latitude, and in the southern region drivers 

cannot drive after accumulating 13 hours of driving, after 14 hours on duty, or after 16 hours have 

elapsed since the end of the last 8 hours of off-duty time. If one of these cases is met, then the 

driver must take 8 consecutive hours off duty. The driver must also drive no more than 13 hours 

and must be off duty at least 10 hours in the same 24-hour period.  

In the European Union a driver must take a break of at least 45 minutes after 4.5 hours of 

driving. A rest period of at least 11 hours must be completed within 24 hours of completing the 

previous rest period, and driving time accumulation cannot exceed 9 hours between rest periods. 
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Driving time in one week cannot exceed 56 hours, and combined driving and working time cannot 

exceed 60 hours.  These are the basic rules, but there are others as well. 

In Australia motor carriers are either accredited or not. Carriers without accreditation must 

have drivers rest for at least 15 minutes and not work more than 5.25 hours in any period of 5.5 

hours. In any 8-hour period a driver must not work more than 7.5 hours and have at least 30 minutes 

of rest in blocks of no less than 15 minutes. In any period of 11 hours, a driver cannot work more 

than 10 hours and must rest at least 60 minutes in no less than 15-minute blocks. In any 24-hour 

period drivers must not work more than 12 hours and must have at least seven continuous hours 

of stationary rest. In any period of seven days, a driver must work no more than 72 hours and have 

at least 24 hours of stationary rest time.  

Accredited carriers in Australia must adhere to different rules. In a period of 6.25 hours, a 

driver must not work more than 6 and have at least 15 continuous minutes of rest time. In any 9-

hour period, a driver must not work more than 8.5 hours and have at least 30 minutes rest time in 

blocks of no less than 15 minutes. In any period of 12 hours, a driver must not work more than 11 

hours and must have at least 1 hour of rest time in blocks of no less than 15 minutes. In any 24-

hour period, a driver must not work more than 14 hours and must have at least 7 hours of stationary 

rest time. In any period of seven days, a driver must not accumulate more than 36 hours of 

long/night work time. 

In a more recent study Mansfield and Kryger completed a summary of hours of service 

regulations governing truck drivers in the United States, Canada, Australia, and the EU to assess 

the effectiveness of hours of service provisions in preventing fatigue and drowsiness (Mansfield 

and Kryger, 2015). The methodology of the work presented included summaries from the United 

States Federal Motor Carrier Safety Administration, Canada’s Commercial Vehicle Drivers Hours 
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of Service Regulations, the National Heavy Vehicle Regulator of Australia, and the European 

Commission summary of Regulation 561/2006. The study results found gaps across all the current 

provisions that could be associated with higher crash risk (a summary appears in table 2.1). There 

are no provisions for what a driver must be doing when not working, and thus s/he could return to 

work after not sleeping for 24 hours. In Australia, there are no provisions accounting for circadian 

rhythm by prohibiting driving at night.  

 

Table 2.1 Fatigue, drowsiness, and the law summary of HOS regulations 

Factors United States Canada Australia  European Union 

Work time 

per day 

May work 14 hours 

but only 11 hours can 

be driving time 

May drive 13 hours 

and work 14 hours a 

day 

12 hours with 7 hours 

continuous rest 

May drive 9 hours 

with 11 hours  

of continuous rest 

(some  

variation allowed) 

Overall 

Schedule 

May not drive after 60 

hours on-duty in 7 

consecutive days or 70 

hours in 8 consecutive 

days 

7-day cycle: 70 hours 

on-duty maximum 

14-day cycle: 120 

hours on-duty 

maximum 

For any 7-day period, 

may not work 

more than a total of 72 

hours 

For any 14-day period, 

may not work 

more than a total of 

144 hours 

Weekly driving time 

may  

not exceed 56 hours 

May not drive more 

than  

90 hours in 2 weeks 

Restart 

Periods 

May restart schedule 

by taking 34 hours off-

duty 

7-day cycle: 36 hours 

off-duty 

14-day cycle: 72 hours 

off-duty 

For any 7-day period, 

must take 24 hours 

of continuous rest 

For any 14-day period, 

must take 4  

night rests 

Weekly 45 hours of 

continuous 

rest, but can be 

reduced 

every second week to 

24 hours 

Breaks 

Must take a 30-min 

break after working 8 

hours 

2 hours off-duty per 

day may be taken 

in blocks of no less 

than 30 min 

(may defer) 

5.5 hours: 15-min 

break 

8 hours: 30-min breaks 

11 hours: 60-min 

breaks 

45 min every 4.5 

hours can be  

broken to 15 and 30 

min 

Source: (Mansfield and Kryger, 2015) 

  

 

Jovanis et al. (2011) performed an analysis to determine whether there was a relationship 

between crash odds and hour of service policy. The purpose of the study was to fill the gaps in 
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knowledge regarding crash occurrences and driver characteristics. Data collected came from 15-

minute interval, carrier-supplied logs entered one to two weeks prior to a crash occurrence. 

Comparable data were also collected from drivers that were not involved in a crash but were 

working for the same firm, at the same time, and driving out of the same terminal as the driver that 

was involved in a crash. Data were collected from multiple truckload (TL) and less-than-truckload 

(LTL) carriers during the years 2004-2005 and 2010. Data from the different years were tested by 

using a Chow test, and the researchers determined that they could be combined. The day the crash 

occurred was the day of interest and was designated as day 8, with the previous seven being 

checked to determine patterns.  

The data were analyzed through a case control logistic regression formulation, with 

multiday driving, interaction terms for driving time and multiday driving main effects, time of day, 

driving breaks, and timing of recovery periods used as predictor variables. Additionally the 

relationship between 34-hr restart and crash probability was analyzed. Driving patterns could not 

be combined into the single model. Similar driving patterns were developed through cluster 

analysis to determine the driver behaviors more closely associated with high crash risk. Time of 

day was coded as a series of dummy variables in 2-hour blocks to indicate when drivers were 

driving. Driving breaks were accounted for in four groups: no breaks, one break, two breaks, and 

three or more breaks, with categorical covariates used to determine influence on crash odds. 

Extended recovery period variables were tested to determine the effects on crash rates. Interaction 

terms were used to determine whether there were significant effects of interaction terms for driving 

time and driving pattern. The 34-hr restart analysis was performed by using a comparison between 

a driver and themselves, using an approach creating crash outcome cases and non-crash controls 
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to determine violations of the 70/8 rule. Also a predictor variable was created to investigate the 

implication of a pseudo-violation occurring for two consecutive days in a driving schedule. 

In terms of TL carriers, cluster 5 was used as the baseline driving pattern, and others were 

compared to that. Clusters 1, 2, 6, and 7 had crash risks below .7, and clusters 3, 4, 5, and 8, 9, 10 

were above .7. Cluster 1 had the lowest risk (driving early morning to early evening during days 4 

to 7) with drivers being off duty on days 2 and 3. Pattern 5 had the highest crash risk and was 

based on a pattern of the driver being off during time in days 3 to 5, with 50 percent off duty on 

day 1 increasing to 70 percent by the end of day 2, 82 percent by the end of day 3 and 90 percent 

on day 4. Days 6 and 7 had peak usage of berths at 2:00 AM Driving hours 2, 5, and 9 showed 

fewer crashes than hour 1, and hour 11 showed increased crash risk. There was no real trend, but 

rates spiked at hour 11. The multiday pattern variable was statistically independent of the multiday 

driving variable. Most interaction terms had long driving hours as a common component. Another 

common component was driving in late afternoon. Time of day was dropped as a predictor.  

In regard to LTL carriers, pattern 4 was chosen as the baseline, with patterns 7, 8, and 9 

having high risk and patterns 1, 2, 3, 6, and 10 having low risk. Pattern 4 had 2 to 3 hours of 

duty/non-driving for days 1 through 5 and less than 1 hour for days 6 through 7. Pattern 2 had 

drivers with infrequent duty during days 1 through 4 and increased duty on days 6, 7, and 8, with 

on-duty time building gradually from noon to 10:00 pm. In comparing all patterns, crash risk was 

higher as the recovery period was closer to day 8. Crash odds as a function of driving time indicated 

that hours 6 through 11 increased the crash probability, spiking in hour 11 as with TL carriers. 

Interaction variables were perceived to be influenced by factors such as circadian rhythms or were 

traffic related and not correcting to extended time on task. Taking breaks resulted in lower crash 

odds. Returning from a 34-hr recovery showed increased odds of returning during the day. Results 
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of the 34-hour restart models indicated that  returning to work at night tripled the odds of a crash. 

Pseudo-violations occurring two and three days before a crash were significant in their effect on 

the model, quadrupling crash odds. The aggregate model results indicated that crash odds increased 

after hour 8, spiking as before in hour 11, with a 30 percent reduction if two driving breaks had 

been taken. A 34-hour recovery period was associated with a 50 percent increase in crash risk on 

the first day back.  

Boris and Johnson (2015) investigated how hours-of-service rules affect parking, 

specifically to understand truck driver perspectives on parking reservation systems. To analyze 

driver perspectives, a survey was administered focusing on driver opinions of public vs private 

truck parking. Roughly 1,417 drivers completed the survey. Descriptive statistics indicated 76.8 

percent for hire and 23.2 percent private drivers, with 66.8 percent truckload, 11 percent flatbed, 

5.9 percent LTL, 4.1 percent Tanker, 1.5 percent express/parcel service, and 9.7 percent other. 

Approximately, 52.7 percent indicated they were employee drivers, 25.7 percent indicated they 

were independent contractors, and 21.6 percent were owner operators. Evaluation of carrier 

perspectives indicated that 62.1 percent of drivers thought parking was equally difficult to find at 

public and private rest stops, 23.7 percent thought private truck stops were more difficult for 

finding parking, and 14.2 percent thought public rest stops were more difficult for finding parking. 

Regarding payment of parking, 46.8 percent of respondents reported that they thought the carrier 

should be responsible for payment of the reservation fee, while, 20.7 percent thought the 

responsibility lay on both the carrier and driver. Additionally, 15.3 percent thought payment was 

the driver’s responsibility, 5.8 percent thought it was the government’s, and another 5.8 percent 

thought there should be no fees. 5.8 percent responded “other” responsibility. A possible limitation 
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with this study was the lack of information regarding the time that parking was needed. Having 

this information could have illuminated the effects of fatigue and HOS rules on parking.  

Murray and Short (2015) investigated the impacts of the 34-hour restart provisions in the 

2013 HOS changes. Specifically, the changes to the 34-hour restart were examined to determine 

the influence on truck driving operations and any resulting safety consequences. Looking first at 

daytime driving operations, The American Transportation Research Institute (ATRI) gathered data 

from October 2012 and 2013 to compare pre- and post-final ruling changes. Data were 

standardized by month and highway locations. Using SAS algorithms and a GPS data set, truck 

activity was analyzed. Results of this daytime study indicated increased weekday operations after 

the HOS changes. Truck activity did increase, and Saturday mornings saw increased driving as 

well. The impacts on safety were determined by using chi-square tests on data prior to and after 

July 1, 2013.  Results also revealed significant increases in injuries and towaways in a comparison 

of the 12 months and six months of pre- and post-July 1, 2013, data for all days. Weekend 

towaways significantly increased for all day and weekend mornings in comparison to weekday 

counterparts. Also of note were significantly higher injury and towaway crash rates on post-July 1 

weekends, with Sunday morning fatalities increasing significantly. The study concluded that 

overall, crashes increased after the final rulings went into effect. One theory to explain these 

findings was that drivers used rolling recap rather than the 34-hour restart, which negated the safety 

benefits that would have been expected. Drivers may also have shifted their driving activity to 

occur early in the weekend. 

Anderson et al. (2017) sought to determine the impacts of  the 2013 hours of service 

changes on crash safety. Ohio Department of Safety Statistics crash data from 2002 to 2012 were 

regressed to extrapolate crash rates in 2013 and 2014 as if there had been no HOS rules changes. 
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A comparison of pre- and post-HOS data showed no significant difference between the periods 

with regard to injury and property damage. A decrease in fatalities was present but not significant, 

and an increase in fatal accidents caused by truck drivers was present but also not significant. In 

examining 12-month increments of data, the change in fatal accidents caused by truck drivers in 

pre- and post-HOS change years was not significant. The number of fatalities involving trucks was 

lower post-HOS, and the number of fatalities caused by trucks was higher post-HOS. Findings of 

the model indicated a downward trend in accidents involving and caused by trucks, and the post-

HOW year was not significantly different from the previous year with regard to injuries or property 

damage. Anderson et al. (2017) suggested that HOW may not have improved safety significantly. 

Matthews et al. (2012) sought to understand the role that pre-drive sleep and time of day 

have on driver performance. Driving simulations were performed by 14 male subjects who took a 

simulated 10-minute drive on a variable course. Subjects completed training drives during two 

training days. For testing, drives were completed two hours after waking and at 2.5-hour intervals 

after completing nine tests each day. Each 28-hour day lasted 4 hours longer than a circadian day 

to have multiple tests occurring at six separate circadian phases of each day. This process 

desynchronized the effects of time of day and previous wakefulness. ANOVA models were used 

to analyze the resulting data. Results indicated that time of day affected all dependent variables of 

speed, lane position, and lane violations. The worst performance coincided with early morning and 

best driver performance coincides with early evening. Performance declined with an increase in 

previous hours of wakefulness. Performance was high with low sleep debt and worsened with high 

sleep debt. If sleep debt was, then low circadian effects were low, and when sleep debt was high 

circadian effects were high. During circadian peak hours there was no effect from previous 

wakefulness. From this one can intuit an interaction among the variables, and the authors theorized 
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that time of day influence depends upon the length of previous wakefulness. All factors were more 

influential the more that sleep was restricted, i.e., the effects were compounding. 

2.2 Impacts of HOS on Truck Drivers 

2.2.1 Fatigue 

Williamson and Friswell (2013) investigated the link between fatigue and safety for truck 

drivers. To accomplish this the authors undertook an extensive literature review. For the study, 

“fatigue” was defined as “a biological drive for recuperative rest.” Evidence was observed 

suggesting that fatigue results in reduced performance and increased safety risks, and factors were 

looked at that are said to cause fatigue. This research investigated evidence for the effects of 

circadian rhythm and other factors on fatigue and driver safety outcomes, then examined the 

evidence for each of these factors on driver performance and safety. The risk of a person being 

involved in an accident was substantially higher at times they would normally be asleep. The peak 

of risk occurred shortly after 12:00 am, with factors including time since waking, time since 

starting work, timing of rest breaks and work quotas, occupation differences, difference in work 

task, and difference in lighting. Williamson and Friswell (2013) concluded that there was strong 

evidence for a circadian rhythm effect on the risk of truck driver crashes. Discrepancies could be 

explained by confounding factors contributing to fatigue.  

The effects of restricted sleep and time since last sleeping on driver safety risks are 

confounded by circadian influences, as well as time on task. Time on task induces workplace 

fatigue and is often treated as a measure to evaluate safety risk in occupational settings. Studies 

have suggested that injuries and accidents peak in the first half of the workday. With regard to 

continuous time on task, there is increased crash risk from the first half-hour to the second while 

on task. While monotonous driving at night is a particular concern for long trips, no controlled 

studies featuring boredom or monotony as causal factors in fatigue-related crashes were found. 
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Research has consistently revealed a higher crash or accident risk with a higher frequency of driver 

sleepiness. However, there is a scarcity of findings available on the effects of circadian rhythms 

on performance, indicating a need for more research.  

Research regarding homeostatic factors has demonstrated that the strength of their effects 

on fatigue and performance compromise road safety. With regard to homeostasis effects on 

performance, fatigue-inducing conditions such as sleep loss produce impairments in performance. 

Regarding time on task, the type of task performed can have negative effects on performance. 

Sustained attention and unstimulating or monotonous tasks have been identified as increasing the 

likelihood of poor performance. The link between performance and safety outcomes supports the 

hypothesis that performance decreases play a causal role in accidents and injury. Fatigue-caused 

performance shortcomings lead to adverse safety outcomes. 

Chen and Zhang (2016) investigated background risk factors associated with fatigue-

related truck crashes and injury severity. Data were compiled from two separate highways in 

China, analysis was performed on each separately, and the results were compared. Data from 

crashes in which fatigue was a factor from Jiangxi and Shaanxi over a 12-year period were 

compiled. Roughly, 9,168 records were used, with 5,447 cases from Jiangxi and the rest from 

Shaanxi. Injury severity was scaled as fatal, serious, moderate, or slight. Empirical results from 

both regions indicated that inexperienced male drivers were more likely to be involved in fatigue-

related crashes. Being an employed driver increased the risk of fatigue-related crashes. 

Commercial goods transporting vehicles, unfit safety status, and poor brake performance are all 

had positive correlations with fatigue-related crash risk. Fatigue-related crashes were more likely 

to occur on curved roads, on grades, on bridges, in tunnels, and at urban intersections. Time of day 

was indicated to have a significant effect on fatigue, as crash risk probability was higher during 
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the evening or at dawn. Fatigue-related crashes were more likely during adverse weather 

conditions. Speeding, overloading, risky following, and failure to use a seat belt all had positive 

correlations with fatigue-related crash risk. Head-ons, side-swipes, and rear-end crashes made up 

the majority of crash types caused by fatigue. 

Risk factors related to truck crashes in Jiangxi suggested that a driver’s gender, age, and 

experience level significantly affected fatigue-related crash risk, all other things being equal. A 

logistic regression model was used to analyze these data. Young, less experienced, male, employed 

truck drivers exhibited a higher probability of fatigue-caused crashes. Commercial transport 

vehicles and poor brakes were associated with higher crash risk, as were slippery roads, sharp 

curves, steep grades, and bridges. Also, crashes were more likely to occur on expressways. Results 

also indicated that speeding and overloading increased risk of a fatigue-caused crash. Crashes were 

more likely to happen between midnight and 6:00 am, during poor visibility, during adverse 

weather, and during winter. Fatal and serious crash types were more likely to occur. Head-on, 

sideswipe, and rear-end collisions were most likely to occur. Large trucks were more likely to be 

involved in fatal multi-vehicle crashes. Focusing on Shaanxi, results were very similar to those 

from Jiangxi, with few differences. Differences included summer and winter being associated with 

higher crash risk, as were run-off-the-road crashes. Results indicated that time of day was a very 

significant contributing factor to fatigue-related truck crashes. Most accidents coincided with 

sleepiness associated with circadian rhythms.  

Chen and Xie (2014) investigated how many hours off-duty and how many rest breaks 

were sufficient in preventing driver fatigue. The study evaluated the impacts of time off-duty 

before a trip and short breaks on commercial truck safety. The methods of analysis included the 

Cox proportional hazards and Andersen-Gill models. The data consisted of 407 observations, 
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featuring 136 crashes. Driving logs were included for the seven days leading up to a crash, as well 

as a crash. The Cox PH model was analogous to treatment groups composed of different rest break 

patterns represented by explanatory covariates. The PH model estimated a hazard ratio and a 

confidence interval, which was the probability of a driver being involved in a crash in the next 

moment. Each driver could have zero to multiple breaks. Each trip could consist of multiple 

segments with a start time, end time, duration, and status variable (i.e., an indicator that a crash 

had occurred). Results suggested that a brief rest break could reduce crash risk caused by fatigue. 

Increases in rest break duration reduced crash risk caused by fatigue. More than 2 hours of rest 

appeared to reduce crash risk. Having one rest break lowered the risk of a crash, two breaks 

reduced the risk further, but the reduction from three breaks was minor.  

Taking a break after 1.25 hours was found to be more helpful than taking a break in the 

first 1.25 hours of the shift. It was better to take the second break after 2.5 hours. A third break 

should be taken after 3.25 hours of driving; however, it would not affect crash risk substantially 

unless the break was longer than 30 minutes. Thirty minutes was found to be adequate for a first 

and second rest break. The results of the Anderson-Gill model suggested that taking breaks reduced 

crash risks. Increasing rest-break durations could also reduce fatigue-related crash risk. Taking 

additional rest breaks could help reduce risk. Two rest breaks were considered enough for a 10-

hour trip. Thirty minutes was an adequate time for a rest break. Taking rest breaks soon after a trip 

began lessened the effect of a break. 

Zhang and Chan (2014) investigated whether truck drivers had a higher crash risk 

probability associated with fatigue than non-professional drivers. To accomplish this task, a 

comprehensive literature review was performed with regard to sleepiness and crash risk, and a 

meta-analysis was applied to summarize the effects. Each study of interest was coded according 
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to study characteristics, sleep problem information, and accident information. The effects of each 

study were extracted and unified as part of an odds ratio analysis. Study quality was assessed 

according to the study’s description of sleep problems, data collection methods, and control of 

confounding factors. All studies of interest clearly stated sleep problems and methods of 

investigation. Three of the studies considered crash severity in their data collection, and most were 

self-reported data. Half of the studies controlled for potential confounding factors. The most 

common confounders were age and driving experience. Risks associated with excessive daytime 

sleepiness (EDS), sleep apnea, acute sleepiness, and insomnia were summarized separately. EDS 

was concluded to be a predictor of higher crash rates. Sleep apnea and acute sleepiness had 

moderate impacts on crash risk. Results indicated that sleep apnea and EDS showed heterogeneity, 

and therefore the odds ratios were recalculated with random models. Publication bias was found 

to be present in the EDS studies. Professional drivers did not have more crash risk due to sleep 

apnea or EDS than non-professional drivers. 

Williamson and Friswell (2013) explored the effects on long distance truck drivers’ 

experience of fatigue. The objective was to gain an understating of the connection between external 

non-driving factors and fatigue outcomes for long distance truck drivers. The method of analysis 

employed was a cross-sectional survey with questions regarding factors such as employment 

status, fatigue management, payment, wait and queue times, and working hours. The data analyzed 

consisted of 475 New South Wales drivers recruited at rest stops between November 2009 and 

February 2010. Descriptive statistics indicated that 98.3 percent were male, and 67.3 percent self-

administered the survey while the rest were interviewed. Survey questions focused on 

demographics, characteristics of the working arrangement, information about the driver’s last trip, 

and safety outcomes. PASWStatistics were used to determine whether the self-administered and 
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interview survey data could be combined. Descriptive analysis, Chi square tests, and logistic 

regression were further used for analysis. An analysis of drivers’ work characteristics indicated 

that the average age was 45.3 years. 67.4 percent were married or in a de facto relationship, 57.9 

percent had one or two children aged 18 or less living with them, and 47.8 percent felt that their 

work often or always interfered with their family. The average experience level was 21 years. 81.9 

percent were employees and the rest owner operators. 24.6 percent were organized, and 21.5 

percent were unionized. 96.4 percent were based in Australia’s eastern seaboard states. 32.8 

percent drove articulated trucks and 49.9 percent drove b-double, while 4.8 percent drove rigid 

and 1.7 percent drove road train trucks. 65.2 percent were paid by incentive for trip, 22.7 percent 

were paid by time spent working, and 12.8 percent responded “other” or gave multiple answers. 

A comparison of drivers who worked under trip- or time-based payment found that drivers 

paid by the trip drove longer distances, for longer times, slept less, and more likely experienced 

fatigue than drivers paid by time. Drivers who were paid by the trip also drove heavier loads, drove 

longer, and drove for more time than time-based drivers. Drivers paid by trip were more likely to 

usually experience fatigue on half of their trips or more, and reported work interfering with family 

life more than time-paid drivers. Drivers who waited worked longer hours and more likely 

experienced fatigue. They also were less likely to be usually paid for non-driving tasks. Drivers 

who waited on a last trip were more likely to experience fatigue on that trip and to experience 

fatigue on half or more of their trips. Drivers paid to wait usually were paid for non-driving tasks 

and worked fewer hours per week and were less likely paid per trip. These drivers usually drove 

smaller trucks and drove less distance and spent less time driving on their last trip. It is interesting 

to note these drivers were less likely to report fatigue on more than half their trips and less likely 

to have work interfere with family. 
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Results of the multivariate analysis indicated that the amount of sleep a driver had in the 

10 hours before the trip was  associated with experiencing fatigue on the last trip. Those who slept 

less were more likely to be fatigued on their last trip. Fatigue odds were 11 percent higher for each 

hour of reduced sleep in the 10 hours before driving and roughly 4 percent lower for every year of 

work experience. Drivers who waited but were not paid for waiting on the last trip reported higher 

fatigue. Fatigue odds were more than 2.5 times higher for drivers who were not paid for waiting 

than for drivers who did not wait. Analysis showed that fatigue could be predicted by payment 

type and whether the driver was paid to wait. Those paid by trips were twice as likely to be fatigued 

as those paid by time, and there was an 80 percent increase of feeling usually fatigued among those 

who were not paid to wait than those who were.  

Lemke et al. (2016) investigated how sleep affects safety performance among drivers and 

evaluated sleep quality as a predictor of safety performance. Survey and biometric data were 

collected from 260 male drivers in North Carolina. The Trucker Sleep Disorders Survey (TSLDS) 

was created to determine work environment, health factors, sleep quality, health consequences, 

and comorbidities. Analysis was performed to determine correlations between predictor variables 

and sleep duration and quality. A series of linear regression analyses was performed to determine 

predictive relationships. The results indicated longer and better sleep on non-workdays than on 

workdays. Drivers often operated trucks while sleepy, and sleepiness impacted safety 

performance. Sleep quality was found to be more significantly related to driving sleepy and job 

performance and concentration than sleep duration. Sleep duration was significantly related to 

crashes and crash risk.  

2.2.2 Driver Health 

Edwards et al. (2014) sought to understand factors that affect the health and safety of truck 

drivers. To accomplish the task, an in-depth literature review was performed. The review consisted 
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of 104 peer-reviewed articles on a range of topics. The review found the behaviors that increase 

injury severity and likelihood relevant to truck crashes included fatigued driving, drunk or drugged 

driving, speeding, seatbelt infractions, and errors and violations. Factors were categorized 

according to government departments, transport organizations, customers, and road/work 

environment. The review found government departments focused on policies and enforcement. A 

large amount of research has focused on fatigued driving and work hours. External factors such as 

sleep quality have an effect on fatigue, but compliance with rules may be more important, and an 

unsafe culture can worsen effects.  

Factors were categorized as general organizational, employee management, and 

management practices. All were related to hours-of-service rules with a relationship to crash risk. 

The review found that heterogeneity may be contributing to the influence of factors on safety. 

Particularly, subcultures may exist that influence safety-related behaviors. Driver beliefs, attitudes, 

and values may interact with management to determine the driver’s response. Customers play a 

contextual part on the influence of safety within the commercial trucking industry. Environmental 

factors include other vehicles, time of day, weather, and road design and condition. The review 

found that private road design can affect not just crashes but injury severity as well. Vehicle factors 

were generally associated with mechanical faults and vehicle emissions.  

Boris and Brewster (2016) highlighted issues related to truck driver screening and 

treatment of obstructive sleep apnea (OSA). Boris and Brewster (2016) surveyed commercial 

drivers on a number of OSA-related issues. One group comprised commercial motor vehicle 

(CMV) drivers who had undergone a sleep study and another was CMV drivers who had not. 

Among those who had not been referred to a study, daytime fatigue and high blood pressure were 

identified as potential complications of OSA by many respondents (91 percent and 67 percent, 



 

23 

respectively), and among drivers who were referred to a study, 53 percent had paid some or all of 

the costs. 61 percent of drivers with no health care coverage of their sleep study incurred out-of-

pocket costs, compared to 32 percent of drivers whose health insurance did cover some portion of 

the sleep study, with costs exceeding $1,000.  

Survey results indicated that the continuous positive airway pressure (CPAP) machine was 

the most common treatment prescribed for drivers diagnosed as having sleep apnea, including 

those with mild sleep apnea. Drivers with severe OSA had experienced positive effects from CPAP 

treatment, reporting increased amounts of sleep (71 percent), feeling better when they woke up (84 

percent), and lower blood pressure (75 percent). Half of drivers with severe OSA also reported 

losing weight after treating their OSA with a CPAP device (50 percent). Drivers with moderate 

and severe OSA in the sample were more likely to find their CPAP treatment effective (74 percent 

and 87 percent, respectively) than drivers with mild OSA (48 percent). Less than a third (32 

percent) of those diagnosed with mild sleep apnea experienced improved sleep as a result of CPAP 

treatment.  

2.2.3 Driver Sleep 

Hanowski et al. (2007) investigated whether drivers got more sleep under the HOS 

regulations and the relationship between sleep quality and safety critical events. Data were 

collected through a naturalistic study in which 73 drivers were analyzed. The research method 

included monitoring sleeping or waking moments, as well as monitoring occurrences of safety 

critical events.  

Mean sleep quantity was calculated through two methods. The first was calculated over 

full days and the second over weeks. Method 1 contained 73 drivers and method 2 contained 62 

drivers. Both produced similar findings, with drivers averaging 6.15 and 6.28 hours of sleep, 

respectively. A matched-pairs t-test was conducted to compare mean sleep to mean sleep before 
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the occurrence of a safety critical event. Matched-pairs t-tests were conducted on data when the 

truck driver was at fault for causing the crash. Results indicated that drivers may receive more 

sleep under the 2003 HOS regulations. The results also indicated fatigue-related critical events. 

Sleep quantity was found to be less before a critical event than overall mean sleep quantity. 

Chen et al. (2016) examined the sleep patterns of truck drivers during non-working periods 

and evaluated the relationships between sleep patterns and truck driving performance. The authors 

believed the results of the study could be used to inform hours-of-service policy and to benefit 

safety in the trucking industry. The study utilized the Naturalistic Truck Driving Study (NTDS) 

data for its analysis. The study contained data from 96 truck drivers driving approximately 735,000 

miles. The analysis included the four types of SCEs used in Blanco et al. (2011): crashes, near-

crashes, crash-relevant conflicts, and unintentional lane deviations. For analysis, activities in the 

data set were categorized into work and non-work periods. Off-periods lasting less than 3 hours 

were reclassified as on-duty. On-duty periods lasting less than 7 hours were reclassified into 

adjacent on-duty work periods. The newly formed periods were created by merging consecutive 

off-duty periods and on-duty rest periods as working periods. 1,397 shifts (shifts shorter than 27.5 

hours) were focused on having one period of sleep in a non-work period.  

Four measures for sleep patterns were used: sleep duration, sleep start/end point in a non-

work period, and percentage of sleep. To identify sleep patterns, k-mean generated clusters were 

used. A negative binomial regression was used to model the association between SCEs and sleep 

patterns. Demographic results indicated that the average age was 44.4 years, and the average driver 

experience was 9.3 years. Cluster analysis results indicated that cluster 4 had the highest sleep 

percentage and sleep duration, followed by 3, 2, and 1, with 2 and 1 having similar durations. 

Clusters 3 and 4 had longer average working periods and driving durations than clusters 1 and 2. 
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Drivers worked and drove longer after having slept longer before work or tended to sleep longer 

before work knowing that they had to drive and work longer than usual. Analysis of sleep 

involvement between 1:00 and 5:00 am indicated that cluster 2 had a lower proportion of shifts 

with non-work periods between 1:00 and 5:00 am than cluster 1, cluster 3, and cluster 4. Cluster 2 

also had a lower proportion of shifts with sleep between the hours of 1:00 and 5:00 am. When 

taking shifts in clusters 3 and 4, drivers were more likely to sleep between 1:00 and 5:00 am. 

Assessing the impacts of sleep pattern on driving performance and risk indicated that shorter sleep 

periods at early stages of non-work periods were associated with higher SCE risk than longer sleep 

periods. Male drivers’ SCE rate was twice that of females. More experience was associated with a 

decreased SCE risk. Higher body mass index was associated with an increased SCE risk. 

2.2.4 Driving Style  

Hickman et al. (2014) aimed to determine whether or not trucks equipped with electronic 

hours of service recorders (EHSRs) had a higher crash risk and HOS violations that those without. 

Driving data from 11 carriers during a five-year period were used for the analysis, with 82,943 

crashes, 970 HOS violations, and 224,034 truck-years that drove a total of 15.6 billion miles. 

Carriers with EHSR devices were compared to carriers without EHSR devices to determine 

whether those that enforced HOS rules had fewer crashes. The analysis was divided into two 

cohorts, one examining the crash frequency and miles of trucks with EHSR and the other 

examining trucks without. The count-based Poisson regression model was utilized to model crash 

count data. Equipped trucks were found to have a 51 percent lower risk of driving-related HOS 

violations and a 49 percent lower risk of non-driving-related HOS violations.  Interesting data 

included the fact that HOS violations were lower for the EHSR cohort, and the majority of 

violations for both cohorts were non-driving related. Fatigue-related crash rates were similar 



 

26 

among EHSR and non-EHSR trucks. EHSR-equipped trucks had 12 percent and 5 percent lower 

crash rates and preventable crash rates, respectively. 

Chen and Xie (2015b) explored the relationship between multiday driving activity patterns 

and crash risk. The purpose was to determine how work schedules influence the risk of a crash, 

through which the goal was to determine which driving pattern was the safest. Data from large-

truck drivers were collected and included both temporal and crash records, in 15-minute blocks 

over several days, from two carriers. To perform this analysis, k-means clustering was used to 

group different driving patterns into strata, which could then be analyzed. Discrete-time logistic 

regression models were used for this analysis to quantitatively determine the crash odds associated 

with each driving pattern. The results of the study indicated that longer driving hours were 

associated with higher crash risk, and a 34-hr restart might increase risks. Crashes were more likely 

to occur during periods in the early morning and late afternoon, times associated with high on-

duty proportions, and corresponded to driving patterns 8 and 10 in the study. Another interesting 

result was that the eighth day had the highest crash risk. The driving patterns associated with the 

lowest crash risk had drivers working during the early morning (4:00 am) to noon. The driving 

patterns with the highest crash risk corresponded to having a long off-duty period and starting 

work in the late morning. Risk increased with driving in peak hours or with long hours. 

2.2.5 Distracted Driving 

Toole (2013) investigated the relationship between mobile device use (MDU), fatigue, 

through driving time and time on duty, drowsiness,and  through time of day and amount of sleep, 

for commercial motor vehicle drivers. The purpose of the investigation was to determine whether 

any of the mentioned relationships could be used to evaluate policy, such as HOS rules. Toole 

(2013) performed an analysis of naturalistic driving data collected by Blanco et al (2011). Odds 

ratios were used to calculate SCE risk for six mobile device use subtasks and each of the factors, 
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which were divided into smaller bins of hours for more specific information. A generalized linear 

mixed model (GLMM) was used to model the probability of the SCE/BL of interest with or without 

mobile device use as a function of driving time, time on duty, and time of day. Results indicated 

that MDU was higher in the early morning hours. Drivers had higher percentages of MDU during 

the circadian rhythm low morning bin than any other bins, which could indicate that drivers were 

drowsier at that time. Visual-manual subtasks were found to increase SCE risk. Visually 

demanding subtasks had an association with increased SCE risk; however, conversation using 

hands-free cell phone devices decreased SCE risk. An increase in SCE risk occurred for visual 

manual subtasks in all bins.  

Dingus (2014) sought to understand the risk associated with inattention and distracted 

driving among drivers. Data were from the Naturalistic Driving Study, Naturalistic Teen Driving 

Study, and Heavy Vehicle Drowsy Driver Warning System Field Operational Test, and The Impact 

of Hand-Held and Hands-Free Cell Phone Use on Driving Performance and Safety-Critical Event 

Risk. Safety critical events were recorded for all three studies. Odds ratios or linear regressions 

were created to determine relative risk for the four data sets. Tasks that caused drivers to take their 

eyes off the road were found to significantly increase risk. Teens had a significant increase in risk 

when eating and driving. Light-vehicle adults and teens had an increased risk when looking at 

external roadside objects, in contrast to truckers. External distractions for truckers and teens had 

the highest frequencies. Truckers ate, drank, and used tobacco frequently, while teens spent 

significant time eating. No notable relationship existed between frequency of task and odds ratio 

for the task. For all drivers, handheld cell phone use was risky and frequent, not including handheld 

or hands-free conversations. For truckers, conversations had protective effects. 



 

28 

Swedler et al. (2015) investigated how truck drivers decided whether to undertake 

distractions while driving. Data were collected through interviews and online surveys with truck 

drivers. A bivariate analysis was used to examine the correlation of norms, perceived behavioral 

control, and attitudes to intentions separately for both texting and dispatch device use. Bivariate 

analysis was used to examine the association of each of the four theory of planned behavior (TPB) 

constructs for texting and distracted driving with the four crash and near-crash outcomes. 

Multivariate regressions were initially conducted without intentions, then including intentions to 

determine whether they attenuated the effects of the other three TPB constructs. Qualitative data 

analysis results indicated that most surveyed drivers reported being concerned regarding driving 

performance while distracted. Supervisors were most frequently named as the outside factor that 

would most influence driver decision making. Drivers mentioned the benefits of using devices, 

such as staying in touch with family, contacting emergency services, and contacting management. 

Respondents also noted the usefulness of using devices to combat fatigue. Drivers also mentioned 

negative outcomes from taking eyes off the road to interact with devices.  

Drivers mentioned they felt there was a lot of personal control in whether or not to become 

distracted. Quantitative analysis results indicated that over half of the subjects in the texting and 

dispatch group reported crashing on the job; less than 20 percent reporting distraction-caused 

crashes. Regression analysis results for the texting group indicated that attitudes, norms, and 

perceived behavior control were significant in association with texting and dispatch device use. 

Significant multivariate results were present for the texting population with regard to distraction-

involved hard braking and distraction-involved swerving.  All four TPB constructs had 

associations with crashes, hard braking, and swerving. In regression analyses, drivers’ intentions 
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toward texting mediated the effects of the other TPB constructs for distraction-involved near-

crashes; intentions toward dispatch devices did not have the same effects.  
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3.0 Data Collection 

To uncover the potential confounding factors that might affect the relationship between 

HOS and SCEs of commercial motor vehicle drivers, a representative stated-preference survey 

was conducted and distributed to operators of commercial motor vehicles. The stated-preference 

survey was administered via the Qualtrics platform through Oregon State University. In total, the 

survey consisted of 511 responses representing CMV drivers that delivered goods in the Pacific 

Northwest. To ensure we got a random population sample, the origins of the surveyed drivers were 

included in the survey, and they are presented in figure 3.1.  

 

 

Figure 3.1 Origins of truck drivers who deliver goods in the Pacific Northwest 
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3.1 Survey Results 

The survey’s 63 questions were developed to help achieve the objective of the current 

study, including socioeconomic characteristics of drivers (e.g., age, gender, income, marital status, 

education status, etc.), the company characteristics (e.g., type of company, total number of trucks 

operating in the company, etc.), and so forth. In this section, a description of each question and the 

answers are provided.   

3.1.1 Do You Drive a Commercial Grade Truck for Your Profession? 

Figure 3.2 clearly shows that 100 percent of surveyed drivers drove their trucks for their 

own profession. This distribution of drivers’ responses were anticipated because the survey was 

developed to unveil the confounding factors in the relationship between HOS and SCE for CMV 

drivers. Therefore, all respondents drove their trucks for their own profession.  

 

 

 
 

Figure 3.2 Do you drive a commercial grade truck for your profession? 
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3.1.2 Do You Pick Up or Deliver Goods in the Pacific Northwest (Northern California, Idaho, 

Oregon, Washington, or British Columbia)? 

Responses to this question are illustrated in figure 3.3, which clearly shows that 100 percent 

of surveyed drivers positively responded to this question by confirming that they di pick up and 

deliver goods in the Pacific Northwest.  

 

 
Figure 3.3 Do you pick up or deliver goods in the Pacific Northwest (Northern California, Idaho, 

Oregon, Washington, or British Columbia)? 
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thoughtfully provide their best answers to each question in this survey so that we got the most 

accurate measures of drivers’ opinions, as shown below in figure 3.4. Nearly 100 percent of drivers 

selected “I will provide my best answers.” Therefore, the quality of our data was proved to be 

accurate.  
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Figure 3.4 Do you commit to thoughtfully providing your best answers to each question in this 

survey? 

 

 

3.1.4 Are You Male or Female? 

Figure 3.5 demonstrates that 77 percent of the surveyed drivers were male and female 

drivers constituted 23 percent of the observations.   

 
Figure 3.5 Are you male or female? 
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3.1.5 How Old Are You? 

Figure 3.6 shows the age distribution of surveyed drivers. Age was categorized into ordered 

age groups to easily visualize the age distribution. The drivers with ages between 30 and 39 years 

encompassed about 34 percent of the total sample. Younger drivers with ages between 20 and 29 

years were the second largest category with 26 percent of total surveyed drivers. Therefore, 

approximately 60 percent of drivers were between 20 and 39 years old. Other age categories were 

distributed with less frequencies than the first two categories.  

 

 

 
Figure 3.6 How old are you? 
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and less than 19,999 (3.3 percent).  

26.1%

33.6%

21.7%

13.4%

4.8%

0.4%

0

20

40

60

80

100

120

140

160

180

20-29 30-39 40-49 50-59 60-69 70 or more

How old are you?



 

35 

 

 

 
Figure 3.7 Which of the following annual income categories best describes you? 
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Figure 3.8 How are you normally paid? 

 

 

3.1.8 Which of the Following Categories Best Describes Your Marital Status? 

Roughly, 67.3 percent of drivers were married or had a defacto relationship, and 25.6 

percent were single, as shown in figure 3.9.  Separated or divorced drivers were 6.3 percent of 

surveyed drivers.  

 

 

 
Figure 3.9 Which of the following categories best describes your marital status? 
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3.1.9 What Is Your Highest Completed Level of Education? 

Figure 3.10 illustrates the highest completed level of education that drivers had. The 

majority of responses were that they had completed high school/technical school (28.4 percent), 

secondary diploma/degree (25 percent), and trade or technical certificate (23.5 percent). Also, 

nearly 16.2 percent of drivers had some secondary education, whereas drivers who had some high 

school/technical school and primary or elementary/middle school encompassed only 5.9 percent 

and 1 percent , respectively.   

 

 

 
Figure 3.10 What is your highest completed level of education? 
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hire and private (35.8 percent). Noted that about 1.4 percent of drivers did not know the type of 

company that they worked or contracted for or refused to respond.  

 

 
Figure 3.11 What type of company do you work or contract for? 
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3.1.13 On Average, How Many Freight-Related Trips Do You Make Weekly? 

Then, drivers were asked about the number of freight-related trips that they made weekly. 

The responses were disproportionate, as drivers’ responses ranged from 0 to 500,000 trips, with a 

mean of 1,428 trips. This variation in drivers’ responses reflected the importance of the companies 

that they worked with. 

3.1.14 On Average, How Many Miles Do You Drive Trucks Each Week? 

In this question, surveyed drivers were asked about the total number of miles they drove 

each week. The responses to this question had extreme variation, ranging from 1 to 25,000,000 

miles. Some responses were deemed outliers because some drivers reported that they drove 

25,000,000 miles each week. In fact, these responses contradicted FMCSA rules regarding HOS, 

in which drivers are limited to work no more than 70 hours within any period of eight consecutive 

days. 

3.1.15 About What Percentage of Your Total Freight-Related Trips (e.g,. Trips Loaded or 

Empty) Are within the Following Ranges (must add up to 100%)? 

The distribution of total freight related trips is shown in figure 3.12. Obviously, freight-

related trips of greater than 500 miles constituted the majority of drivers’ responses, with 25.9 

percent. Other categories regarding freight related trips are distributed as follows: trips between 

250 to 500 miles (23.2 percent), trips between 100 to 249 miles (20.7 percent), trips between 50 to 

99 miles (15.1 percent), and trips of fewer than 50 miles (15.3 percent).    
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Figure 3.12 About what percentage of your total freight related trips (e.g. trips loaded or empty) 

are within the following ranges (must add up to 100%)? 

 

 

3.1.16 On Average, What Type of Shipments Do Your Trips Consist of?  
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Figure 3.13 On average, what type of shipments do your trips consist of?  
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3.1.17 How Many Years Have You Been Driving Commercial Motor Vehicles? 

The majority of surveyed drivers, nearly two-thirds (66 percent), had been driving 

commercial vehicles for fewer than 10 years, while other responses were distributed a follows: 11 

to 20 years (21 percent), 21 to 30 years (9.3 percent), and more than 31 years (3.5 percent). Figure 

3.14 shows the distribution of the number of years that drivers had been commercial truck drivers. 

Drivers’ responses for this question ranged from 1 to 50 years of being truck drivers, with a mean 

of 10.58 years.  

 

 
Figure 3.14 How many years have you been driving commercial motor vehicles? 
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Figure 3.15 How did you learn to drive the semi-truck you drive? 
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Figure 3.16 Do you usually drive on? 
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Figure 3.17 How often would you check your truck over each week? 
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Figure 3.18 Do you participate in team driving? 
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Figure 3.19 When it comes to deciding where to stop to park? 
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 3.1.23 Have You Ever Had Any Specific Road Safety Training? 

As a means of enhancing traffic safety, in particular, for drivers of large trucks, safety 

training programs are important. To figure out whether drivers had taken any road safety training 

program, this question was developed. Figure 3.20 clearly shows that 87 percent of drivers had 

taken a certain training program, whereas 13 percent of them had not enrolled in any safety training 

programs.  

 

 

 
Figure 3.20 Have you ever had any specific road safety training? 
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Figure 3.21 How confident are you in your abilities to professionally drive a semi-truck? 

 

 

3.1.25 Which Situation Poses the Greatest Safety Hazard? 

Figure 3.22 presents drivers’ thoughts on the situation that thought posed the greatest safety 
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of the truck, back of the truck, and sides of the truck. These areas are called blind spots or no-zone 

areas on trucks. Clearly, about 40 percent of drivers thought that passenger vehicles on either side 

of their truck created the greatest safety concern, whereas passenger vehicles in front of and behind 

the truck accounted for 24 percent and 13.5 percent, respectively. Moreover, the presence of other 

trucks in the aforementioned blind spots also increased surveyed truck drivers concerns. Figure 

3.22 shows that drivers perceived safety hazards when trucks were in front (10.8 percent), on either 

side (8.6 percent), and behind (3.5 percent) their vehicle.  
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Figure 3.22 Which situation poses the highest safety hazard? 

 

 

3.1.26 Do You Change Lanes to Avoid Traveling with Other Vehicles? 

Figure 3.23 shows the distribution of drivers’ responses to the question about whether they 

changed lanes to avoid travelling with other passenger vehicles and trucks in the aforementioned 

blind spot areas. As seen in figure 3.23, when passenger vehicles approached the blind spots of 

truck drivers, the hazard of passenger vehicles being invisible was perceived as higher than a 
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Figure 3.23 Do you change lanes to avoid traveling with? 
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Figure 3.24 How often do you find your concentration lapsing after driving for a long time? 

 

 

3.1.28 Do You Use a Cell Phone While Driving? (either handheld or hands-free) 

As seen from figure 3.25, about 45 percent of surveyed drivers confirmed that they used 

their cell phones while driving, while 55 percent of them responded that they did not use it.  

 

 

 
Figure 3.25 Do you use a cell phone while driving? 
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3.1.29 How Long Are You Usually on the Phone While Driving (in minutes)? 

Drivers who responded that they used their cell phones while driving were asked to provide 

the number of minutes they used their cell phones while driving. The responses were distributed 

from 1 to 200 minutes, with a mean of 18.1 minutes.  

3.1.30 During the Last Five Years How Many Accidents Have You Had That the Police Had to 

Attend? 

Roughly 76 percent of surveyed drivers had not been involved in any accidents during the 

last five years, as illustrated in figure 3.26. Other drivers indicated that they had been involved in 

one (12.9 percent), two (6.3 percent), three (3.1 percent), and four or more (1.6 percent) accidents.  

 
 

Figure 3.26 During the last 5 years how many accidents have you had in which the police had to 

attend? 
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truck drivers are more prone to roadway departure crashes that stem from factors such as fatigue, 

falling asleep, and other driver-related factors.   

  

 
Figure 3.27 Did this accident/any of these accidents not involve other vehicles (e.g. you ran off 

the road/hit something on the road)? 
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57.4%

42.6%

0

10

20

30

40

50

60

70

80

Yes No

Did These Accidents Not Involve Other Vehicles?



 

53 

 
Figure 3.28 Thinking about the last accident you had - was your truck loaded or unloaded at the 

time? 
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accident. However, three responses were excluded because they provided unreasonable answers. 
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3.1.34 How Far Had You Driven before You Had That Accident?  

Of the drivers who responded to the previous question by providing a number of miles, 68 

drivers provided an estimate of how far they had driven before they had that accident. Their 

responses ranged from 2 to 350,000 miles, with a mean of 5,847 miles.  

3.1.35 Which Road Type Were You Driving on During Your Last Crash? 

Figure 3.30 shows the roadway types that drivers were driving on during their last crash. 

About 62 percent of crashes involving large trucks occurred on highways, and roughly 21 percent 

of the crashes took place on rural roadways. City roads experienced about 16.5 percent of the 

crashes involving large trucks.  

 

 
Figure 3.30 Which road type were you driving on during your last crash? 
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rainy for 24.6 percent. Extreme weather conditions such as snow and fog accounted for 4.1 percent 
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Figure 3.31 What weather conditions were present at the time of crash? 

 

3.1.37 What Time of Day Did Your Crash Occur? 
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performance.   
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3.1.38 How Much Time Had Passed Since Your Last Break before the Crash Occurred? 

As illustrated in figure 3.33, about 39 percent of drivers reported that 2 to 3 hours had 

passed since their last break before the crash occurred, and 23 percent of them indicated that 1 to 

2 hours had passed since the last break. Of the other drivers responding to this question,  17.4 

percent of them stated that 4 to 5 hours had passed, 12.4 percent of them said 5 hours, and 8.3 

percent said less than an hour.  

 

 
Figure 3.33 How much time had passed since your last break before the crash occurred? 
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Figure 3.34 Do you feel operating trucks in mixed traffic poses any safety hazard to you? 

 

 

3.1.40 When Do You Normally Start Your Work? 

The times of day that drivers usually started their work are presented in figure 3.35. Drivers 
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Figure 3.35 When do you normally start your work? 

 

 

3.1.41 When Do You Normally Start Driving? 

Similar to the trend revealed by the previous question, the majority of drivers started their 

driving in the early morning (25.8 percent) and morning (48.7 percent) , as illustrated in figure 

3.36. Other drivers stated that their driving times started in the midday (14.5 percent), afternoon 

(6.5 percent), and evening (4.5 percent).  
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3.1.42 What Time of Day Do You Think Is the Safest Time to Drive Your Truck? 

Figure 3.37 illustrates the distribution of the times of day that drivers said it would be the 

safest to drive their trucks. Roughly 36 percent of drivers stated that early mornings (from midnight 

to 5:59 am) was the safest time. Other drivers believed that mornings (21.7 percent), midday (24.7 

percent), afternoons (3.9 percent), and evenings (13.5 percent) were the safest times.  

 

 

 
Figure 3.37 What time of day do you think is the safest time to drive your truck? 
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evening. Finally, 4.0 percent of drivers surveyed claimed that they did not have difficulty in finding 

safe truck parking.  

 

 
Figure 3.38 In your experience, what times of the day have you found to be the MOST difficult 

in finding safe truck parking?  

 

 

3.1.44 In Your Experience, What Days of the Week Have You Found to Be the MOST Difficult 

for Finding Safe Truck Parking? 

The days of week that were reported to be the most difficult for finding safe truck parking 
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Figure 3.39 In your experience, what days of the week have you found to be the most difficult in 

finding safe truck parking?  

 

 

3.1.45 Which Months of the Year Have You Found to Be the MOST Difficult for Finding Safe 

Truck Parking? 

Roughly 17.4 percent of drivers stated that December is the most difficult month for finding 

safe truck parking, as illustrated in figure 3.40. January and July were selected to be difficult by 

11.8 percent and 11.5 percent of drivers, respectively. Responses for other months were as follows: 

February 8.0 percent, March 4.7 percent, April 3.9 percent, May 5.7 percent, June 9.9 percent, 

August 7.8 percent, September 5.0 percent, October 4.8 percent, and November 9.5 percent.   

 

 
Figure 3.40 Which months of the year have you found to be the most difficult in finding safe 

truck parking? 
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3.1.46 How Often Does the Lack of Available Parking Cause Problems with Adhering to the 

Hours of Service Limitations? 

This question was intended to determine whether the lack of available parking caused 

problems with adhering to the hours of service limitations. Drivers’ responses indicated that for 

about 55.8 percent of respondents, failure to find truck parking sometimes affected the hours of 

service limitations, as depicted in figure 3.41. Nearly, 23.1 percent of drivers stated that it almost 

never affected HOS. On the other hand, 14.9 percent of drivers thought this issue frequently caused 

problem with HOS limitations, and 6.3% said it almost always did.    

 

 

 
Figure 3.41 How often does the lack of available parking cause problems with adhering to the 

hours of service limitations? 
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Figure 3.42 Does your routing software accurately provide you with the location of truck 

parking on routes? 

 

3.1.48 Does Your Company Monitor Levels of Fatigue in Drivers? 

Figure 3.43 presents answers to the question about whether the driver’s company 
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Figure 3.43 Does your company monitor levels of fatigue in drivers? 
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Figure 3.44 When managing drivers working hours does your company put a restriction on any 

of the following? 

 

 

3.1.50 How Does Your Company Monitor Driver Fatigue? 
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Figure 3.45 How does your company monitor driver fatigue? 
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than stop to take breaks; 31.0 percent said they rarely felt they needed to take breaks when driving 

long distances; 43.6 percent said that drivers were always allowed sufficient time to reach their 

destination; and 40.6 percent  said the schedule imposed by their companies made it easy for them 

to take a break whenever they felt they needed to.        

 
 

Figure 3.46 How is fatigue managed? 
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Figure 3.47 When required to rest, have you experienced any problems finding a safe and 

adequate location to park your truck? 
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opinion. 
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Figure 3.48 How well do you feel that fatigue is managed in the industry now?  
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Figure 3.49 How often do you drive when tired? 
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3.1.55 Do You Feel You Get Enough Time to Stop to Rest When You Feel Tired? 

Figure 3.50 shows the percentages of driver responses to the question about whether they 

got enough time to stop to rest when they felt tired. Approximately, 80 percent of drivers stated 

that they got enough time to stop to rest when they felt tired, whereas 20 percent said they did not 

get such time to rest.   

 

 
Figure 3.50 Do you feel you get enough time to stop to rest when you feel tired?  

 

 

3.1.56 When You Are Making a Longer Trip, How Often Do You Stop? 

To understand how drivers dealt with fatigue and tiredness, they were asked how often they 

stopped when making a long trip. Figure 3.51 clearly shows that 26.4 percent of drivers stopped 

to rest every three to four hours, 21.3 percent of them stopped every four to five hours, 19.6 percent 

stopped every two to three hours, and 12.5 percent stopped to rest whenever they felt tired. 

Stopping every five to six hours accounted for 11.7 percent, while 6.5 percent of drivers said that 

they stopped every six to eight hours. Interestingly, 2.0 percent of drivers claimed that they never 

stopped to rest at all.  
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Figure 3.51 When you are making a longer trip, how often do you stop?   

 

 

3.1.57 If Trucks Are Required to Have Electronic Logging Devices Installed That Have the 

Capability to Monitor Truck Operations and Movement, Will That Impact Your 

Driving/Operations Decisions? 

Figure 3.52 shows the drivers’ responses to a question about the effects of installing 

electronic devices that could monitor truck operations and movement on drivers’ 

driving/operations decisions. Drivers’ responses were split into three choices: drivers who 

indicated that would affect their driving/operations decisions (37.8 percent), drivers who were not 

sure whether that would influence their driving/operations decisions or not (38.0 percent), and 

drivers who did not think installing such devices would impact their driving/operations decisions 

(24.3 percent).  
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Figure 3.52 If trucks are required to have electronic logging devices installed that have the 

capability to monitor truck operations and movement, will that impact your driving/operations 

decisions?   

 

 

3.1.58 If Trucks Are Required to Have Electronic Logging Devices Installed, Would the Amount 

of Time You Spend Driving Change? 

Drivers had different opinions about the effects of installing electronic logging devices on 

the amount of time they would spend driving, as shown in figure 3.53. The majority of drivers 

(45.8 percent) did not think these devices would change their driving times. However, 28.2 

percent of drivers stated that installing electronic logging devices would lead to a small decrease 

in the amount of time they spent driving, and 10 percent said it would lead to a large decrease. In 

addition, other drivers said such devices would exacerbate driving times, which in turn would 

result in a small increase in their driving times (10.8 percent) and a large increase (5.2 percent). 
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Figure 3.53 If trucks are required to have electronic logging devices installed, would the amount 

of time you spend driving change? 

 

 

3.1.59 How Often Do You Drive a Tractor with Two Trailers? 

Figure 3.54 shows the drivers’ answers to the question about how often they drove a tractor 

with two trailers. Nearly 28.2 percent of drivers indicated that they almost never did that. About 

27.2 percent stated that they sometimes drove a tractor with two trailers, and 21.1 percent of them 

rarely drove such trucks. Other drivers said that they drove a tractor with two trailers very often 

(10.2 percent) and quite often (13.3 percent).   
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Figure 3.54 How often do you drive a tractor with two trailers?  

 

 

3.1.60 Is Driving and Operating a Tractor with Two Trailers More Challenging Than a Tractor 

with One Trailer? 

As shown in figure 3.55, roughly 68 percent of surveyed drivers said that driving and 

operating a tractor with two trailers was more challenging than a tractor with one trailer, while 20 

percent did not have problems with driving and operating a tractor with two trailers. The rest of 

the drivers (12 percent) responded that driving such trucks might be associated with more 

challenges than driving and operating a one trailer.   
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Figure 3.55 Is driving and operating a tractor with two trailers more challenging than a tractor 

with one trailer?  

 

 

3.1.61 Would Driving a Tractor with Two 33-ft. Trailers Be More Challenging or Dangerous 

Than a Tractor with Two 28-ft. Trailers? 

In terms of the potential safety hazards and challenges associated with driving a tractor 

with two 33-ft. trailers as opposed to a tractor with two 28-ft. trailers, 60.3 percent of drivers said 

they felt that driving a tractor with two 33-ft. trailers was more challenging, as presented in figure 

3.56. Another 25.8 percent of drivers stated that there was not much difference in driving the two 

trucks, and 13.9 percent of drivers did not have any idea or they did not know.  
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Figure 3.56 Would driving a tractor with two 33-ft. trailers be more challenging or dangerous 

than a tractor with two 28-ft. trailers?  

 

 

3.2 Summary of the Survey Results  

A representative stated-preference survey was designed and distributed to truck drivers 

who were destined for or who originated from the Pacific Northwest—namely, Washington state, 

Oregon, and Idaho. The stated-preference survey was administered through the Qualtrics platform 

of Oregon State University, and it was conducted over 16 consecutive days between August 17, 

2017, and September 1, 2017. To eliminate the possibility of multiple entries from the same 

participant, IP addresses and user IDs were collected.  The representative sample consisted of 515 

participants (from a total of 1,919—a 26.8 percent response rate), all truck drivers. The survey was 

conducted to help us better understand the confounding factors of large trucks in SCEs. Drivers of 

large trucks in the Pacific Northwest were asked several questions to provide their opinions about 

factors that could help researchers in identifying the most important factors that influence drivers’ 

choices related to SCEs and to help capture the confounding factors, as well.  

In this study, participants were required to be truck drivers, to hold a commercial driver’s 

license, to be at least 18 years old, and to be destined for or to originate from the Pacific Northwest. 

The survey was composed of several sections: (1) socioeconomic characteristics, (2) business 
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characteristics, (3) driving characteristics, (4) accident characteristics, (5) time-of-day operations, 

(6) driving management (fatigue and hours of service), and (7) truck configuration characteristics. 

For socioeconomic characteristics, participants were asked to provide demographic information 

such as age, gender, income, marital status, education, payment method, driving experience, type 

of shipment carried, road safety training (whether they had received such training), and 

participation in team driving.  

The second section, business characteristics, asked questions related to industry type, 

company operational characteristics, and average distances traveled. The driving characteristics 

section asked participants questions about their ability and confidence regarding driving a semi-

truck, average speeds in various situations, roadway facility types, cell phone use while driving, 

frequency of lapses in concentration after driving for long periods, frequency of lane changing to 

avoid traveling with other vehicles, and situations that posed the greatest safety hazards to drivers. 

For the accident characteristics, drivers were asked about their involvement in accidents, the 

number of accidents over a 5-year period, the types of accidents, and the weather conditions at the 

time of the accident.  

With regard to time-of-day operations, drivers were asked about the time of day they started 

working and driving, the safest time of day to drive trucks, and the most difficult time of- ay, day 

of the week, and month to find safe and adequate truck parking. Questions were asked about fatigue 

management, including the effects of fatigue on adhering to hours-of-service requirements. Lastly, 

questions were asked about truck configurations.   

Male drivers constituted 77 percent of the participants, whereas 23 percent were female. 

Roughly, 60 percent of drivers were between 20 and 39 years.  As for the type of shipment, nearly 

82 percent of drivers’ trips were truckload shipments. In terms of number of years the surveyed 
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drivers had been driving large trucks, two-third (66 percent) of drivers had been driving a truck 

for 10 years or less. 43 percent of drivers revealed that they learned how to driver a semi-truck in 

a driving school. Further, a majority of drivers (87 percent) seemed to have a particular road safety 

training. In regard to team driving, the majority of drivers sometimes (31 percent), rarely (29 

percent), and never (23 percent) participated in team driving. the drivers’ history of accidents was 

been examined by asking them to reveal how many accidents they had been involved with in the 

last five years. Roughly, 76 percent of drivers reported that they had not had any accidents. 

Regarding actions that might distract drivers and alter their attention away from driving, 45 percent 

of drivers stated that they used a cell phone while driving.   
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4.0 Analytical Framework 

This chapter discusses how some questions from the survey were used to estimate models 

to help us highlight the factors that impact drivers’ behavior. These were use of cell phones while 

driving and the lane changing maneuvers of truck drivers, as well as their underlying factors. Each 

one of these is discussed in detail in the following sections.  

4.1 Understanding Truck Driver Behavior with Respect to Cell Phone Use and Vehicle 

Operation 

4.1.1 Background  

As technology continues to penetrate and transform all aspects of society, there has been 

an increasing interest in understanding the effects of distracted driving, particularly due to cell 

phone use, on transportation safety (Haigney et al., 2000; Klauer et al., 2006; Farmer et al., 2010; 

Stavrinos et al., 2013; Oviedo-Trespalacios et al., 2017b). This interest stems from an increase in 

distracted driving related crashes. Fatalities involving cell phone use throughout the United States 

increased from 385 in 2011 to 476 in 2015, or 23.6 percent (National Center for Statistics and 

Analysis, 2017a). These values are grossly underreported because of a lack of methods and/or 

procedures to assess the culpability of cell phone use while driving. Furthermore, traffic fatalities 

that were attributed to distracted driving had a larger percentage increase (8.8 percent) from 2014 

than alcohol-impaired or speed-related fatalities (National Center for Statistics and Analysis, 

2017a). Of special interest are fatalities involving large truck crashes (vehicles weighting more 

than 10,000 pounds), which have continued to increase since 2009. In 2015, 4,067 were killed in 

crashes involving large trucks in comparison to 3,380 in 2009, a 20 percent increase (National 

Center for Statistics and Analysis, 2017b).  

Regarding economic impacts, distracted driving related crashes are quite significant. In 

2010, distracted driving fatalities accounted for roughly $40 billion in economic costs and $123 
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billion in societal costs, which equate to 16 and 15 percent, respectively, of the total economic 

impacts and societal harm caused by motor vehicle crashes in 2010 (Blincoe et al., 2015).  With 

regard to large trucks, Zaloshnja & Miller (2007) estimated the average cost (in 2005 USD) of 

property damage only (PDO), non-fatal, and fatal crashes involving large trucks to be 

approximately $15,114, $195,258, and $3,604,518, respectively. In 2017 dollars, these values 

equate to about $19,500, $252,500, and $4,700,000, respectively (Bureau of Labor Statistics, 

2017). These statistical and economic findings indicate a need for distracted driving research 

especially for cases in which cell phone use while driving could be a leading factor, particularly 

for crashes involving large trucks.  

Although there have been several efforts to understand large truck-involved crashes 

(Pahukula et al., 2015; Al-Bdairi and Hernandez, 2017; Anderson and Hernandez, 2017; Al-Bdairi 

et al., 2018), the relationship among cell phone use, distracted driving, and large truck-involved 

crashes is not completely understood. This may be attributed to the fact that in most distracted 

driving studies, data are derived from either naturalistic or simulator studies, which are both time 

and cost intensive, or crash data, which are retroactive in nature and typically result in significant 

amounts of unknown or missing information (Regan et al., 2008). Furthermore, the majority of the 

efforts to understand distracted driving have only been applied to passenger vehicles (Klauer et 

al., 2006; Dingus et al., 2016). Few studies have examined the prevalence and associated crash 

risk of distracted driving among commercial motor vehicles by combining and assessing 

naturalistic observation data sets on large truck drivers (Olson et al., 2009; Hickman and 

Hanowski, 2012). While studies conducted by Hickman and Hanowski (2012) and Olson et al. 

(2009) provided insight into the frequency and crash risk of distracted driving among commercial 



 

82 

motor vehicle drivers, they did not assess the contributing factors that influence truck drivers’ 

decisions to use a cell phone, or participate in a secondary task, while driving.  

Therefore, the main objective of this study was to seek and gain a better understanding of 

the factors that influence truck drivers’ decisions to use electronic mobile devices while driving. 

To accomplish this, a stated-preference survey distributed in 2017 to drivers of large trucks who 

originated, were destined to, or passed through the Pacific Northwest (Washington, Oregon, Idaho) 

was utilized. A random parameters binary logit modeling framework is then used and estimated to 

gain insights into the complex interactions among the factors captured through the survey and 

those unobserved factors (i.e., unobserved heterogeneity) that might be influencing cell phone use 

while driving.  In doing so, this study sought to provide additional insight into the prevalence of 

cell phone use by drivers of large trucks to aid government agencies and private carriers in 

identifying and/or developing potential countermeasures that can then be used to mitigate 

electronic device use while driving. 

Previous research on distracted driving has concluded that a consistent definition of the 

term has yet to be achieved. Still, multiple authors have determined that distracted driving is a 

result of attention being diverted away from the driving task to a competing activity that is not 

related to safe driving (Ranney et al., 2000; Young and Regan, 2007; Lee et al., 2008; Regan et 

al., 2011). Regan et al. (2011) developed a taxonomy of driver distraction that included five sub-

categories: restrictive, mis-prioritized, neglected, cursory, and diverted attention. These sub-

categories considered driver inattention due to both driving and non-driving related activities, such 

as using a cell phone while driving, being consumed in internal thoughts, or reading a road 

information sign. Since driver distraction is a vast problem resulting from diverted attention, cell 

phone use while driving is a subset of a larger distraction problem; however, understanding its 
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effects and the factors that lead individuals, or drivers of large trucks, to use cell phones while 

driving will significantly improve roadway safety. 

While research on distracted driving by drivers of large trucks is scarce, the effects of cell 

phone use on driving have been widely studied in the context of passenger cars (Haigney et al., 

2000; Dingus et al., 2006, 2016; McEvoy and Stevenson, 2007; Caird et al., 2008; Regan et al., 

2008; Beanland et al., 2013). In two naturalistic studies, cell phone use was present in about 23 

percent of all crashes and near-crashes, and at least one form of driver inattention in as much as 

78 percent of all safety critical events for passenger vehicles (Klauer et al., 2006; Regan et al., 

2008). Although there is an association between crash occurrence and cell phone use, some studies 

have shown that talking or listening on a cell phone, either handheld or hands free, does not 

significantly increase the odds of being involved in a safety critical event (Klauer et al., 2006; 

Hickman and Hanowski, 2012). Still, subtasks of cell phone use, such as texting, emailing, or 

operating the phone, increased crash risk odds by at least 3.5 times and as high as 164 times (Klauer 

et al., 2006; Hickman and Hanowski, 2012). The increased association with cell phone use and 

safety critical events may be due to increased cognitive load caused by cell phone use while 

driving. These studies have proved that driver distraction, particularly cell phone use, is a common 

occurrence on roadways and increases the chances of being involved in a safety critical event. 

Turning to large trucks, naturalistic study data on drivers of large trucks have produced 

findings consistent with the results from passenger car studies in that 60 percent of all crashes and 

near-crashes in which the driver of the large truck was at-fault involved one secondary task (Olson 

et al., 2009). Data from the Large Truck Crash and Causation Study (LTCCS), which used police 

reports and interview information, were consistent with this finding, and it reported that 35 percent 

of truck-involved crashes involved some form of driver recognition error (this includes internal 
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and external distractions) (Federal Motor Carrier Safety Administration, 2005). Specifically, 12 

percent of crashes in which a large truck was assigned the critical reason for the crash were due to 

either internal or external distraction, or inattention (Federal Motor Carrier Safety Administration, 

2005). As mentioned previously, talking or listening on a cell phone, either handheld or hands free, 

does not significantly increase the likelihood of being involved in a safety critical event. However, 

among drivers of large trucks, complex cell phone tasks, such as texting or emailing, increased the 

odds of being involved in a crash or near-crash by 164 times. Furthermore, engaging in either a 

complex tertiary task (interacting with a dispatch device, dialing a cell phone) or moderate tertiary 

task (use of another electronic device, talking/listening to a CB radio) increases the chances of 

being involved in a safety critical event by 10.34 and 1.30 times, respectively (Olson et al., 2009). 

The significant increase in crash risk for drivers of large trucks prompts the need for research to 

understand and reduce the effects of cell phone use on truck-involved crashes. Combined with the 

understanding that large truck-involved crashes are more severe than passenger car only crashes, 

and that truck drivers need to engage more frequently with electronic devices to perform their jobs, 

research in this area is needed to improve roadway safety. 

Previous findings on distracted driving, for both passenger cars and truck drivers, are vital 

contributions to engineering safety, but they are limited. Data that derive from police crash reports 

are subject to bias and significant amounts of unknown or missing information (Gordon, 2009). 

While naturalistic data describe drivers in real-time driving conditions, they are often time, cost, 

and data intensive. Additionally, the statistical measures that have been used in these studies have 

been limited and have not accounted for any unobserved heterogeneity in the data collection 

process or contributing factors to critical safety events. The results from these studies have utilized 

simple statistical measures to determine either the odds ratios of being involved in safety critical 
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events or prevalence and frequency of driver distraction in vehicle crashes (Hanowski et al., 2005; 

Dingus et al., 2006; Olson et al., 2009; Asbridge et al., 2012).  

To overcome these shortcomings, a few studies have ventured away from traditional 

distracted driving study methods to assess the personal and behavioral information that influences 

cell phone use while driving (Márquez et al., 2015; Kidd et al., 2016; Oviedo-Trespalacios, et al., 

2017b). Marquez et al. (2015) and Oveido-Trespalacios et al. (2017b) collected survey data 

regarding cell phone use while driving and used an integrated choice latent variable model, a mixed 

logit model, and a binary logit model to identify parameters influencing cell phone use while 

driving.  Factors found in these studies, from the perspective of passenger car drivers’ decisions to 

use a cell phone while driving, included age, driving experience, risk perception, and urgency of 

call (Márquez et al., 2015; Oviedo-Trespalacios, et al., 2017b). Additionally, Kidd et al. (2016) 

conducted roadside observations of motorists at different roadway characteristics, such as free-

flow traffic, time-of-day, and at controlled intersections. The results of this study identified 

roadway and driver characteristics that affect the prevalence of any secondary behavior (Kidd et 

al., 2016). These studies were instrumental for improving roadway safety, as they helped identify 

the contributing factors influencing cell phone use while driving, and agencies can use this 

information to mitigate the occurrence of distracted driving by tailoring outreach initiatives to 

specific groups. However, despite providing useful information, these studies were limited to 

passenger car drivers and statistical models that did not account for unobserved heterogeneity. 

One study did investigate the demographic and occupational characteristics of heavy-

vehicle drivers that influence the likelihood of using a cell phone while driving. Troglauer et al. 

(2006) collected survey data from 1,153 professional truck drivers in Denmark to determine the 

extent of phone use among heavy-vehicle drivers through an ordinal logistic regression model. 
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Through this methodology, the study determined the odds of different demographic and 

occupational characteristics leading to a higher prevalence of phone use among heavy-vehicle 

drivers. Additionally, this study reported that 99 percent of the respondents indicated that they 

used their cell phone while driving (Troglauer et al., 2006). Coupled with the fact that large truck-

involved crashes are more severe than passenger car only crashes, this finding is disturbing, since 

cell phone use while driving has been proved to significantly increase crash risk (Chang and 

Mannering, 1999; Klauer et al., 2006). Although this study identified certain driver characteristics 

that made use of a cell phone while operating a heavy-vehicle more likely, the statistical procedure 

used did not account for the unobserved heterogeneity that is inherent in any survey data, which 

in turn resulted in erroneous estimates and corresponding inferences (Mannering et al., 2016).  

The present study expanded upon the work conducted by Oveideo-Trespalacios et al. 

(2017b), Marquez et al. (2015), and Toglauer et al. (2006) by collecting survey data distributed to 

drivers of large trucks who originated, were destined to, or passed through the Pacific Northwest 

(Washington, Oregon, Idaho). By using a random parameters binary logit model to identify the 

factors that influence the likelihood that truck drivers’ would report using a cell phone while 

driving, the present study was intended to overcome the limitations of previous studies by 

accounting for unobserved heterogeneity (unobserved factors) present in the data collection 

process. By understanding the factors that lead to truck drivers using a cell phone while driving, 

commercial motor carriers and government entities can implement mitigation strategies tailored to 

specific groups that may reduce the occurrence of cell phone use while driving among large truck 

drivers. To the authors’ knowledge, this study was one of the first to use a random parameters 

methodology to determine the contributing factors that influence cell phone use among drivers of 

large trucks.  
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4.1.2 Analysis Process 

Of specific interest to this study was the following question: Do you use a cell phone while 

driving (either handheld or hands-free)? This question presented a binary choice to respondents, 

as they were required to respond with either yes or no. Figure 4.1 shows the frequency of 

respondents that responded yes or no to using a cell phone while driving. This finding is consistent 

with past studies that determined that about 50 percent of surveyed respondents used a cell phone 

while driving (Nurullah et al., 2013; Schroeder et al., 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Percentage of respondents who indicated using a cell phone while driving 

 

 

To corroborate the increased crash risk associated with cell phone use while driving, self-

reported crash history was disaggregated on the basis of cell-phone use. In the survey, respondents 

were asked, “During the last 5 years how many accidents have you had which the police had to 

attend?” Respondents had to respond either one, two, three, four or more, or none. The initial 

survey analysis, as shown in figure 4.2, revealed that 24 percent of respondents indicated that they 

were involved in at least one crash in the past five years that the police had to attend. Of these 
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respondents who indicated being involved in at least one crash in the past 5 years, 57 percent also 

reported that they used their cell phone while driving, as shown in figure 4.3. A t-test was 

conducted between these two groups and determined a statistically significant difference at the 

99th percentile. Because the question was posed to the general use of cell phones while driving, 

this initial data comparison complements the findings of Olson et al. (2009) and Klauer et al. 

(2006) that using a cell phone while driving leads to higher crash involvement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Self-reported crash history 
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Figure 4.3 Respondents who indicated using their cell phone while driving and being involved 

in at least one crash in the past 5 years 

 

4.1.3 Methodology 

As mentioned previously, the binary logit modelling framework has been applied in various 

areas of transportation engineering (Young and Liesman, 2007; Lee and Abdel-Aty, 2008; 

Moudon et al., 2011; Oviedo-Trespalacios, et al., 2017b), in which Anderson et al. (2018) have 

recently and successfully applied this framework to truck driver survey data. Further, studies have 

expanded on the traditional logit modelling framework by utilizing a random parameters, or mixed 

logit, methodology to account for unobserved heterogeneity in the data (Milton et al., 2008; 

Morgan and Mannering, 2011; Islam et al., 2014; Pahukula et al., 2015; Anderson and Hernandez, 

2017). In this study, the use of a cell phone while driving was a binary choice; either the driver 

used a cell phone while driving or the driver did not. Finally, because the survey data had inherent 

unobserved heterogeneity, a random parameters binary choice modelling framework was an 

appropriate technique for assessing drivers’ decisions on using a cell phone while driving. 

Because of the binary nature of the selected response variable, a binary logistic regression 

model was applied. The two possible outcomes for the response variable are represented by the 

following: 1 if a driver reported using a cell phone while driving, and 0 otherwise (driver did not 

report using a cell phone while driving). Equation 4.1 is used to estimate the probability that the 

outcome takes the value of 1 (using cell phone while driving) as a function of covariates 

(McFadden, 1973; Washington et al., 2011):  

 

𝑃𝑛(𝑖) =
𝑒(𝛽̂)

1+𝑒(𝛽̂)
   where   𝛽̂ = 𝛽0 + 𝛽1𝑋1,𝑛 +⋯+ 𝛽𝑖𝑋𝑖,𝑛                                                           (4.1) 
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where 𝑃𝑛(𝑖) is the probability that a truck driver uses a cell phone while driving (i.e., the 

outcome takes on the value 1); 𝛽 ̂is a vector of estimated parameters; and 𝑋 is a vector of 

explanatory variables (i.e., indicator variables coded from the survey data).  

One shortfall of survey data is that responses can potentially have unobserved 

heterogeneity, or variation, across drivers. Within our data, there existed a significant amount of 

information that affects the likelihood of using a cell phone while driving that was not capable of 

being measured for analysis. Type of driver behavior (i.e., aggressive vs. passive), forgetfulness, 

and reporting false information (i.e., indicating no cell phone use while driving to comply with 

laws and policies) were possible unobserved factors that could affect model results for cell phone 

use while driving. However, these unobserved factors were not captured in the data through the 

survey responses. This inherent limitation of survey data will result in erroneous model estimates 

and, therefore, inferences if this unobserved heterogeneity is not accounted for in the model 

(Mannering et al., 2016). To account for potential heterogeneity within the data, a random 

parameters methodology was applied to allow estimated parameters to vary across observations, 

as illustrated in equation 4.2. 

 

𝑃𝑛(𝑖|𝜑) = ∫
𝑒(𝛽̂)

1+𝑒(𝛽̂)
𝑓(𝛽̂|𝜑)𝑑𝛽̂

𝑋
                                                                                                    (4.2) 

 

where 𝑃𝑛(𝑖|𝜑) is the weighted average of 𝑃𝑛(𝑖) taking on the value of 1 determined by the density 

function, 𝑓(𝛽̂|𝜑). The density function, 𝑓(𝛽̂|𝜑), is a given distribution determined by the analyst 

(i.e., normal, uniform, triangular, etc.) that enables 𝛽 to account for driver-specific variations of 

the effects of 𝑋 on outcome probabilities, 𝑃𝑛(𝑖|𝜑) (Washington et al., 2011). Although the density 
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function 𝑓(𝛽̂|𝜑) can utilize different distributions, only the normal distribution is found to be 

statistically significant (based on significance of the standard deviations) and used in the current 

study. To simulate maximum likelihood estimation of the random parameters binary logit model, 

200 Halton draws were used, as they have been proved to be computationally efficient and 

preferred over purely random draws (Halton, 1960; Train, 2000; Bhat, 2003). 

Lastly, marginal effects were used to measure variable impact on the use of a cell phone 

while driving. Marginal effects measure the change in outcome probability due to a one-unit 

increase in an explanatory variable while holding all variables constant (equal to their means). This 

provides the analyst with an absolute change in probability on the outcome due to an explanatory 

variable. In this study, only indicator variables were found to be significant. Therefore, marginal 

effects were computed as the difference in probability as indicator variable 𝑋𝑘 changes from zero 

to one while all other variables remain equal to their means (Greene, 2012): 

 

𝑀𝐸𝑋𝑘
𝑃𝑛(𝑖) = Prob[𝑃𝑛(𝑖) = 1 | 𝑋𝑘 = 1] − Prob[𝑃𝑛(𝑖) = 1 | 𝑋𝑘 = 0]                                            (4.3) 

 

4.1.4 Estimation Results   

To estimate the random parameter binary logit model, only variables that were significant 

at the 95  confidence level were retained. Computed log-likelihood and Akaike information criteria 

(AIC) values were used to assess model improvement. With these criteria, the final model included 

16 fixed parameters (i.e., the variables were homogeneous across drivers) and seven random 

parameters (i.e., the variables were heterogeneous across drivers). The results of this final model 

are shown in table 4.1, which include model specifications and corresponding marginal effects. 

The results of the likelihood ratio test determined that the random parameters binary logit model 
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was statistically superior over its fixed parameters counterpart with over 90 percent confidence. 

The log-likelihood at convergence of the fixed and random parameters binary logit models were -

304.53 and -298.47, respectively. The resulting chi-square statistic was 12.12, with seven degrees 

of freedom, which was equal to the number of random parameters. The associated p-value for this 

statistic was 0.0967, which suggests that, with over 90 percent confidence, the null hypothesis 

could be rejected and the random parameters model was statistically preferred over the fixed 

parameters model. Furthermore, this result indicated that there was indeed variation across drivers 

regarding specific characteristics that impact a driver reporting use of a cell phone (or not). 

 

 

 

 

 

 

 

Table 4.1 Random parameters binary logit model for predicting cell phone use among truck 

drivers 

Variable Coefficient t-statistic 
Marginal 

Effect 
t-statistic 

Constant -4.18 -5.34   

Driver Characteristics     

Age (1 if between 18 and 25, 0 otherwise) -1.84 -3.60 -0.357 -2.67 

(Standard Deviation of Parameter, Normally 

Distributed) 
(1.41) (2.41)   

Marital Status (1 if single, 0 otherwise) -3.79 -5.98 -0.735 -3.44 

(Standard Deviation of Parameter, Normally 

Distributed) 
(10.86) (7.20)   

Income (1 if between $50,000 and $60,000, 0 

otherwise) 
0.69 1.97 0.133 1.77 

(Standard Deviation of Parameter, Normally 

Distributed) 
(5.83) (7.12)   
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Variable Coefficient t-statistic 
Marginal 

Effect 
t-statistic 

Education (1 if completed trade school or technical 

certificate, 0 otherwise) 
-0.68 -1.98 -0.133 -1.75 

Crash History (1 if involved in at least one crashes 

in past 5 years, 0 otherwise) 
1.10 3.15 0.212 -2.51 

Safety Training (1 if participated in road safety 

training, 0 otherwise) 
2.08 4.38 0.403 2.35 

(Standard Deviation of Parameter, Normally 

Distributed) 
(0.94) (4.16)   

Work Characteristics     

Private Carriage (1 if present employer is operated 

under private carriage, 0 otherwise) 
-0.69 -2.32 -0.134 -2.08 

Start Work (1 if work starts between 10am and 

4pm, 0 otherwise) 
2.29 4.18 0.444 2.86 

Start Drive (1 if drive starts between midnight and 

6am, 0 otherwise) 
0.74 2.18 0.144 1.96 

(Standard Deviation of Parameter, Normally 

Distributed) 
(2.76) (5.31)   

Rural Roads (1 if routes are usually driven on rural 

roads, 0 otherwise) 
3.99 4.94 0.773 3.17 

City Roads (1 if routes are usually driven on city 

roads, 0 otherwise) 
1.91 2.62 0.369 2.21 

Truck Parking (1 if driver decides parking location, 

0 otherwise) 
2.06 4.93 0.398 3.10 

(Standard Deviation of Parameter, Normally 

Distributed) 
(2.83) (7.54)   

Trailer (1 if truck is driven very often with two 

trailers, 0 otherwise) 
2.45 4.38 0.475 2.97 

Temporal Characteristics     

Most Difficult Day of the Week Finding Safe 

Parking (1 if Tuesday, 0 otherwise) 
1.48 4.16 0.287 2.83 

Most Difficult Hour Finding Safe Truck Parking (1 

if afternoon, 0 otherwise) 
1.52 3.27 0.294 2.59 

 

Driving Behavior 
    

Driving while tired (1 if often, 0 otherwise) 1.41 4.50 0.274 2.96 

Never change lanes to avoid travelling with 

passenger vehicle behind (1 if yes, 0 otherwise) 
1.07 3.28 0.207 2.43 

Driving Break (1 if a stop is made every 4-6 hours 

on a longer trip, 0 otherwise) 
1.54 4.56 0.299 3.23 

Truck Inspection (1 if driver inspects truck before 

starting each trip, 0 otherwise) 
0.94 3.21 0.182 2.53 

Management Characteristics     

Fatigue Management (1 if schedule imposed by 

CMV carrier makes it easier to take a break, 0 

otherwise) 

-2.07 -5.24 -0.401 -3.20 
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Variable Coefficient t-statistic 
Marginal 

Effect 
t-statistic 

Driving Hours Management (1 if CMV carrier 

restricts the number of hours worked per week, 0 

otherwise) 

-1.98 -5.55 -0.384 -3.29 

(Standard Deviation of Parameter, Normally 

Distributed) 
(5.10) (7.78)     

Model Summary      

Number of Observations 515    

Log-Likelihood at Zero -354.82    

Log-Likelihood at Convergence -298.47    

McFadden Pseudo R2 0.16       

 

4.1.4.1 Driver Characteristics 

Younger truck drivers, between the ages of 18 and 25, were found to have a random and 

normally distributed parameter based on the statistical significance of the standard deviation. With 

a mean of -1.84 and a standard deviation of 1.41, 9.6 percent of drivers in this age group had an 

estimated parameter mean of greater than zero, and 90.4 percent in this driver demographic had an 

estimated parameter mean of less than zero. In regard to the 9.6 percent of drivers that were more 

likely to report using their cell phone while driving, this finding was consistent with passenger car 

research that has found that younger passenger car drivers more likely to use their cell phones 

while driving than those in other age groups (Farmer et al., 2010; Young and Lenné, 2010; Gliklich 

et al., 2016; Oviedo-Trespalacios, et al., 2017b). On the other hand, 90.4 percent of drivers between 

18 and 25 were less likely to report using their cell phone while operating a truck. The 

heterogeneous nature of this variable may have captured differences in job experience among 

younger truck drivers. For instance, truck drivers who fell within this age demographic and had 

minimal truck driving experience might be less likely to use their cell phone while driving because 

they were still learning to operate their truck. Contrarily, a small portion of drivers within this age 

group might have slightly more experience operating a truck and would be more likely to report 

using their cell phone while driving. 
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Single marital status was another variable found to have a random and normally distributed 

parameter at the 95th percentile. The mean for this parameter was -3.79 with a standard deviation 

of 10.86, resulting in the estimated parameter mean being greater than zero for 36.4 percent of 

drivers and less than zero for 63.7 percent of the drivers. In other words, 36.4 percent of single 

truck drivers were more likely to report using their cell phone while driving, and 63.7 percent 

behaved differently (i.e., less likely to self-report). One possible explanation for this non-

homogenous nature is that the random parameter might have captured unobserved differences for 

the need to use a cell phone while driving. According to Sarksisian and Gerstel (2016), single 

individuals are more likely to socialize and exchange help with friends/neighbors and exchange 

more support with their parents than individuals that are married. In this study, a proportion of 

single respondents may have been more socially active than others, prompting the need, or desire, 

to use a cell phone while driving a large truck, despite the inherent risks and associated fines if 

caught. 

The next driver characteristic found to be significant was driver income, particularly those 

who reported earning between $50,000 and $59,999. This estimated parameter was found to be 

random and normally distributed, with a mean and standard deviation of 0.69 and 5.83, 

respectively. This finding suggests that the estimated parameter mean was less than zero for 45.3 

percent of drivers and greater than zero for 54.7 percent of drivers. The latter finding was consistent 

with past studies, in which participants in higher income brackets were found to be more likely to 

use their cell phone while driving (Nurullah et al., 2013). The heterogeneity in this variable might 

be explained by the difference in perception of possible fines from using a cell phone while driving. 

Some drivers within this income range might not be affected by the financial impact of a fine, 

whereas others would attempt to minimize any unnecessary costs.  
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The last driver characteristic found to be significant, also with a significant random and 

normally distributed parameter, was safety training. With a mean of 2.08 and a standard deviation 

of 0.94, the estimated parameter mean for drivers who previously had some form of safety training 

was less than zero for 1.4 percent of drivers and greater than zero for 98.6 percent of drivers. That 

is to say, just 1.4 percent of drivers who received some form of safety training were less likely to 

report using their cell phones while driving. As studied by Gregersen (1996), there is a relationship 

between training strategies and overestimation of driving skill among young drivers. This notion 

of overestimating one’s driving ability because of the training received may explain why almost 

all drivers (98.6 percent) had an increased outcome probability of self-reporting cell phone use 

while driving. For instance, in a driving safety course, drivers might be taught to improve their 

skills, leading them to believe that they can handle driving situations better than expected 

(Gregersen, 1996). This is supported by past research that found that the self-efficacy of driving is 

a significant predictor of distracted driving (Hill et al., 2015). If the goal is to eliminate cell phone 

use among truck drivers, this finding suggests that training programs should focus on more than 

just developing driver skills (i.e., the sources and consequences of distracted driving) as it may 

result in an overestimation of their driving abilities. The remaining proportion of drivers who had 

a decreased outcome probability of reporting cell phone use may not have been affected by safety 

training and may have continued to limit their exposure to risky driving behaviors. 

Regarding the drivers, education level and crash history were the final factors found to be 

significant in the model, and both factors decreased the likelihood of self-reporting cell phone 

usage while driving. As measured by marginal effects, those who reported that their highest 

completed level of education was either trade school or a technical certificate were found to have 

a 0.133 lower probability of reporting using a cell phone while driving. This may be explained by 
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the fact that trade school programs for truck operators educate drivers on the inherent complexities 

of operating a heavy truck; therefore, these drivers do not want to complicate the matter by using 

a cell phone while driving. Furthermore, marginal effects showed that those who indicated being 

involved in at least one crash in the past 5 years had a 0.212 increase in self-reporting probability 

of using a cell phone while driving. This finding is consistent with past research that found that 

drivers who have been involved in a crash are more likely to self-report texting while driving 

(Jashami et al., 2017). Being involved in a crash may be considered a form of reckless driving and 

may explain why this parameter increased the self-reported likelihood of using a cell phone while 

driving. 

4.1.4.2 Work Characteristics 

Of the work characteristics found to be significant, the estimated parameters for truck 

parking decisions and drive start time were found to be random and normally distributed. With a 

mean of 2.06 and a standard deviation of 2.83, the estimated parameter mean for drivers who made 

their own parking decisions was less than zero for 23.3 percent of drivers and greater than zero for 

76.7 percent of drivers. In other words, 23.3 percent of drivers who made their own parking 

decisions were less likely to report using their cell phone while driving and 76.7 percent were more 

likely. A proportion of drivers (76.7 percent) who made their own parking decisions may not have 

been familiar with safe and adequate parking locations along their route and may have had to use 

their cell phone to identify possible locations (e.g., call employer, call information services, check 

truck parking applications/websites). In opposition, a proportion of drivers (23.3 percent) may 

have been familiar with safe and adequate parking facilities along their route; therefore, these 

drivers were less likely to use their cell phone for such purposes.  

In regard to starting a drive early in the morning (between midnight and 6:00 AM), the 

estimated parameter mean was less than zero for 39.4 percent of drivers and greater than zero for 
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60.6 percent of drivers and. That is to say, 39.4 percent of drivers who started driving in the early 

morning were less likely to report using their cell phone, but 60.4 percent were more likely to 

report engagement in the secondary task. This variation among drivers may be attributed to the 

variation in traffic flow and density at various times and locations during the morning that defer 

cell phone use while driving. For example, if traffic volumes are high and require full driver 

attention, drivers may be less likely to use their cell phone. However, if traffic volumes are low, 

this may lead to cell phone usage for some drivers. This finding was consistent with past research 

that suggested that engagement in secondary tasks while driving is influenced by low driving 

hazards, such as traffic volume (Oviedo-Trespalacios, et al., 2017a).  

Although not found to be random, drivers who began their work mid-day (between 10:00 

AM and 4:00 PM) were found to be statistically significant and to have an increased self-reporting 

probability of using a cell phone while driving. Marginal effects suggested a 0.444 increase in 

probability in reporting using a cell phone while driving for those who started their work mid-day. 

This finding is plausible, as traffic during mid-day is typically less congested than morning 

commute times (i.e., 7:00 AM to 9:00 AM) or afternoon peak hour times (5:00 PM to 7:00 PM). 

During these times, driving tasks are less demanding because of lower traffic volumes and fewer 

interactions with other vehicles. This result complements past research on cell phone usage among 

passenger car drivers, was Kidd et al. (2016) showed that drivers are at increased odds of engaging 

in any secondary behavior during the afternoon. 

Drivers who reported primarily using city roads or rural roads for their routes were found 

to have an increased probability of reporting cell phone use while driving. For city and rural roads, 

marginal effects showed a 0.369 and 0.773 increase in probability, respectively. City roads and 

rural roads, compared to highways or interstates, experience lower traffic volumes, and drivers 
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may feel more comfortable using their cell phones in these roadway environments. As mentioned 

previously, engagement with secondary tasks are influenced by the roadway environment (Oviedo-

Trespalacios, et al., 2017a). In addition, drivers who primarily use city roads or rural roads are 

likely to be near their destination (e.g., retail business or warehouse distribution center) and may 

need to communicate with the recipient of the delivered goods. 

Regarding truck configuration, drivers who reported driving a truck with two trailers often 

were found to have an increase in probability of self-reporting cell phone use. Marginal effects 

indicated that the probability of reporting cell phone use increased by 0.475. One possible 

explanation for this finding is that two-trailer trucks are intended to carry a higher volume of goods, 

and this increased amount may require drivers to coordinate the delivery with one or more 

recipients. 

Lastly, drivers working for a private carriage were found to have a 0.134 probability 

decrease in self-reporting cell phone use according to marginal effects. Private carriers may impose 

strict safety policies that discourage risky driving behaviors among their operators so that they can 

maintain a high safety rating. A high safety rating would expand these carriers’ client base. 

4.1.4.3 Temporal Characteristics 

Drivers who reported having difficulty finding safe and adequate truck parking on 

Tuesdays or in the afternoon had an increased probability of reporting using their cell phones while 

driving. Marginal effects for these variables showed a 0.287 and 0.294 increase in probability for 

difficulty finding parking in the afternoon and on Tuesdays, respectively. This finding is plausible, 

as parking difficulties, especially when nearing hours of service limitations, may force drivers to 

use their phones to communicate with their employer or access an application/website to identify 

other safe parking locations along their route. This notion is supported by Anderson et al. (2018), 

who found that receiving real-time information lowered the probability of encountering trouble 
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when drivers were locating safe and adequate truck parking. Using a cell phone while driving may 

be a way to receive such information and counteract truck parking difficulties. 

4.1.4.4 Driving Behavior 

Regarding truck driver behavior and its influence on cell phone use while driving, several 

characteristics were found to be significant and increase the outcome probability of a driver 

reporting using a cell phone while driving. The probability of drivers who reported using their cell 

phones while driving increased by 0.274, according to marginal effects, for those who often drive 

while tired. Driving while tired, or fatigued, has been proved to increase crash risk and result in 

higher levels of injury severities (Bunn et al., 2005). Because of these safety risks, truck drivers 

may adopt strategies to combat the effects of fatigue, such as using a cell phone. According to 

Gershon et al. (2011), professional drivers perceive talking on a cell phone while driving as an 

effective countermeasure to driver fatigue. This may explain why the surveyed respondents who 

often drove while tired were more likely to report using a cell phone while driving. 

Similarly, drivers who took a break every four to six hours on a longer haul were more 

likely to report using their cell phones while driving. Marginal effects for this variable indicate a 

0.299 increase in probability of reporting cell phone use. This finding is consistent with Oviedo-

Trespalacios et al. (2017b), who determined that, among passenger car drivers, every additional 

hour driven per day increases the likelihood of reporting using a cell phone while driving. Truck 

drivers may exhibit similar driving behavior, and this might explain why those who took breaks 

every 4 to 6 hours were more likely to report using their cell phone while driving. 

Furthermore, drivers who never changed lanes when a passenger vehicle was behind them 

were found to have an increased probability of reporting cell phone use while driving, as marginal 

effects showed a 0.207 increase in probability. Studies have shown that when drivers use their cell 

phones while driving, they adopt compensatory driving behaviors, such as decreased speed or 
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increased headway, to account for the added cognitive demand from the cell phone (Young and 

Lenné, 2010; Zhou et al., 2016; Oviedo-Trespalacios, et al., 2017a). With passenger cars behind 

the truck, truck drivers are more capable of dictating their speed and headway than when following 

other vehicles. This driving situation can allow drivers to use their cell phones and perform 

compensatory driving behaviors.     

Lastly, those who inspected their trucks before starting each trip were found to have a 

higher probability of reporting using their cell phone while driving. As measured by marginal 

effects, these drivers had a 0.182 increase in probability of reporting cell phone use. Drivers who 

inspect their trucks before every trip may feel that their vehicle is safe and mechanically sound 

and overestimate their ability to avoid being involved in safety critical events even when using a 

cell phone while driving. 

4.1.4.5 Management Characteristics 

Two CMV carrier management characteristics, particularly those aimed at fatigue and 

hours of service, were found to be significant and decrease the probability of reporting cell phone 

usage while driving. One variable, CMV carriers who restricted the number of hours worked per 

week, was found to have a random and normally distributed parameter. With a mean of -1.98 and 

standard deviation of 5.10, the estimated parameter mean was greater than zero for 34.9 percent of 

drivers and less than zero for 65.1 percent of drivers. This discrepancy among drivers may have 

captured the ineffectiveness of such policies in mitigating fatigue. For instance, because weekly 

hours are restricted, some drivers may elect to drive for 8 consecutive hours before taking a break, 

which is allowed under the FHWA’s HOS regulations; but, this may increase the likelihood of 

feeling fatigue effects. As mentioned previously, professional drivers perceive that talking on a 

cell phone is an effective countermeasure to driver fatigue (Gershon et al., 2011). On the other 

hand, some drivers may drive only for a short period before taking a break, which minimizes the 
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likelihood of feeling fatigued. This may explain the heterogeneity in reporting cell phone usage 

while driving among drivers who worked under weekly hour restrictions. This may suggest that 

more specific regulations, such as restricting the number of consecutive hours driven, may be more 

effective in reducing distracted driving among truck drivers.  

Similarly, drivers who operated under CMV carriers that managed fatigue by creating 

schedules that allowed drivers to take breaks easily were found to have a decreased probability of 

reporting cell phone use while driving. Marginal effects showed a 0.401 decrease in probability of 

reporting cell phone use. Because professional drivers think that talking on a cell phone while 

driving mitigates the effects of driver fatigue, easily taking breaks when fatigued may explain why 

drivers were less likely to report using their cell phones while driving (Gershon et al., 2011). If 

drivers can easily take breaks when fatigued, they do not have to rely on using their cell phones 

while driving to combat the effects of driver fatigue. Additionally, being able to take breaks easily 

allows drivers to pull over at a rest stop or other safe location (e.g., private truck stop) when they 

need to use their cell phone. 

4.2 Lane-Changing Behavior and the Opinions of Drivers of Large Trucks in the Pacific 

Northwest 

4.2.1 Background  

Lane changing is a pervasive maneuver in which drivers seek an adequate gap to move 

safely to an adjacent lane. This maneuver entails drivers paying attention to the traffic in the 

adjacent lanes and, at the same time, being aware of the traffic in their current lane (Lee et al., 

2004; Henning et al., 2008). Lane-changing maneuvers occur frequently, particularly around 

merging and diverging areas near interchanges. These maneuvers can be somewhat difficult at 

times and may require increased driver engagement, thus increasing a driver’s stress level (Hill 

and Boyle, 2007). According to Chovan et al. (1994), lane changing is a deliberate and substantial 
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shift in the lateral position of a vehicle. In general, lane changing can be categorized into two main 

maneuvers: mandatory lane changing (MLC), in which drivers need to change their lanes because 

of a lane drop, lane closure, or the need to maintain a route; and discretionary lane changing (DLC), 

which is executed to avoid slower leading vehicles (Keyvan-Ekbatani et al., 2016). In 2015, lane 

changing was the leading cause of crashes—451,000 or 4.6 percent of all reported crashes. In terms 

of injury severity, roughly 678 were fatal crashes (1.6 percent of all fatalities), 72,000 were injury-

related crashes (2.9 percent of injury-related crashes), and 378,000 were property-damage-only 

crashes (5.2 percent of crashes resulting in property damage only) (NHTSA, 2015). Traffic safety 

is considerably affected by such maneuvers, making lane changing behavior an area of concern 

for many transportation safety professionals and researchers.  

While a number of studies have examined lane-changing behavior, the factors influencing 

driver lane changing, especially from the perspective of drivers of large trucks, are not completely 

understood. This could be attributed to a lack of reliable data that reveal driver behavior under 

various lane-changing scenarios (Keyvan-Ekbatani et al., 2016). Some studies have used 

microscopic traffic simulation software to assess driver behavior with regard to lane changing 

(Van Winsum et al., 1999; Salvucci and Liu, 2002; Lv et al., 2011, 2013; Xiaorui and Hongxu, 

2013; Li and Sun, 2017). However, these studies have not accounted for the behavioral factors that 

influence a driver’s decision to change or not to change lanes; they also have not considered the 

point of view of the drivers of passenger vehicles. Other studies have simulated driver behavior or 

used univariate analyses to identify the factors that influence driver lane changing (Van Winsum 

et al., 1999; Salvucci and Liu, 2002; Lv et al., 2011, 2013; Xiaorui and Hongxu, 2013; Li and Sun, 

2017). Simulating driver behavior has the advantages of allowing for controllability 

andreproducibility, ease of data collection, and standardization of driver behavior. However, 
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simulating driver behavior suffers from limited physical, perceptual, and behavior fidelity; in 

addition, validation is difficult (Winter et al., 2012). Univariate analyses have been used to explain 

lane-changing behavior, but these methods have failed to capture the inherent correlation among 

various lane-changing scenarios. For instance, drivers are faced with an array of different lane-

changing scenarios, each one affecting the other. Using univariate analysis to estimate driver lane-

changing behavior can lead to biased and erroneous inferences. The reason is that the choice to 

change lanes varies according to the situation (e.g., if another vehicle is in front of, behind, or at 

the side of a vehicle) faced by drivers. Developing separate univariate models for each situation 

ignores the correlations between the disturbances in these situations, and this in turn leads to 

inefficiencies in model estimation (Russo et al., 2014). 

Given the above considerations, this study used an econometric modeling framework to 

address lane changing from the perspective of drivers of large trucks.  Specifically, a multivariate 

probit modeling framework was used to address the shortcomings of univariate analyses by 

accounting for multiple binary choice outcomes (i.e., lane-changing scenarios) while accounting 

for correlations in the error terms between the individual scenario outcomes (Greene, 2012). In 

this study, the binary choice outcomes refer to six lane-changing scenarios derived from a stated 

preference survey distributed to truck drivers who were destined for or who originated from the 

Pacific Northwest—namely, Washington state, Oregon, and Idaho. These scenarios were used to 

uncover the factors affecting driver lane changing behavior.  In the scenarios, drivers of large 

trucks were asked about six conditions under which would they change lanes: 

1. Would they consider changing lanes if a passenger vehicle were in front of their truck? 

2. Would they consider changing lanes if another truck were in front of their truck? 

3. Would they consider changing lanes if a passenger vehicle were behind their truck? 
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4. Would they consider changing lanes if another truck were in behind their truck? 

5. Would they consider changing lanes if a passenger vehicle were on either side of their 

truck? 

6. Would they consider changing lanes if another truck were on either side of their truck? 

Identifying lane-changing behavioral factors can shed light on crashes related to these types 

of maneuvers, particularly those involving large trucks. Given the increased interest in the effects 

of driver behavior on traffic safety and the societal and economic impacts of lane-changing-related 

crashes, identifying the factors that influence truck driver lane-changing behavior is vital. This 

study contributes to the body of knowledge on transportation safety in two ways. First, this study 

attempted to highlight all the factors that may affect the lane-changing decisions of drivers of large 

trucks, and it also looked at the risky driving behavior of these drivers. Second, the developed 

multivariate probit model can be used to estimate the factors influencing lane changing, 

overcoming the potential deficiencies of previous univariate modeling approaches. To the best of 

the authors’ knowledge, this is the first attempt to apply a multivariate probit modeling approach 

to model the lane-changing behavior of drivers of large trucks.   

4.2.2 Analysis Process 

To evaluate the effects of six different car-following scenarios on truck driver behavior 

with regard to lane changing, a representative stated-preference survey was designed and 

distributed to truck drivers who were destined for or who originated from the Pacific Northwest—

namely, Washington state, Oregon, and Idaho. The representative sample consisted of 515 (from 

a total of 1,919—a 26.8 percent response rate) participants, all truck drivers. As previously 

mentioned, the objective of this study was to gain a better understanding of the factors influencing 

truck drivers’ lane-changing behaviors. Accordingly, the dependent variables were six questions 

that represented all of the possible scenarios of the lane-changing behavior of truck drivers to avoid 
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travelling where a passenger vehicle was in front, a passenger vehicle was behind, another truck 

was in front, another truck was behind, passenger vehicles were on either side, or other trucks were 

on either side. A total of 250 indicator variables were created from the survey. Only 27 of these 

variables were found to be statistically significant.  

4.2.3 Methodology  

Truck drivers may be exposed to situations in which they may opt to change lanes to avoid 

traveling with other vehicles (trucks or passenger vehicles)—whether these vehicles are in front, 

behind, or on either side of their trucks. The reasons for each of these scenarios may be the result 

of several factors, but the decision itself to change lanes is binary (i.e., yes they change lanes or no 

they do not change lanes). These dependent variables may be correlated; therefore, a univariate 

modeling approach may not appropriate. For example, the decision to change lanes to avoid 

traveling with another truck in front of their truck may affect the decision to change lanes to avoid 

traveling with another truck on either side. As described, these decisions are intuitively correlated 

and are potentially jointly determined (Greene, 2016a). If, in fact, these decisions are correlated 

and are modeled using a traditional univariate approach, the correlation between these variables 

(and the error terms between equations, as will be discussed later in this section) may not be 

accounted for. In the context of parameter estimates, if this potential correlation is not accounted 

for, parameter estimates may be inconsistent and inefficient (Wooldridge, 2010). Therefore, to 

account for the binary nature of the dependent variables and the potential correlation of these 

dependent variables, the current study proposed a multivariate probit modeling framework. 

Multivariate probit models are commonly used in behavioral, medical, and psychological studies 

because the nature of the dependent variables and the questions of interest are usually binary and 

correlated in nature (Lu and Song, 2006). The application of this modeling framework for better 

understanding driver behavior is rare in the literature. Although their study was not directly related 
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to lane-changing behavior, Golob and Regan (2002) used a multivariate modeling framework to 

identify the influences of 20 operational characteristics on the propensity of trucking firms in 

California to adopt seven different information technologies.  

To begin, a multivariate probit model for six dependent variables was formulated by 

generalizing the index function model from a single latent variable to six potentially correlated 

latent variables, in which the six latent variables were defined and estimated simultaneously as 

follows (Christofides et al., 1997; Cameron and Trivedi, 2005; Greene, 2012; Hensher et al., 2015):    

 

𝑦𝑚
∗ = 𝜷𝒎𝑿𝒎 + 𝜀𝑚, 𝑦𝑚 = 1 if 𝑦𝑚

∗ > 0, 0 Otherwise,𝑚 = 1, 2, … , 6 (4.4) 

 

 

where 𝑦𝑚
∗ is an unobserved (latent) variable representing the latent utility of lane-changing scenario 

𝑚, 𝑿𝒎 is a vector of observed characteristics determining lane-changing scenario 𝑚, 𝜷𝒎 is a vector 

of the estimated parameters, 𝜀𝑚 represents an error term that is 𝑀-variate normally distributed 

with a mean of zero and constant variance (i.e., (𝜀1, … , 𝜀6)~𝑁𝑀[0, 𝛀]) and independent of 𝑿𝒎, 

𝐸[𝜀𝑚 | 𝑿𝟏, … , 𝑿𝟔 ] = 0, Var[𝜀𝑚 | 𝑿𝟏, … , 𝑿𝟔] = 0, and Cov[𝜀𝑚 | 𝑿𝟏, … , 𝑿𝟔] = 𝜌𝑗𝑚. Under these 

assumptions, 𝑿𝒎 is exogenous and 𝛀 is a 6 × 6 matrix with off-diagonal element 𝜌 (the correlation 

coefficient for 𝜀𝑚), such that 𝜌 = Corr(𝜀1, 𝜀2, … , 𝜀6) (Wooldridge, 2010). As discussed below, 

correlation coefficient 𝜌 determines the use of a multivariate probit analysis. 

 The above assumptions are discussed because of their importance, as they imply that 

𝑦1, 𝑦2, … , 𝑦6 can be estimated by a probit modeling framework conditional on 𝑿𝒎 (Wooldridge, 

2010). However, as discussed previously, if these assumptions did not hold true and 𝜀𝑚 was 

correlated across equations, a univariate approach would no longer be adequate, and a multivariate 

probit framework would have to be considered to account for the correlation between 𝜀𝑚. Once 
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more, not accounting for this potential correlation would result in parameter estimates that wer no 

longer consistent and less asymptotically efficient (i.e., larger standard errors) (Hensher et al., 

2015; Meng and Schmidt, 1985). Therefore, a test for correlation among the error terms was 

conducted to determine whether correlation was present. Being that the current study had 

dependent variables that were binary, a tetrachoric correlation test was conducted on the error 

terms to determine the significance of the correlation coefficient 𝜌 (Greene, 2016a, 2012): 

 

(

𝜀1
⋮
𝜀6
 | 𝑿𝟏, … , 𝑿𝟔)~𝑁𝑀[0, 𝛀] (4.5) 

 

where 𝛀 is the variance-covariance matrix: 

 

 𝛀 =

(

  
 

1
𝜌21
𝜌31
𝜌41
𝜌51
𝜌61

  

𝜌12
1
𝜌32
𝜌42
𝜌52
𝜌62

  

𝜌13
𝜌23
1
𝜌43
𝜌53
𝜌63

  

𝜌14
𝜌24
𝜌34
1
𝜌54
𝜌64

  

𝜌15
𝜌25
𝜌35
𝜌45
1
𝜌65

  

𝜌16
𝜌26
𝜌36
𝜌46
𝜌56
1 )

  
 

 (4.6) 

 

where 𝜌 represents the tetrachoric correlation coefficient of the error terms, as defined previously. 

The tetrachoric correlation between the six binary dependent variables was equivalent to the 

correlation of the six error terms in a multivariate probit model (Greene and Hensher, 2010; 

Hensher et al., 2015). To be exact, the tetrachoric correlation between the six binary dependent 

variables was computed by assuming the six binary variables were derived by censoring six 

observations from an underlying continuous multivariate normal population (a multivariate probit 

model with no estimated covariates). In doing so, the correlation coefficient 𝜌 was easily calculated 

by fitting a multivariate model with no covariates and measuring the correlation between 
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underlying continuous variables if they were able to be observed (Greene and Hensher, 2010; 

Hensher et al., 2015). 

Continuing, the joint estimation of the lane-changing behavior of truck drivers under 

different potentially correlated scenarios was the primary objective of this study. To do so, the 

joint probabilities of all observed lane-changing scenarios, 𝑚, were then computed as follows 

(Chib and Greenberg, 1998; Young et al., 2009):  

 

Pr(𝑦𝑚 = 1,… , 𝑦6 = 1) =  Φ𝑀 (∙) (4.7) 

 

where 𝑦𝑚 represents the observed binary response corresponding to lane-changing scenario 𝑚, 

where 𝑦𝑚 = 1 if 𝑦𝑚
∗ > 0 (0 otherwise), and Φ𝑀 is the cumulative density function of a multivariate 

normal distribution (Greene, 2016b, 2012):  

 

𝑃 = ∫ ⋯
𝐵(𝑀)

𝐴(𝑀)

∫ 𝑓(𝑥1, … , 𝑥𝑚)
𝐵(1)

𝐴(1)

𝑑𝑥1, … , 𝑑𝑥𝑀 (4.8) 

 

where 𝑓(∙) is the 𝑀-variate normal density function of 𝑿 with mean vector zero and positive 

definite covariance 𝑀 ×𝑀 matrix 𝛀. Because of the complexity of the integral in equation 4.8, it 

is solved via approximation by averaging a set of 𝑅 replications obtained by draws produced from 

a random number generator, in which accurate and efficient evaluation can be attained for model 

estimation of moderate to relatively large models, as in the case in the current study (Greene, 

2016b, 2012; Greene and Hensher, 2010; Hensher et al., 2015). 

For the multivariate probit model, maximum likelihood estimation was used to estimate 

the parameters and tetrachoric correlation. In the case of the multivariate probit model, the joint 

probability of observed lane-changing behaviors ([𝑦𝑖1, … , 𝑦𝑖𝑀=6 | 𝑿𝑖1, … , 𝑿𝑖𝑀=6 ]) is used to 
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formulate the log-likelihood function for 𝑀-variate normal probabilities (Greene, 2012; Greene 

and Hensher, 2010; Hensher et al., 2015): 

 

log (𝐿𝑖) =∑logΦ𝑀[𝑞𝑖1𝜷1𝑿𝑖1, 𝑞𝑖2𝜷2𝑿𝑖2, … , 𝑞𝑖𝑀𝜷𝑀𝑿𝑖𝑀 | 𝛀
∗]

𝑁

𝑖=1

 (4.9) 

 

where 𝑞𝑖𝑀 = 2𝑦1𝑚 − 1, and 𝛀∗ = 1 if 𝑚 = 𝑛 or 𝛀∗ = 𝑞𝑖𝑚𝑞𝑖𝑚𝜌𝑚𝑛 if 𝑚 ≠ 𝑛.  

Lastly, to interpret model estimates, marginal effects are computed to evaluate the effect 

of explanatory variable 𝑿𝑖𝑀 on the outcome probability of the dependent variables. Marginal 

effects represent the change in the expected value of 𝑦𝑚, given all other 𝑦 are equal to one. 

Therefore, the marginal effects of 𝑦𝑚 for the current study were computed as follows: (Greene, 

2016a): 

 

𝐸[𝑦1 | 𝑦2 = 1,… , 𝑦𝑀 = 1] =
Pr (𝑦1 = 1,… , 𝑦𝑀 = 1)

Pr (𝑦2 = 1,… , 𝑦𝑀 = 1)
=
𝑃1… 𝑀
𝑃2… 𝑀

= 𝐸1 

⋮ 

𝐸[𝑦6 | 𝑦1 = 1,… , 𝑦𝑀−1 = 1] =
Pr (𝑦1 = 1,… , 𝑦𝑀 = 1)

Pr (𝑦1 = 1,… , 𝑦𝑀−1 = 1)
=
𝑃1… 𝑀
𝑃1… 𝑀−1

= 𝐸6 

(4.10) 

 

 

4.2.4 Estimation Results  

It is widely accepted that the statistical assessment of the multivariate probit model is 

elusive because there is no universally reported measure of goodness of fit for such models. 

However, as was done in the work of Choo and Mokhtarian (2008) and Golob and Regan (2002), 

a chi-square goodness-of-fit test and pseudo R2 were used. The chi-square test is used for deciding 

between competing models (in this study, comparisons between the null model with only constants 

and the full model). The estimated results of the multivariate probit model are summarized in table 
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4.2. The chi-square statistic representing the difference between the values of the log-likelihood 

for the full and null models was equal to 233.21. Therefore, this value with the corresponding 

degrees of freedom (31, the number of estimated parameters in the multivariate probit model) 

could be used to assess statistical significance. The chi-square test implied that the fit (i.e., log-

likelihood value) of the final multivariate probit model was significantly superior to the null model 

at the 99.99 percent confidence level. Moreover, the pseudo R2 value was 0.09, which is consistent 

with Choo and Mokhtarian (2008). 

Table 4.3 clearly shows that all correlation coefficients were positive and statistically 

significant at the 99.99 percent confidence level. This means that the unobservable (i.e., error 

terms) in each equation were highly correlated, and the six lane-changing scenarios needed to be 

modeled using a multivariate approach rather than a univariate analysis. Regarding the explanatory 

variables, table 4.2 includes variables that affect drivers’ decisions in a lane-changing maneuver, 

in addition to their marginal effects. Notably, these variables had a greater than 90 percent 

significance level with the exception of two variables included in the multivariate probit model 

because of their conceptual relevance. Because the explanatory variables were grouped into four 

main categories (driver characteristics, temporal characteristics, driving characteristics, and driver 

fatigue management factors), the discussion for each group will be presented separately.  
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Table 4.2 Parameter estimates of the multivariate probit model 

Variable 
Parameter 

estimate 
t-stat. 

Marginal 

effects 

Y1: Lane changing to avoid traveling with passenger vehicle in front 

Constant  -0.833*** -7.32 - 

Driver income (1 if between 40,000 and 50,000, 0 otherwise)  0.312* 1.84 0.165 

The situation that poses the highest safety hazard to drivers (1 if passenger 

vehicle in front, 0 otherwise) 
0.961*** 3.31 0.510 

Early morning (1 if drivers start their work between midnight and 5:59 am, 0 

otherwise) 
0.272** 2.13 0.145 

The safest time to drive truck (1 if between 10:00 am - 3:59 pm, 0 otherwise)  -0.375* -1.90 -0.199 

Keep driving rather than stopping to take breaks to manage fatigue (1 if 

disagree, 0 otherwise)  
-0.435** -2.47 -0.231 

Fatigue management does not require to take breaks when driving long 

distances (1 if strongly agree, 0 otherwise) 
-0.678** -2.11 -0.360 

Y2: Lane changing to avoid traveling with passenger vehicle behind 

Constant  -0.270 -1.53 - 

Participating in team driving (1 if never, 0 otherwise) 0.310** 2.27 -0.176 

Driving when tired (1 if quite often drive when tired, 0 otherwise) -0.550*** -2.99 -0.627 

Driver gender (1 if male, 0 otherwise) 0.312** 2.15 0.302 

Driver age (1 if between 26 and 35 years, 0 otherwise) -0.396*** -3.45 -0.040 

Shipment type (1 if truckload, 0 otherwise) -0.331** -2.57 -0.033 

Frequency of checking your truck over each week (1 if hardly ever, 0 

otherwise)  
-0.978*** -3.49 -0.243 

Frequency of driving a tractor with two trailers (1 if almost never, 0 

otherwise)   
-0.752** -2.09 -0.076 

Y3: Lane changing to avoid traveling with truck in front 

Constant  -1.337*** -6.15 - 

The situation that poses the highest safety hazard to drivers (1 if passenger 

vehicles on either side, 0 otherwise) 
0.313* 1.87 0.169 

Driving when tired (1 if quite often drive when tired, 0 otherwise) -0.645** -2.34 -0.214 

Driver gender (1 if male, 0 otherwise) 0.451** 2.23 0.096 

The most difficult time of the day to find safe and adequate parking (1 if no 

difficulty, 0 otherwise) 
-0.887* -1.75 -0.479 

The type of company restrictions to manage drivers working hours (1 if 

putting restriction on the number of continuous days worked, 0 otherwise) 
-0.328** -2.21 -0.177 

Fatigue management encourages drivers to take breaks from driving 

whenever they need to (1 if agree, 0 otherwise) 
-0.352** -2.17 -0.190 

Frequency of stopping in a longer trip (1 if only when tired, 0 otherwise)  0.603*** 3.43 0.326 

Y4: Lane changing to avoid traveling with truck in behind 

Constant  -0.886*** -5.53 - 

Driver gender (1 if male, 0 otherwise) 0.339** 2.36 0.048 

Lapsing concentration after driving for a long time (1 if quite often, 0 

otherwise) 
-0.222* -1.70 -0.013 

Participating in team driving (1 if never, 0 otherwise) 0.546*** 4.34 -0.033 

The safest time to drive truck (1 if between midnight and 5:59 am, 0 

otherwise)  
0.255** 2.45 0.015 
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Variable 
Parameter 

estimate 
t-stat. 

Marginal 

effects 

Keep driving rather than stopping to take breaks to manage fatigue (1 if 

agree, 0 otherwise) 
-0.220** -1.97 -0.013 

Fatigue management in the industry (1 if quite badly, 0 otherwise) 0.235* 1.87 0.014 

Y5: Lane changing to avoid traveling with passenger vehicles on either side 

Constant  -0.875*** -10.65 - 

Type of company that drivers work or contract for (1 if private carriage, 0 

otherwise) 
0.293*** 2.73 0.113 

Driving when tired (1 if rarely drive when tired, 0 otherwise) 0.193* 1.96 0.075 

Frequency of checking your truck over each week (1 if hardly ever, 0 

otherwise)  
-0.332* -1.69 0.055 

Y6: Lane changing to avoid traveling with trucks on either side 

Constant  -0.600*** -9.48 - 

Lapsing concentration after driving for a long time (1 if very often, 0 

otherwise) 
-0.296* -1.74 -0.020 

Frequency of problems of adhering to the hours of service limitations due to 

the lack of available parking (1 if almost always, 0 otherwise)  
-0.364 -1.59 -0.025 

Fatigue management in the industry (1 if extremely badly, 0 otherwise) 0.264 1.53 0.018 

Number of observations  515 

Log-likelihood at convergence (𝐿𝐿𝛽) -1177.38 

Log-likelihood at zero (𝐿𝐿𝐶) -1293.98 

𝜒2 = −2[𝐿𝐿𝐶 − 𝐿𝐿𝛽] 233.21 

Pseudo R2 0.09 

*, **, *** denote significance at the 10, 5 and 1% level respectively.  
 

Table 4.3 Correlations (ρ) in the error terms of the individual equations of the multivariate probit 

model (t-statistics in parentheses) 

 

Dependent 

variables 
Y1 Y2 Y3 Y4 Y5 Y6 

Y1
* - 

0.767 

(12.81) 

0.668 

 (8.04) 

0.694 

(9.93) 

0.527 

(6.21) 

0.607 

(8.03) 

Y2
*  - 

0.549 

(6.65) 

0.838 

(21.68) 

0.696 

 (12.85) 

0.656 

 (11.77) 

Y3
*   - 

0.710 

(10.93) 

0.367 

(3.57) 

0.544 

(6.68) 

Y4
*    - 

0.557 

(8.35) 

0.665 

(12.31) 

Y5
*     - 

0.905 

(34.91) 

Y6
*      - 

* Y1: Lane changing to avoid traveling with passenger vehicle in front (1 if yes, 0 otherwise), Y2: Lane changing to avoid traveling with 

passenger vehicle behind (1 if yes, 0 otherwise), Y3: Lane changing to avoid traveling with truck in front (1 if yes, 0 otherwise), Y4: Lane 

changing to avoid traveling with truck in behind (1 if yes, 0 otherwise), Y5: Lane changing to avoid traveling with passenger vehicles on either 
side (1 if yes, 0 otherwise), Y6: Lane changing to avoid traveling with trucks on either side (1 if yes, 0 otherwise) 
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4.2.4.1 Driver Characteristics  

Three factors were found to be statistically significant and to have direct effects on truck 

driver behavior in lane-changing maneuvers. These factors were driver gender (male), age 

(between 26 and 35), and income (between $40,000 and $50,000). For male drivers, table 4.2 

shows that they were found to affect three of the six lane-changing scenarios. In each of the three 

scenarios, when traveling with a passenger vehicle behind them, another truck in front, or another 

truck behind, male drivers were more likely to report changing lanes. Looking more closely at the 

values of the marginal effects corresponding to male drivers’ behaviors in the three lane-changing 

scenarios, male drivers had the highest probability of reporting lane changing if a passenger vehicle 

was traveling behind them. The value of marginal effects for traveling with a passenger vehicle 

behind was 0.302, whereas the values of marginal effects for male truck drivers traveling with 

other trucks in front and behind were 0.096 and 0.048, respectively.  

More specifically, on the basis of the marginal effects discussed above, male drivers likely 

feel that traveling with a passenger vehicle behind poses high risks (i.e., a higher increase in 

probability of changing lanes). This finding is intuitive because large trucks have specific 

operating limitations, one of which is blind spots or “no-zone areas” (Federal Motor Carrier Safety 

Administration, 2017). These blind spots are very large compared to those of passenger vehicles. 

Thus, due to limited visibility in these four “no zone” locations (i.e., front, back, and both sides of 

the vehicle), other drivers and roadway users should attempt to stay out of these locations (Federal 

Motor Carrier Safety Administration, 2017). In addition, the Federal Motor Carrier Safety 

Administration recommends that passenger vehicle drivers be able to see the driver of the large 

truck in their side mirrors (i.e., side mirrors of the trucks), as this means the driver of the large 

truck can see you (Federal Motor Carrier Safety Administration, 2017a). Therefore, passenger 

vehicles following a truck very closely can increase the risk of being involved in crash because of 
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a lane-changing maneuver, which will likely result in a driver of a large truck reporting lane 

changing with a higher probability. Therefore, this finding further suggests that drivers of 

passenger vehicles maintain an adequate distance behind trucks to safely share lanes and to avoid 

being in “no zone areas” of trucks.  

As for the other lane-changing scenarios, although marginal effects were substantially 

lower, males were still more likely to report changing lanes when another truck is traveling in front 

of or behind them. In general (regardless of vehicle type and/or location), a potential reason for 

males being more likely to change lanes could be attributed to driver aggressiveness, as driver 

aggressiveness has been shown to impact driving patterns and behaviors (e.g., different sizes of 

acceptable gaps, different levels of acceleration/deceleration, different speeds, etc.) (Moridpour et 

al., 2007). For example, Royal (2003) showed that 58 percent of surveyed drivers had felt 

threatened by unsafe driving behaviors, and males (17 percent) were found to most likely report 

having felt threatened weekly or more often. If a proportion of male drivers feel threatened by the 

unsafe driving behavior of others, then it is likely they will report changing lanes when other 

vehicles are traveling around them; this would be especially true for drivers of large trucks who 

are traveling around passenger vehicles. One more possible reason for this finding might be due 

to the fact that male drivers were overrepresented in the data. This was also seen in the general 

trends of drivers of large trucks. To illustrate, in 2015, there were approximately 3.5 million drivers 

of large trucks, and female drivers accounted for roughly 177,000 of these drivers (about 5.1 

percent) (Hsu, 2016; American Trucking Associations, 2018). This was also shown in a recent 

truck parking study, in which Hernández and Anderson (2017) found that the majority of truck 

drivers they surveyed were male. 



 

116 

Truck drivers between 26 and 35 years old were less likely to change lanes if a passenger 

vehicle was traveling behind their trucks. Table 4.2 also illustrates this finding, where the value of 

the marginal effects was −0.04. The significance of this factor was anticipated, as previous works 

have found that socio-demographic characteristics (e.g., age) are essential characteristics in 

assessing driving performance and behavior (Li et al., 2015; Nauert, 2015). However, in the 

context of lane changing or passing other vehicles, younger drivers have stated that they tend to 

change lanes to pass other vehicles more often than they are passed (Tasca, 2000; Royal, 2003). 

This was the opposite of what the current study found. A possible explanation could be related to 

less experience driving a large truck; therefore, this age group of drivers may prefer to change 

lanes only when necessary. Hernández and Anderson (2017) showed that the majority of drivers 

who deliver or pick up goods in the Pacific Northwest (the same region of the current study) fit 

this age group and had been driving a truck for fewer years than older age groups.  

Drivers of large trucks with incomes of between $40,000 and $50,000 were more likely to 

report changing lanes to avoid traveling with a passenger vehicle in front of their truck; the value 

of the marginal effects was 0.165. This implies that those drivers tended to change lanes to avoid 

traveling with the leading passenger vehicle. Drivers’ sensitivity to the economic burden of truck-

related crashes could be a potential reason for this finding, in the sense that drivers with such 

income would be more cautious in their driving and lane-changing decisions; this may be 

especially true if there was a passenger vehicle in front of their truck (bearing in mind the “no 

zone” areas). In addition, if the driver was for-hire and responsible for any damages sustained, 

they would be more likely to be cautious in terms of traveling with or around passenger vehicles.  

For example, in 2015, 524,058 registered trucks delivered goods across states or hazardous 

materials within states, where for-hire carriers accounted for greater than half (272,928 for-hire 
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carriers) (Federal Motor Carrier Safety Administration, 2017b). Considering that the average cost 

per large truck crash (in 2015) was $148,279, it would take additional revenue of $7,413,950 to 

pay the costs of the crash (assuming the profit margin was 2 percent) (Ross, 2015). Therefore, such 

drivers would be more likely to change lanes to avoid traveling with a passenger vehicle in front 

of their truck. 

4.2.4.2 Temporal Characteristics  

Four temporal characteristics were found to affect the decisions of drivers of large trucks 

to report lane-changing maneuvers: drivers starting their shift in the early morning (midnight to 

5:59 AM), the safest time to drive a truck (10:00 AM to 3:59 PM), the most difficult time of the 

day to find safe and adequate parking (no difficulty), and the safest time to drive a truck (midnight 

to 5:59 AM). In terms of work start time for truck drivers, table 4.2 reveals that drivers starting 

their work between midnight and 5:59 AM were more likely to report changing lanes if a passenger 

vehicle was directly in front of their trucks. Table 4.2 illustrates that those drivers had a 0.145 

higher probability of reporting lane changing when the leading vehicle was a passenger vehicle. 

Drivers having a higher probability of reporting lane changing during this time period may be 

directly linked to the volume of traffic on the highway. That is, during this time period, traffic 

volumes are substantially lower than in the afternoon/evening peak hours. Using hourly traffic 

count data obtained from the U.S. Department of Transportation (via a Freedom of Information 

request), Galka (2016) illustrated this through an interactive traffic map. In such conditions, drivers 

who do not want to travel near passenger vehicles are free to change lanes with less concern of 

vehicles being present in the “no zone” areas.  

The second factor, drivers’ perceptions about the safest time of day to drive a truck (10:00 

AM to 3:59 PM) was found to affect a driver’s decision to report lane-changing maneuvers. Table 

4.2 illustrates that at that time of day, drivers had a 0.199 lower probability to report changing 
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lanes when a passenger vehicle was in front. This particular finding is intuitive, as this time of day 

is characterized by higher traffic volumes (see Galka (2016) for an illustration of traffic volumes 

by time of day). In addition, visibility conditions are typically good during these daylight hours; 

therefore, drivers can easily detect passenger vehicles in front of their trucks. That is, if a driver is 

able to clearly see a passenger vehicle in front and maintain a safe following distance (for operating 

speeds on highways, this would be at least 5 seconds) (Federal Motor Carrier Safety 

Administration, 2015), drivers may feel that changing lanes is unnecessary to ensure safe following 

conditions. However, this finding disagrees with that of Pahukula et al. (2015), who found that 

10:00 AM to 3:00 PM was highly associated with lane changing and speeding for truck drivers in 

the context of injury severity. Furthermore, this could be attributed to increased workload and 

adaptations in driver behavior due to higher visual complexity (i.e., higher traffic volumes) (Rudin-

Brown et al., 2014). That is, drivers of large trucks may adapt to the higher traffic volumes by 

electing not to change lanes. 

In contrast, the indicator variable for the safest time to drive a truck (midnight to 5:59 AM) 

was found to more likely influence drivers’ decisions to report lane changing when another truck 

was directly behind their truck, but the value of marginal effects was lower at -0.015. This finding, 

too, is likely attributed to the low traffic volumes during this time period, as drivers may feel that 

lane changing does not need to occur to ensure safe traveling conditions.  

The last factor was the indicator representing drivers’ opinions about the most difficult 

time of day to find safe and adequate parking. Truck drivers who did not have any difficulty finding 

safe and adequate parking had a 0.479 lower probability of reporting changing lanes to avoid 

travelling with another truck in front of their truck. This finding is likely linked to parking 

availability and HOS. For instance, if drivers near their HOS and have difficulty finding parking, 
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they may be inclined to change lanes to avoid traveling behind slower vehicles to arrive at a 

parking facility before their legal drive time has been reached. Therefore, if no parking difficulty 

is experienced, drivers may not need to change and may be less likely to report lane changing.   

4.2.4.3 Driving Characteristics 

Modeling results revealed ten factors that significantly affect a driver’s decision to report 

lane-changing maneuvers. However, only the six factors with the largest effects (higher marginal 

effects) will be discussed. For drivers who seldom conducted weekly checks on their trucks, the 

indicator variable showed that they had a 0.243 lower probability to report changing lanes to avoid 

traveling with passenger vehicles behind their trucks, whereas they had a 0.055 higher probability 

to change lanes when passenger vehicles were on either side of their truck. This finding may have 

captured inattentiveness and irresponsible behavior of truck drivers. Rule 49 CFR § 396.13 states 

that “before driving a motor vehicle, the driver shall be satisfied that the motor vehicle is in safe 

operating condition.” To some, this is interpreted specifically for drivers of large trucks to inspect 

their trucks prior to each trip to ensure the truck is in safe operating conditions (Schultz, 2018). 

Therefore, failure to check their trucks regularly to ensure their safety could lead to the conclusion 

that such drivers fail to ensure safety while driving and tend not to be aware of the vehicles around 

them. Furthermore, mirrors play a major role in being able to detect and see passenger vehicles 

driving behind their truck (Green, 2018). But if mirrors are not properly cleaned or placed (for 

example) as part of a check before trips, drivers may be unable to detect and see passenger vehicles 

traveling behind them. 

Drivers on longer trips who stop only when tired have a 0.326 higher probability of 

reporting changing lanes to avoid traveling with another truck in front of their truck. This outcome 

could be attributed to the effect of the HOS regulations on driver performance, as HOS are 

generally associated with several factors—namely, hours off duty, hours driving, hours working, 
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breaks, and recovery.  If HOS regulations are not strictly adhered to, these factors can lead to driver 

fatigue, which, in turn, can lead to a deterioration in driving performance (Jovanis et al., 2011). 

Therefore, if drivers are on a long trip, tired, and looking for a location to park, they may be 

inclined to change lanes to pass slower vehicles to get to a parking facility.   

Drivers who did not participate in team driving were less likely to report changing lanes 

when other trucks or passenger vehicles were traveling behind their trucks. Table 4.2 shows that 

the values of the marginal effects were −0.176 and −0.033, respectively, when a passenger vehicle 

or a truck was behind the driver’s truck. This finding might be linked to driver fatigue. For 

example, when drivers near the end of their allowable driving time, they tend to be fatigued. 

However, they participate in team driving, one can switch when the other is fatigued. If drivers are 

fatigued, they may spend most of their driving workload tasks on looking ahead and less time on 

other tasks (i.e., checking mirrors often to be aware of the vehicles surrounding them) (Herman, 

2016). In addition, if this is linked to fatigue, drivers may not want to make any unnecessary lane 

changes; therefore, they will be less likely to change lanes if vehicles are traveling behind them. 

Next, the drivers who stated that the presence of a passenger vehicle in front of their trucks 

posed the highest safety hazard were found to have a 0.510 higher probability of reporting 

changing lanes to avoid traveling with a passenger vehicle in front. This finding is intuitive, as 

drivers who feel passenger vehicles in front pose the highest safety hazard are likely to change 

lanes to avoid traveling behind them. Being that crashes in which a large truck crashes into the 

back of another vehicle are most common (Blower and Campbell, 2002), drivers are likely to 

change lanes to avoid traveling behind a passenger vehicle. Drivers reporting changing lanes was 

also true when a passenger vehicle was on either side of the truck, but with lower marginal effects 

(table 4.2 shows that the value of the marginal effects was 0.169). This means that these truck 
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drivers had a 0.169 higher probability of reporting changing lanes when passenger vehicles were 

on either side of their truck. This finding, as discussed previously, may be attributed to the 

considerable blind spots of large trucks due to the differences in height and size (i.e., “no zone” 

areas) (Federal Motor Carrier Safety Administration, 2017a). Detecting a passenger vehicle on 

either side of the truck is quite difficult for drivers of large trucks. Therefore, they are likely to 

change lanes to avoid traveling with passenger vehicles in their “no zone” areas.  

Lastly, drivers who often drove when they were tired were less likely to change lanes when 

a passenger vehicle and a truck were traveling behind and in front of them, respectively. Table 4.2 

shows that the values of the marginal effects of lane changing to avoid traveling with a passenger 

vehicle behind and another truck in front were −0.627 and −0.214, respectively. When another 

truck was in front of a large truck, the driver had a 0.214 lower probability of changing lanes. 

Although the majority of large truck crashes occur when a large truck is following another vehicle 

(Blower and Campbell, 2002), drivers may not change lanes because they are able to easily detect 

the leading truck (this would also allow them to provide adequate following distance to avoid a 

rear-end crash). Likewise, when a passenger vehicle followed a large truck, the driver had a 0.627 

lower probability of reporting changing lanes. Drivers who often drive when tired are likely to 

minimize risks, such as minimizing lane changes. Moreover, if drivers are driving while tired, they 

may not be as alert to their surroundings (e.g., passenger vehicles behind the truck) and therefore, 

less likely to change lanes. 

4.2.4.4 Driver Fatigue Management Factors  

Drivers of large trucks, in general, encounter higher levels of stress than other drivers 

because of their irregular schedules, long working hours, night work, and economic pressures. 

These factors are the main sources of stress. This, in turn, leads to insufficient sleep and the 

development of short- and long-term health problems (National Academies of Sciences, 
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Engineering, and Medicine, 2016; Saltzman and Belzer, 2007). The aforementioned factors 

increase the risk of driver fatigue. Drivers of large trucks, in particular, are required to have 

essential driving skills, such as excellent judgment, vigilance, and quick reactions. And, in some 

cases, drivers require specialized training to be able to operate their equipment (Saltzman and 

Belzer, 2007). Unfortunately, fatigue diminishes alertness, reduces vigilance and driving 

performance, decreases motivation, impairs judgment, and increases drowsiness (Knipling, 2015). 

Moreover, it has been shown that high levels of fatigue are tantamount to a blood alcohol 

concentration over the legal limit (i.e., greater than 0.07 percent) (Dawson and Reid, 1997; 

Saltzman and Belzer, 2007). 

Therefore, to assess the drivers’ perspectives on the issue of driver fatigue, the survey 

contained several questions that aimed to highlight the most important factors related to driver 

fatigue and its effects on driver decisions to report lane-changing maneuvers. The results of the 

analysis, shown in table 4.2, show that ten fatigue-related factors were found to be statistically 

significant and to have direct implications on drivers reporting lane-changing behavior. However, 

only four of these factors will be discussed because of their greater effects (higher marginal 

effects).  

These factors were the following: drivers who did not stop to take breaks to manage fatigue; 

drivers who strongly agreed that fatigue management does not require taking breaks when driving 

long distances; drivers who worked or contracted for companies that restricted the number of 

continuous days worked to manage drivers’ working hours and fatigue; and drivers who agreed 

that fatigue management could be achieved by encouraging drivers to take breaks when necessary. 

Interestingly, these factors all had a negative impact on the probability of drivers reporting lane 

changing. For the first two factors (drivers who did not stop to take breaks to manage fatigue and 
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drivers who strongly agreed that fatigue management does not require taking breaks when driving 

long distances), drivers had a 0.231 and 0.360 lower probability, respectively, of reporting 

changing lanes to avoid traveling with a passenger vehicle in front of them. This finding might be 

attributed to driver behavior in that these truck drivers did not believe that taking breaks on long 

trips could alleviate their fatigue. Instead, they may continue to drive for several reasons, including 

family pressures, the need for on-time delivery, the work compensation structure, and commuting 

patterns (National Academies of Sciences, Engineering, and Medicine, 2016). Furthermore, 

drivers may adopt other measures to address their fatigue while driving. For example, Gershon et 

al. (2011) found that professional drivers often perceive that talking on a cell phone is an effective 

countermeasure to fatigue. Therefore, in combination with fatigue, if drivers are talking on the 

phone, they may be less aware of surrounding traffic, which would affect their decision to change 

lanes. In addition, previous work has shown that fatigued drivers have an improvement in visual 

distance estimation (Liu and Wu, 2009). This might explain why fatigued drivers are less likely to 

change lanes, as they are able to detect inadequate gaps for lane changing. 

The last two factors were drivers who worked or contracted for companies that restricted 

the number of continuous days worked to manage drivers’ working hours and fatigue, and drivers 

who agreed that fatigue management could be achieved by encouraging drivers to take breaks 

when necessary. Table 4.2 shows that both of these factors were associated with the lane changing 

scenario of another truck traveling in front of a large truck. The values of the marginal effects of 

these factors were −0.177 and −0.190, respectively. This finding illustrates truck drivers’ behaviors 

when the leading vehicle is another truck. Size and weight disparities between trucks are minimal, 

and this, in turn, decreases the risk of blind spots for truck drivers who follow another truck. 

Therefore, drivers may be less inclined to change lanes. 
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5.0 Summary 

 

The current study utilized a survey issued to large truck drivers that deliver goods in the 

Pacific Northwest to uncover existing relationships between observed HOS on the likelihood of 

safety critical events (SCE) and a set of potential confounding factors related to time of day (TOD), 

from the viewpoint of the drivers. Because of data heterogeneity, random parameters binary logit 

approaches and the multivariate probit approach were applied to produce the most accurate 

estimates and to make appropriate inferences. In this study, some questions of interests were used 

to better understand the effects of HOS on large truck drivers’ safety. Of particular interest were 

questions related to using a cell phone while driving and lane-changing behavior. The summary of 

each question is presented separately below. 

5.1 Using a Cell Phone While Driving 

The influential factors that that were determined to either increase or decrease cell phone 

use probability among truck drivers can be leveraged to reduce the frequency of distracted driving 

and, thus, improve roadway safety for all users. Factors contributing to truck drivers’ decisions to 

report cell phone use while driving included driver, work, temporal, and management 

characteristics, as well as driving behaviors. More specifically, age, single marital status, 

education, crash history, fatigue management, and driving hours management were all found to 

decrease the probability of truck drivers’ decisions on reporting cell phone use while operating 

their large vehicles. From a policy standpoint, policies can be enacted at the strategic operating 

level of private carriers to address factors that influence cell phone use among truck drivers. For 

instance, this study showed that factors related to fatigue and driving hours management, such as 

restricting the number of hours worked or schedules that enable drivers to easily take breaks when 

fatigued, are effective methods to reduce the likelihood of truck drivers using a cell phone while 



 

126 

driving. As shown, CMV carriers that restrict the number of hours worked per shift is an ineffective 

policy for mitigating cell phone use while driving. This finding can support other means of 

restricting driving hours, such as the number of consecutive hours driven before taking a break. 

CMV carriers can develop and enforce similar policies within their company to reduce the 

occurrence of distracted driving among their truck drivers. 

Furthermore, income level, safety training, difficulty finding safe parking, and various 

driving behaviors (driving while tired, frequency of breaks) were found to increase the probability 

of truck drivers reporting cell phone use while driving. As mentioned, safety training programs 

may cause an overestimation of drivers’ ability to operate a large truck and lead to increased self-

efficacy of driving (Gregersen, 1996; Hill et al., 2015). In addition to developing driving skills, 

future safety training programs can include topics that highlight the sources and safety implications 

of distracted driving. Additionally, government agencies can reduce the likelihood that truck 

drivers would use their cell phone while driving by addressing truck parking shortages. In 2012, 

the Federal Highway Administration determined that there is a severe and widespread truck 

parking shortage in the U.S. (Federal Highway Administration, 2012). If truck drivers can find 

truck parking locations without difficulty, they may be less inclined to use their cell phone while 

driving and reduce their crash risk. 

5.2 Lane-Changing Movements  

Lane changing is necessary on multilane highways, and it is deemed to be a primary cause 

of two-vehicle crashes involving at least one large truck. Therefore, a better understanding of the 

effects of driving behavior and the driving environment on drivers’ decision making when 

changing lanes is crucial for developing appropriate countermeasures to reduce such crashes. The 

current study, therefore, utilized a multivariate probit model to identify the factors that influence 
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lane-changing decisions for drivers of large trucks. The multivariate probit model was used 

because of the correlation between the dependent variables and the error terms across equations, 

as the multivariate probit model attempts to account for this correlation. In this study, the 

dependent variables were the drivers’ perspectives on six lane-changing scenarios. These scenarios 

were selected to represent all possible lane-changing situations in which passenger vehicles and/or 

other trucks may be in the “no-zone” areas of large trucks. These include a passenger vehicle in 

front of the truck, another truck in front, a passenger vehicle behind the truck, another truck behind, 

a passenger vehicle on either side of the truck, and another truck on either side.  

The analysis assessed all the possible factors affecting truck drivers’ decisions to report 

lane-changing maneuvers on multilane highways. These included driver characteristics, temporal 

characteristics, roadway characteristics, built environment variables, driver and occupant 

characteristics, driving characteristics, and driver fatigue management factors. The results 

demonstrated that all tetrachoric correlations between each pair of lane-changing scenarios were 

positive and highly significant. In particular, the correlations between 𝑦5 and 𝑦6, and between 𝑦2 

and 𝑦4 were very high. This reveals that these dependent variables and the error terms were highly 

correlated, in that situations in which another truck and a passenger vehicle were following them 

very closely were likely to influence one another. Likewise, drivers indicated that the situation in 

which passenger vehicles and other trucks were on either side of their trucks posed a high risk. As 

a result, the probability of drivers reporting lane changing in these situations was substantially 

higher.  

Regarding the drivers’ perspectives on the factors that greatly influence drivers’ behaviors 

in lane-changing maneuvers, the empirical results revealed that four factors (with higher marginal 

effects) were highly significant. These factors were the indicator variable representing truck 
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drivers who did not find any difficulty finding safe and adequate parking (-0.479), drivers who 

often drove when tired (-0.627), drivers who strongly agreed that fatigue management did not 

require taking breaks when driving long distances (-0.360), and drivers who stated that the 

presence of a passenger vehicle in front of their trucks posed the greatest safety hazard (0.510). 

Except for the first factor (truck drivers who did not find any difficulty finding safe and adequate 

parking), the other factors emphasize the drivers’ perception that the presence of passenger 

vehicles in the large trucks’ blind spots is problematic.  

In particular, the findings of this study can prompt transportation agencies and the trucking 

industry to further cooperate toward exploiting advanced technology to mitigate lane changing 

related to crashes involving large trucks. This could be achieved by increasing the deployment of 

integrated in-vehicle crash avoidance warning systems for passenger vehicles and large trucks. 

Specifically, they could support the installation of lane change assistance (LCA) systems to enable 

trucks and passenger vehicles to perform some kind of communication with surrounding traffic 

and to alert drivers when changing lanes to avoid colliding with another vehicle in an adjacent 

lane. Similarly, a recent study showed that smartphone collision warning applications can be used 

to generate safer driving behavior (Botzer et al., 2017). With smartphone market penetration, this 

may be a viable option to give drivers of large trucks warning when they change lanes. Moreover, 

Mangones et al. (2017) found that the implementation of crash avoidance systems on transit buses 

in New York was economically justifiable, which could also be the case for large trucks.  

Another option, and more economically viable for trucking firms, would be to post warning 

signs on their trucks to encourage drivers to stay out of their blind spots (Green, 2018). In addition, 

drivers can reduce their blind spots by adding more mirrors to their truck and having mirrors 

located in several different positions. Specifically, Green (2018) recommended that simply 
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mounting two mirrors on both the right- and left-hand side of the hood can significantly narrow 

the size of blind spots. Similarly, drivers can install accessories to help with lane-changing 

behavior, such as audible tones, wide-angle cameras, and fish-eye mirrors (Green, 2018). 
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