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Abstract—The increasing availability of low-cost underwa-
ter robotic platforms has enabled and inspired new forms of
community-based scientific inquiry and exploration. In particu-
lar, low-cost, hand-launched ROVs can provide greater access to
littoral waters as a complement or supplement to scientific divers,
allowing operations in more inclement conditions, providing
access to communities not trained in science diving, and allowing
rapid spot assessment at multiple sample points without requiring
time for diver decompression. One impediment to broad adoption
of such small vehicles is the relatively high cost of acoustic
navigation sensors. This project assesses the utility of a stereo
computer vision system running the ORB-SLAM3 visual SLAM
algorithm as a substitute or complement to a doppler velocity
log (DVL) in measuring vehicle altitude, velocity, and estimating
vehicle position. Under the constrained conditions where the
system is able to maintain visual tracking with the seafloor,
the vision-based estimate of altitude and velocity is highly
comparable to an acoustically derived value; and the vision
solution provides localization capabilities comparable to IMU-
DVL-based dead reckoning.

I. INTRODUCTION

The increasing availability of low-cost underwater robotic
platforms has enabled and inspired new forms of community-
based scientific inquiry and exploration. Relative to divers,
ROVs can remain at depth for longer periods (depending on
power configuration), can operate in all water temperatures,
and do not require lengthy decompression time during dives.
Low-cost remotely-operated-vehicles (ROVs) can allow novel
modes of operation including sampling in inclement weather,
in high-risk locations, and providing access for users who are
not trained for or not able to perform scientific diving. How-
ever, current ROVs, particularly modestly-equipped, low-cost
models, have limited sensory, maneuvering, and manipulation
capabilities and are not an immediate substitute for a trained
scientific diver in many cases.

A mission profile of particular interest is photogrammetric
imaging of relatively constrained extents of the seafloor. This
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Fig. 1: Stern of BlueROV with integrated downward-looking
camera system.

form of data collection allows for, for example, localized
assessment of flora and fauna abundance, and search for
objects of interest or invasive species. For population-level
assessment, in particular, thorough coverage of a broad area
is not necessarily required and sparse sampling within a basin
of interest can provide meaningful insights. Again, this plays
to the strengths of the ROV which can rapidly cycle to
depth at multiple sampling locations without requiring time
for decompression.

As with all underwater platforms, a key technical compro-
mise inherent in many small ROVs is limited navigation and
positioning performance due to constrained volume and power
capacity available for the integration of additional sensors,
the specialized expertise required for optimal operation of
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Fig. 2: (a) and (b) Sample imagery from mapping evaluation at Seattle Aquarium pier. (a) shows the 10m tape. (c) and (d)
Sample imagery from velocity and altitude evaluation in Seattle Ship Canal. All images captured at 0.5-0.8m altitude.

complex navigation systems, and the cost of many subsea nav-
igation sensors, which can exceed the cost of the core vehicle
itself. The current marketplace of low-cost ROV navigation
systems includes a diversity of inertial measurement units
(IMUs), single-beam and mechanically scanned sonar/echo-
sounders, doppler velocity logs (DVL), and long-, short- and
ultra-short-baseline acoustic positioning systems (LBL, SBL,
and USBL resp.) [1]. Depending on the resources available
to an ROV operator, mission needs, and the operating envi-
ronment, different combinations of sensors may be integrated
to produce an estimate of vehicle global position and local
motion, and to inform various vehicle control loops.

For the seafloor survey mission, the ROV has two navigation
needs: (1) to understand its global position with sufficient
precision to geolocate any collected data; and (2) to understand
its relationship to the seafloor, including altitude and speed
over ground, as well as local relative position to estimate data
coverage and overlap. Arguably, these two navigation needs
are lightly decoupled, with an acceptable global positioning
accuracy on the order of 2–5% of water depth, a value
consistent with SBL or USBL tracking, while operations near
the seafloor require precise (cm-scale) local understanding
of vehicle pose to avoid collisions and spatially correlate
collected data.

The current best option for local navigation is a combination

of IMU and DVL, potentially complemented by an external
acoustic navigation system [1]. This pairing of IMU for
attitude and DVL for seafloor-relative velocity and altitude
provides an enhanced dead reckoning solution of vehicle track,
which may be tied to a global coordinate frame through
integration with an acoustic tracking solution.

While effective, DVL-based navigation has some disadvan-
tages. Lower-cost models can suffer from processing latency,
difficulties when operating close to uneven seafloor, and mini-
mum operating ranges very close to desired survey altitude
(∼1m). Above all, even “low-cost” DVLs can cost on the
same order of magnitude as the base ROV itself, increasing
the barriers of entry to use for community science.

This project develops a prototype low-cost, computer-vision
based navigation appliance for seafloor survey. The goal is not
to use the camera system as the primary science sensor, as
other higher-resolution, higher-image-quality camera systems
were already integrated into the ROV workflow for data collec-
tion. Instead, the system is designed as a supplemental data
source dedicated to vehicle localization. The overall project
objective is to assess the feasibility of optical tracking of soft
substrates and seafloor, including regions of extensive kelp
growth, as a source of (a) vehicle altitude; (b) vehicle speed
over ground; and (c) vehicle position within a local frame
(mapping).



This paper describes the system hardware and software
design, and presents preliminary results from system testing.
Overall, the priority is to assess the technical feasibility of the
concept and develop a baseline for future project development.
The system is designed as an add-on to the BlueROV plat-
form and to interact with the existing BlueROV piloting and
navigation systems, rather than as a replacement for existing
control algorithms. This project was completed by a student
team within the University of Washington ENGINE Senior
Capstone program, with support from the Coastal Climate
Resilience program at the Seattle Aquarium.

Fig. 3: Mission trajectories as reconstructed by COLMAP.
Note the survey origin is arbitrary based on the order of
processing within COLMAP.

II. RELATED WORKS

While fundamentally relying on ORB-SLAM3, this work
is inspired by the long history of offline and realtime al-
gorithms for improving nadir-looking photogrammetry and
photo survey, both in the air and underwater [2]–[5]. The
proposed approach is driven by the increasing capabilities
of modern, factor-graph-based SLAM approaches, including
ORB-SLAM3, and their application to a broad range of
environments [6]–[8]. This system in particular is strongly
inspired by AQUA-SLAM [9] which extends ORB-SLAM3
for the marine environment by adding custom factors for
integration of DVL velocity estimates – their approach also
performs online DVL calibration and DVL-IMU alignment,
while leaving the ORB-SLAM3 visual frontend largely intact.
As it performs DVL-inertial-visual fusion their approach is
more sophisticated, and suitable for applications where both
vision and a DVL are available.

Other recent approaches have attempted to improve un-
derwater visual SLAM through the integration of external
modalities. The recent SVIN2 framework [10] fuses inertial,

visual, pressure, and a mechanically scanned profiling sonar
estimate vehicle trajectories, including loop closure. Wang
et al. [11] were then able to use the navigation solution to
produce dense realtime 3D maps of the environment.

III. HARDWARE DESIGN

The system consists of an NVidia Jetson Orin Nano develop-
ment board housed in a BlueRobotics 4-inch diameter acrylic
housing. The housing also contains two Vision Components
global shutter cameras based on the Sony IMX296 sensor
with 2.7mm focal length wide-angle lenses. The cameras are
hardware synchronized by digital I/O on the Jetson board and
look out through a standard 12.7mm-thick BlueRobotics flat
acrylic endcap with a 5.5cm stereo baseline. In these trials the
cameras were operated at 10Hz. The housing also includes a
small companion board which samples environmental and leak
sensors, and a VectorNav VN-100 IMU which is sampled at
100Hz. A single subsea cable (ethernet plus power) connects
the camera housing to the main BlueROV control vessel,
which contains limited modifications from stock, notably the
inclusion of a BotBlox Gigablox ethernet switch to provide
connectivity to the Jetson development board.

The 4-inch housing is mounted in the stern of the ROV,
pointed downward on the standard BlueRobotics payload sled
(Figure 1) with the stereo baseline abeam relative to the ROV’s
frame.

IV. SOFTWARE DESIGN

The Jetson Nano development board runs the Jetpack op-
erating system provided by NVidia, and the ROS2 ”Humble”
middleware layer [12], including a custom stereo camera driver
for the stereo Vision Components cameras.

The intrinsic and extrinsic calibration of the stereo camera
system, as well as the camera-IMU alignment, were estimated
using Kalibr [13].

A. ORB-SLAM3 Integration
Multiple visual processing approaches were evaluated, with

preliminary results from the ORB-SLAM3 ( [14]) visual
mapping package selected as the most promising for further
development. Testing used a modified ROS2 wrapper for
ORB-SLAM3 which adds key introspection capabilities, as
well as the capacity to process data both in realtime and in an
offline post-processed mode [15].

Mapping is evaluated using the optimized odometric output
from ORB-SLAM3. The local origin of the SLAM map is set
to the first keyframe, necessitating rigid body alignment for
comparison with other trajectories. Body velocities are cal-
culated from finite differences from ORB-SLAM3’s realtime
odometric output, while altitude is calculated from the ROV-
relative positions of tracked map points. Rather than using raw
ORB features, tracked map points are used as they have passed
geometric consistency tests, eliminating false positives from
drifting marine particulates or moving features on the seafloor.
A center-weighted average of vertical distance to each feature
is taken to simulate a “beam pattern” which concentrates on
points near the center of the camera field of view.



V. TESTING AND EVALUATION

The system was evaluated in two field trials. The first
occurred in Puget Sound adjacent to the Seattle Aquarium
and evaluated mapping performance in realistic ocean survey
conditions. Unfortunately, a DVL was not available at the time
of this test and no ground truth of vehicle altitude or velocity
was collected.

A subsequent test occurred in the freshwater Seattle Ship
Canal with a Waterlinked A50 DVL mounted on the ROV. The
ROV allows collection of ground truth altitude and velocity
information, however this data is significantly more turbid
and contains fewer seafloor features reducing its value in
evaluating mapping performance.

A. Mapping evaluation

The ROV and mapping package were deployed adjacent to
the Seattle Aquarium in ∼10m of water. This urban, littoral
site features significant seafloor debris and offers a highly
textured seafloor (Figure 2(a)-(b)). In preparation for the test,
a 10m tape was placed on the seafloor extending from a pier
piling. The ROV collected two out-and-back transects along
the tape (tape1 and tape2) as well a less constrained survey
of a collapsed piling nearby (piling). The two tape missions
are naturally overlapping, while the piling contains limited
intersections with itself or with the tape missions.

To develop a ground truth for vehicle motion, combined im-
agery from all three missions was post-processed in COLMAP
[16], [17] to produce a synoptic reconstruction of the study
area. An overview of the reconstructed trajectories is shown
in Figure 3.

Each trajectory was processed individually in a new ORB-
SLAM3 session. As the COLMAP and ORB-SLAM3 trajecto-
ries are derived from the same input image stream, the results
are inherently time synchronized and can be compared directly
using the evo toolkit [18]. As neither COLMAP nor ORB-
SLAM3 are provided with global references, each exists within
its own local frame; evo estimates a rigid body transformation
between the two local frame before comparing trajectories.

For each trajectory, we consider two metrics, absolute
pose error (APE) and relative pose error (RPE) in both
translation and rotation, summarized in Table I. Tracking
success gives fraction of the total mission duration where
ORBSLAM successfully localizes relative to the local map.
Note on the piling mission, the algorithm is unable to maintain
tracking throughout the duration of the mission and as such
the overall APE is not meaningful; however the reconstruction
is successful for approximately the first half of the mission
(followed by extended stretches where the algorithm is unable
to track the seafloor), and the APE of that subset can be
evaluated individually. The COLMAP- and ORB-SLAM3-
derived trajectories for the tape1 and tape2 missions are shown
in Figure 4.

Per Table I, the ORB-SLAM3 trajectory estimate over the
∼21− 25m-long tape missions was approx 0.6% of distance
traveled, a value competitive with existing IMU-DVL dead
reckoning solutions. This is assisted in this case by the

(a) Mission tape1

(b) Mission tape2

Fig. 4: Comparison of COLMAP and ORB-SLAM3 trajecto-
ries for both out-and-back surveys of 10M tape on seafloor.



Mission Traj. length Tracking Translation (m) Rotation (rad)
(m) success APE RPE APE RPE

tape1 25.79 100% 0.150 0.004 0.146 0.005
tape2 21.59 100% 0.126 0.003 0.106 0.004
piling overall 24.774 82.8% – 0.019 – 0.011
piling subset 13.22 100% 0.179 0.004 0.152 0.004

TABLE I: Summary of mapping performance from testing at Seattle Aquarium.

relatively clear water and the continuous, low altitude which
allowed sustained visual tracking. The piling mission shows
the hazards of not meeting those conditions as ORB-SLAM3 is
unable to maintain tracking – nor to relocalize on the existing
map, as the path cross itself only once – and as such the vehicle
has no absolute position estimate in the second half of the
mission. However, the relatively consistent RPE demonstrates
that the instantaneous motion estimates remain accurate.

B. Range and velocity evaluation

Range and velocity estimation testing occurred in the Seattle
Ship Canal with a Waterlinked A50 DVL mounted on the ROV.
The DVL was adjusted to the speed of sound in fresh water
based on ambient water temperature. This test site was sig-
nificantly more turbid than the Seattle Aquarium site, limiting
effective ranges for visual testing but also providing ample
opportunity for evaluating the robustness of ORB-SLAM3’s
visual odometry and map point tracking implementations.
Evaluation focused on a ∼2 minute subset when the ROV was
consistently 0.5-0.8m from the seafloor, maximizing visibility.

Comparison of DVL and visual estimates of vehicle range
to bottom are shown in Figure 5a. For comparison, the ORB-
SLAM3 estimate is smoothed by a 10-sample (1-sec) moving
window average. Neither DVL nor ORB-SLAM3 ranges are
compensated for vehicle pitch and roll.

Similarly, the ROV body velocities estimated by the DVL
and ORB-SLAM3 are presented in Figure 5b. Again, both
raw and smoothed velocities are presented; for comparison
purposes, the ORB-SLAM3 velocities have been transformed
from the camera frame to ROV body frame (X fore, Y
starboard, Z down).

VI. CONCLUSION

This project assessed the feasibility of using a low-cost
embedded stereo system running a published visual processing
algorithms to perform altitude, velocity, and position estima-
tion as a potential substitute – or complement – for a DVL
as a source of navigation information when performing near-
bottom surveys.

As shown above, the system is capable of making the
required measurements with high accuracy, although with
the strong caveat that the system is only effective when the
seafloor is visible. Though seemingly a disqualifying restric-
tion, during visual seafloor surveys, such visibility is a prereq-
uisite for mission success. Moreover, compared to a DVL the
vision system can provide a dense estimate of vehicle altitude,
allowing, for example, identification of rocks or cobbles which
can be avoided, but do not require a significant change in

(a) Comparison of range to seafloor.

(b) Comparison of ROV body velocity.

Fig. 5: Comparison of Waterlinked A50 DVL and ORB-
SLAM3 estimates of range to seafloor and ROV velocities.

altitude, and critically it offers the possibility of re-localization
or “loop closure” to improve long-term position estimates, a
capability which DVL-based dead reckoning cannot achieve.

Of course, when the project budget and ROV payload
allows, the ultimate solution would integrate DVL, IMU, and
visual information (as in [9]) for local navigation, potentially
complemented with acoustic ranging for global localization.

The described results are preliminary and rely heavily on
the unaltered ORB-SLAM3 package; future work will include
both evaluation of alternative vision processing components,
including other SLAM packages, integration of more robust
filtering and failure detection in the presence of poor imaging



conditions (due to e.g., turbidity), and continued testing.
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