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I Introduction

In the summer of 2015, Casey Mann, Jennifer McLoud-Mann, and David
Von Derau of University of Washington Bothell announced that they had
discovered a new convex pentagon capable of tiling the plane (hereby referred
to as the Bothell Pentagon).

Figure 1: The Bothell Pentagon. Illustration courtesy of Casey Mann

This was an exciting event for the mathematical community, as the Both-
ell pentagon is only the fifteenth known type of pentagon that can tile the
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plane. Therefore our initial direction for this project was to study some char-
acteristics and statistics of that tiling. We had intended to look at the gap
distribution of the tiling, as well as ideas like the number of vertices and/or
pentagons within circles of various radii. The other direction we set out on
was enumerating the group elements of the pentagon, with the ultimate goal
of determining the genus of its translation surface.

Over the course of the quarter, we ended up focusing more exclusively on
studying the translation surface of the Bothell pentagon rather than statis-
tics of the tiling. This led us in the direction of considering billiard paths
within the pentagon and the translation surface, as well as the cylindrical
decomposition of the surface.

II Theoretical Background

II.i Translation Surface

II.i.(i) Billiard and Reflection Group

The reflection group of a polygon is a finite group of reflected and rotated
versions of that polygon that arise from an initial set of reflections. Various
permutations of reflections generate elements of the group.
The reflection group is related to the idea of mathematical billiards. Rational
billiards refers the the theoretical motion of a point mass in a polygon who
angles are rational multiples of π. However, instead of allowing the point
mass to bounce off the edge that it contacts, it continues its trajectory in a
straight line by flowing into a reflected version of the polygon. Doing enough
trajectories results in an exhaustive set of reflections, the reflection group of
the polygon. Finding this group allows us to study the surface.

II.i.(ii) Euler’s Formula

Euler’s Formula is useful in computing the genus of complicated translation
surfaces:

V − E + F = 2(1−G)

where V is the number of vertices, E the number of edges, F the number of
faces, and G the genus, or number of holes, in the surface.
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II.ii Cylinders

In simplest terms, cylinders of a surface are the areas bounded by saddle
connections. We looked first at determining if our surface decomposed com-
pletely into cylinders in a particular direction, and if did, then at the pos-
sibility that it might be a Veech surface. A cylinder’s modulus is the ratio
of its width to its height, and if all the moduli are rationally related in all
possible cylindrical decompositions of a surface, then the surface is Veech.

III Algorithm Development

One of our primary goals after finding the group and translation surface of
our pentagon by hand was to generalize and automate the process so our
group, or anyone else in the mathematical community, could easily do the
same. Therefore we wrote code in SageMath that allows the user to compute
the reflection group, genus of the translation surface, or explore billiard paths
for any polygon, provided that it is a “legal” polygon (which for our purposes
means that its internal angles are rational multiples of π and that it is not
self-intersecting).

III.i Reflection Group

For a rational polygon, its reflection group is composed of a finite number of
generators in R2, which is called dihedral group. The generators are of two
kinds: rotations (denoted as Rot) and reflections (denoted as Ref) with an
angle of 2π

n
. Their matrix representations are the followings:

Rot(θ) =

(
cosθ −sinθ
sinθ cosθ

)
, Ref(θ) =

(
cosθ sinθ
sinθ −cosθ

)
where θ is the angle associated with each generator.

The algorithm requires a list of initial generators, i.e., angles that corre-
spond to lines parallel to each side of the polygon. It begins with a rotation
by zero and the identity (denoted as id), and then tests compositions of re-
flections as per the appropriate generators to find elements of the reflection
group:

3



Algorithm 1 Generate Reflection Group

Require: ListOfGenerators
FoundElements := {id}
NewElements := {id}
while NewElements != ∅ do

A := NewElements
NewElements := {}
for a ∈ A do

for g ∈ ListOfGenerators do
if a ∗ g /∈ FoundElements then

addset(a ∗ g, FoundElements)
addset(a ∗ g, NewElements)

end if
end for

end for
end while

III.ii Edge Graph and Vertex Graph

The problem of computing the genus for any legal polygon comes down to
counting the number of faces, edges, and vertices in the surface. To do so,
the algorithm first uses the reflection group code to find the group and thus
find the number of faces in the surface.

The algorithm uses NetworkX, a package for python, to create edge and
vertex ”graphs.” For the edge graph, it first creates a set of ”nodes” that
represent each of the polygon’s edges under all rotations and reflections as
determined by the reflection group. It then creates connections between the
nodes of equivalent angle, orientation, and side number.

The Vertex graph algorithm also begins by creating nodes that represent
vertices of the polygon under rotations and reflections as determined by the
reflection group. It then uses one of NetworkX’s cycle finding algorithms to
find cycles that make up the basis of the vertex graph, and uses the number
of cycles to compute the number of vertices.
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Algorithm 2 Generate Edge Graph

Require: reflectionGroup, setOfAngles
initialize Edge Graph
index = 0
for r ∈ reflectionGroup do

for s ∈ {0, 1, 2, ...,number of edges in the polygon−1} do
index = index + 1
add (index, {”generator” : r, ”edge” : s}) as a node to the Edge
Graph

end for
end for
for i ∈ {1, 2, 3, ..., number of nodes in the Edge Graph} do

for j ∈ {i+ 1, i+ 2, ..., number of nodes in the Edge Graph} do
if nodei matches nodej then

add (nodei, nodej) as an edge to the Edge Graph
add (nodej, nodei) as an edge to the Edge Graph

end if
end for

end for

Algorithm 3 Generate Vertex Graph

Require: edgeGraph, numEdge(number of edges in the polygon)
for i ∈ the set of nodes in the Edge Graph do

add (i.index, {”generator” : i.generator, ”vertex” : i.edge}) as a node
to the Vertex Graph

end for
for edge ∈ the set of edges in the Edge Graph do

add (edge.leftVertexIndex, edge.rightVertexIndex) as an edge to the Ver-
tex Graph
add (edge.leftVertexIndex+1, edge.rightVertexIndex+1) as an edge to
the Vertex Graph

end for
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III.iii Billiard Trajectories in Rational Polygons

We wrote code that is capable of drawing billiard trajectories in both the
Bothell polygon and legal custom polygons. The algorithm requires a polygon
with sides defined by vectors, as well as an initial point and an initial vector
to initialize the billiard path. It solves systems of parametric equations to
determine if/where the current path intersects with one of the sides. It
chooses the first side with which the path intersects (to handle the case
of, for example, an L-shaped polygon where a path may potentially intersect
with multiple sides). The trajectory terminates if it hits a vertex. Otherwise,
the angle at which the trajectory hits and reflects off of a particular side is
used to compute the next path. At the present time, the algorithm computes
paths up to a inputted number of steps, unless the trajectory terminates by
ending in a vertex. It cannot tell when the trajectory is periodic.

IV Result

IV.i Reflection Group

We set side e of the Bothell pentagon to be parallel to the x axis in Cartesian
space. The angle generators of the group were therefore 0, π

12
, π

6
, π

2
, and 5π

6
:

Figure 2: Generators of the Reflection Group

The group for the Bothell pentagon contains 24 elements: 12 reflections
and 12 rotations. The angles of rotation are the integer multiples of π

6
be-

tween 0 and 2π, while the angles of reflection are the integer multiples of
π
12

between 0 and π. We found the following to be the most elegant and
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useful arrangement of the elements of the reflection group, where the yellow
pentagon represents the identity:

Figure 3: Reflection Group

IV.ii Euler’s Characteristic

For the translation surface of the Bothell Pentagon, We needed to find the
number of vertices, edges, and faces to compute the genus. The number of
faces was simplest to compute, since the surface is made up of 24 pentagons
and thus has 24 faces. As shown in the next diagrams, the surface has 60
edges and 16 vertices. Thus Euler’s formula gives:

16− 60 + 24 = 2− 2G =⇒ G = 11

Therefore the genus of the surface is 11. In addition, the surface has 6
vertices where the angle exceeds 2π.
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Figure 4: Edge identifications on the translation surface

Figure 5: Vertex identifications on the translation surface
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IV.iii Billiard Trajectories

Figure 6: A terminating billiard trajectory

We wrote a code to generate billiard trajectories inside a pentagon which
produces the sequence of edges hit in a trajectory as well as the location
coordinates of each hit. We intended to study periodic trajectories in the
Bothell pentagon but were not able to do so in great detail. However, we
found that trajectories which lie inside cylinders in parallel directions are
periodic, and those such trajectories which start at a vertex terminate at the
same vertex as shown above.

IV.iv Cylinders

The surface of the Bothell pentagon is able to decompose completely into
cylinders. We studied cylinders in the vertical direction for our surface,
however, as is apparent because of the bilateral and radial symmetry of this
particular arrangement of the reflection group, a similar decomposition is
possible in the horizontal direction as well as in angular rotations by integer
multiples of π/6.
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Figure 7: Cylindrical Decomposition in the Vertical Direction

In computing the dimensions of the cylinders, we set the lengths of sides
d, e, and b to 1 for simplicity; thus the length of side c is

√
2√

3−1 and the length
of side a is 2. Using this scale, the dimensions of the cylinders are as follows
(note that each cylinder has identical dimensions as exactly 1 other cylinder):
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Cylinder no. Width Height

1, 4 2
√
3−3
2

20 + 10
√

3

2, 3 2−
√
3

2
22 + 12

√
3

5, 10 2−
√
3

2
12 + 6

√
3

6, 12 3−
√
3

2
3 +
√

3

7, 9
√
3−1
2

6 + 4
√

3

8, 11 1 2 + 2
√

3

There are many cylinders whose moduli are not rationally related, there-
fore we have proved that this is not a Veech surface. However, the fact that
each cylinder has the same dimensions as another suggests that our current
surface my be a double cover of a different surface.

V Future directions

One direction to explore is patterns in sequences of edges hit in billiard
trajectories. These sequences may show if there are common characteristics
in periodic and terminating trajectories other than running parallel to the
cylinders we found. There may also be more cylinder decompositions to
discover as we only found those in the six directions discussed.

Now that the all processes for finding the translation surface for the Both-
ell pentagon have been automated, the translation surface for other convex
pentagons, and convex polygons in general, can be found easily. From there,
the same directions that we took in cylinders and billiards can be taken or
completely different questions can be explored.
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