Washington Experimental Mathematics Lab Brownian Bridges

Department of Mathematics University of Washington

Autumn 2017

(University of Washington)

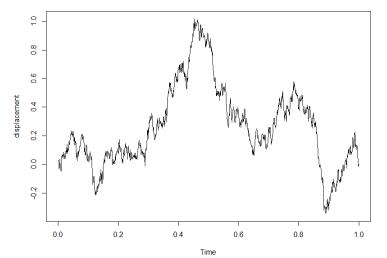
Washington Experimental Mathematics Lab

Autumn 2017 1 / 12

The 14 at 14

Introduction to the Theory of Brownian Bridges

Definition An *m*-dimensional Wiener (or Brownian Motion) process with mean μ and variance σ^2 is a stochastic process $(W_t)_{t>0}$ with state space \mathbb{R}^m satisfying:


Remark Let $(W_t)_{t\geq 0}$ be an *m*-dimensional Wiener process with mean μ , variance σ^2 , and let T > 0. Define $(B_t)_{t\in[0,T]}$ by

$$B_t \equiv W_t - rac{t}{T} W_T.$$

 $(B_t)_{t \in [0,T]}$ is called a Brownian bridge on [0, T] with parameters μ, σ^2 .

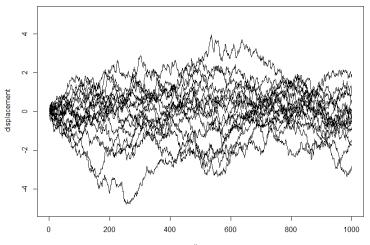
Brownian Motion

(University of Washington)

Washington Experimental Mathematics Lab

1D Randomized End Points

Randomized Bb with end points of 1 or -1

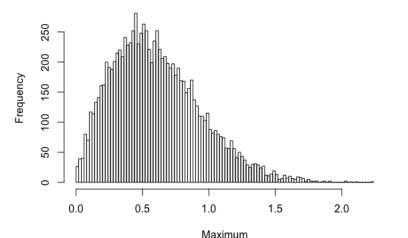

time

(University of Washington)

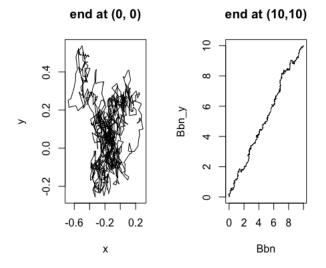
Washington Experimental Mathematics Lab

1D End Points From Random Normal

Randomized Bb with end points from N(0,1)


time

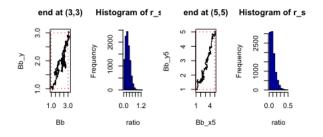
(University of Washington)


Washington Experimental Mathematics Lab

1D Distribution of Maximum Values

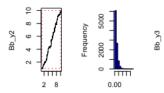
Maximums of Brownian Bridges with end points of 0

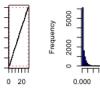
2D Brownian Bridges Fixed Start End Point



(University of Washington)

Washington Experimental Mathematics Lab

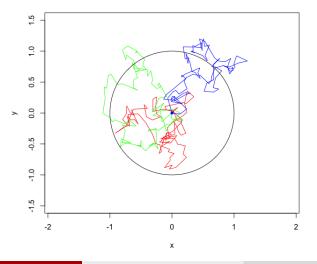

1 ∃ →


2D Brownian Bridges different End Point AND Probability of exist

end at (10,10) Histogram of r_s

Washington Experimental Mathematics Lab

25

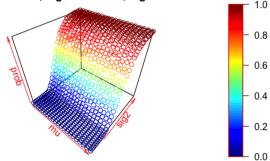

5

ŝ

0

-

2D Brownian Bridges Example


(University of Washington)

Washington Experimental Mathematics Lab

< E

2D Brownian Bridges Exit Probabilities from the Open Unit Disk

Brownian bridge (on [0,1]) exit probability of exiting the open disk of radius: 1 mu-start: -1 , mu-end: 1 , mu-incr: 0.1 sig2-start: 0.01 , sig2-end: 0.2 , sig2-incr: 0.005

2D Brownian Bridges First Exit Times Distributions Evolution

link

https://goo.gl/XV5kMq

(University of Washington)

Washington Experimental Mathematics Lab

Autumn 2017 11 / 12

< ロ > < 同 > < 回 > < 回 >

Sources

- https://www.math.ucdavis.edu/ hunter/m280_09/ch5.pdf
- https://en.wikipedia.org/wiki/Wiener_process
- https://en.wikipedia.org/wiki/Brownian_bridge
- http://www.columbia.edu/ ks20/FE-Notes/4700-07-Notes-E