Longest Orbits over Varieties of Generalized Markoff Equations over Finite Fields

Marvin Castellon, Kira Wolpert, Seth Lee August 2, 2017

Abstract

The automorphism group of the polynomial $k(x,y,z)=x^2+y^2+z^2-xyz-2$ over a finite field \mathbb{F}_p^3 has a subgroup Γ , consisting of polynomal automorphisms, whose orbit lengths are of particular fascination. The group Γ is generated by the automorphisms ι , τ , η and acts on the variety $\mathbb{V}(k-\lambda)$, for λ in \mathbb{F} . We are interested in the length of the longest orbit, denoted $\mathcal{L}_{\langle w \rangle}(p,\lambda)$, for a fixed λ and prime p, where $\langle w \rangle$ is the cyclic subgroup generated by w in Γ . The evaluation of our \mathcal{L} function is complete for ι , τ , $\iota\tau$, and $\eta\iota$.

A motivating conjecture is that these automorphisms will act transitively on the variety as p tends toward infinity. We hope to gain insight into how the gorup action is approaching transitivity by studying automorphisms of exceptionally large order. The automorphism $\eta\tau$ is of interest due to its orbits rate of growth as p increases; It appears to tend toward $p\log p$. This is significantly larger than the linear growth rate of η , or the constant orders of ι , τ , $\iota\tau$, and $\eta\iota$.