Direct and Indirect Impacts of Climate Change on Cropping Systems in Eastern Washington

Jennifer C. Adam Assistant Professor Civil and Environmental Engineering Washington State University

Washington State Academy of Sciences Annual Meeting September 20, 2012

WSU Team of Collaborators

Biological Systems Engineering

- Claudio Stöckle, Professor and Chair
- Roger Nelson, Research Associate
- Keyvan Malek, PhD Student

Center for Sustaining Agriculture and Natural Resources

- Chad Kruger, Director
- Georgine Yorgey, Research Associate
- Sylvia Kantor, Research Associate

Civil and Environmental Engineering / State of Washington Water Research Center

- Jennifer Adam, Assistant Professor
- Michael Barber, Professor and Director of SWWRC
- Kiran Chinnayakanahalli, Postdoctoral Associate (SWWRC)
- Kirti Rajagopalan, PhD Student
- Dana Pride, Web Designer (SWWRC)
- Shifa Dinesh, PhD Student
- Matt McDonald, MS Student

School of Economics

- Michael Brady, Assistant Professor
- Jon Yoder, Associate Professor
- Tom Marsh, Professor and Director of IMPACT Center

Outline

Background

- Water sustainability in the Columbia Basin
- Potential impacts of climate change on crops
- Description of "The Columbia Basin Water Supply and Demand Forecast"
- Results from the study:
 - Impacts on water supply and demand
 - Impacts on crop yield:
 - Direct climate impacts
 - CO₂ impacts
 - Water rights curtailment impacts
- Proposed adaptation strategies

The Columbia River Basin (CRB) as a Water and Agricultural Resource

Multiple competing water uses in the CRB:

- In-Stream: hydropower, flood control, fish flows, navigation, recreation
- Out-of-Stream: agricultural, municipal, industrial

Washington's Agriculture

- 300 commodities (first in US for 11 commodities)
- Livestock and crops: \$6.7B in 2006
- 11% of the state's economy (WSDA, 2008)

Potential Impacts of Climate Change on Agriculture

Direct Impacts of Climate Change

- Warming
 - lengthens the available growing season, but...
 - shortens the crop growth period
- Growing season precipitation changes (non-irrigated crops)
- Changes in frequency of extreme events
- Direct Impacts of Increasing CO₂
 - Increases radiation-use efficiency
 - Increases water-use efficiency
 - Largest effect for C3 crops (most crops; corn=C4 crop)
- Indirect Impacts of Climate Change through Water Rights Curtailment (irrigated crops)
- Indirect Impacts due to Changes to Pests, Weeds, Diseases, and Crop Quality

The Columbia Basin Water Supply & Demand Forecast

- Every 5 years, the Washington State Department of Ecology's Office of the Columbia River (OCR) is required to submit a long-term water supply and demand forecast to the State Legislature
- Washington State University (WSU) was assigned to develop the 2030s forecast for water supply and out-of-stream demand
- The forecast helps improve understanding of where additional water supply is most critically needed, now and in the future

Access Washington ®

Copyright © Washington State Department of Ecology Contact Us | Privacy Notice | Site Info | Accessibility

Modeling Capabilities Developed

- Started with tools developed at the University of Washington Climate Impacts Group (UW CIG) through the State-Wide Assessment (Elsner et al. 2010), and added:
- 1. Integrated surface hydrology and crop systems modeling
- 2. Inclusion of water management
 - 1. Reservoirs
 - 2. Curtailment
- 3. Interaction between biophysical and economic decision making models

Integrated Hydrology, Cropping Systems, and Water Management

Crops Modeled: irrigated and non-irrigated (dryland)

Major Crops

- Winter Wheat
- Spring Wheat
- Alfalfa
- Barley
- Potato
- Corn
- □ Corn, Sweet
- Pasture
- Apple
- Cherry
- Lentil
- Mint
- Hops

Grape, Juice	
Grape, Wine	
Pea, Green	
Pea, Dry	
Sugarbeet	
Canola	L
Vegetables	
Vegetables Onions	
Vegetables Onions Asparagus	
Vegetables Onions Asparagus Carrots	
Vegetables Onions Asparagus Carrots Squash	
Vegetables Onions Asparagus Carrots Squash Garlic	

Other Pastures	Berries
Grass hay	Caneberry
 Bluegrass 	Blueberry
Hay	Cranberry
Rye grass	Other Tree Fruits
Lentil/Wheat Type	Pear
🛛 Oats 🦳	Peaches
 Bean, green 	
🛛 Rye 📝	WSDA
🛛 Barley	
🛛 Bean, dry	USDA
🛛 Bean, green 🏹	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	L L AND

Interactions with Economic Modeling

Results

Impacts on water supply and demand

- Impacts on crop yield:
 - Direct climate impacts
 - □ CO₂ impacts
 - Water rights curtailment impacts

Projected Climate Change Impacts on Water Supply and Demand

- A small increase of around 3.0 (±1.2)% in average annual supplies by 2030 compared to historical (1977-2006)
- Unregulated surface water supply at Bonneville will
 - 14.3 (±1.2)% between June and October
 17.5 (±1.9)% between November and May
- The irrigation demand under 2030s climate was roughly 2% above modeled historic levels under average flow conditions
- Most severe impacts at smaller scales, i.e., for specific watersheds

Regulated Supply and Demand at Bonneville

Regulated Supply and In-Stream Flow Requirements at Key Locations

Change in Total Water Demand (2030s – Historical)

Yakima River Basin

- WA's largest agricultural economy, 5th in nation
- Tree fruit, vineyards, field crops, forage, pasture, vegetables, specialty crops
- 5 reservoirs hold ~30%
 of mean annual runoff

Changes in regulated supply and demand

Vano et al (2010) Study of Irrigated Agriculture in the Yakima Basin

- For junior irrigators receive less than 70% of water (level of prorating):
 - 14% historically 33% in 2040s (A1B)

 - 27% in 2020s (A1B) 68% in 2080s (A1B)

Vano et al (2010) Study of Irrigated Agriculture in the Yakima Basin

- Applies, sweet cherries: 48% of region's crop value
- Total production declines from historic by 5% (2020s) and 16% (2080s)

Projected Climate Change Impacts on Crop Yield: Climate and CO₂

Projected Climate Change and CO₂ Impacts on Non-Irrigated Winter Wheat

Historical Yield [Non Irrigated] (tonnes/hectare)

Future Change in Yield [Non Irrigated] (tonnes/hectare)

Future Yield [Non Irrigated] (tonnes/hectare)

% Change in Yield [Non Irrigated]

Projected Climate Change and CO₂ Impacts on Non-Irrigated Spring Wheat

Historical Yield [Non Irrigated] (tonnes/hectare)

Future Change in Yield [Non Irrigated] (tonnes/hectare)

Future Yield [Non Irrigated] (tonnes/hectare)

% Change in Yield [Non Irrigated]

Projected Climate Change and CO₂ Impacts on Apples

Historical Yield [Irrigated] (tonnes/hectare)

Future Change in Yield [Irrigated] (tonnes/hectare)

12.0 11.8 11.6 11.4 11.2 11.0

-1.0

Future Yield [Irrigated] (tonnes/hectare)

Projected Climate Change and CO₂ Impacts on Sweet Corn

Historical Yield [Irrigated] (tonnes/hectare)

Future Change in Yield [Irrigated] (tonnes/hectare)

Future Yield [Irrigated] (tonnes/hectare)

Projected Climate Change Impacts on Crop Yield: Curtailment

Due to Climate
 Historical Curtailment
 Future Curtailment

Projected Climate Change Impacts on Crop Yield: Curtailment

Projected Curtailment Impacts on Apples Alfalfa

Future Yield Change Due to Curtailment (%)

Future Yield Change Due to Climate (%)

Future Yield Change Due to Curtailment (%)

Future Yield Change Due to Climate (%)

Projected Curtailment Impacts on
Sweet CornPasture

Future Yield Change Due to Curtailment (%)

Future Yield Change Due to Climate (%)

Future Yield Change Due to Curtailment (%)

Future Yield Change Due to Climate (%)

Caveats

- Impacts related to pests, weeds, diseases, and crop quality were not considered
- We assumed that crops are not nitrogen-limited
- Water supply and demand considered 5 climate scenarios; crop yield results are for the middle climate scenario
- The large scales of our models are likely not capturing more extreme impacts at finer temporal and spatial scales
- We did not complete a full analysis of the Odessa Subarea of the Columbia Basin Project, where groundwater is expected to be fully depleted by 2030
- Limitations with water rights information
- A scenario of no adaptation was assumed

Proposed Adaptation Strategies

- Crop Management
 - Change planting dates for annual crops
 - Plant/develop crop varieties better adapted to future climate conditions
- Water Management
 - Structural Alternatives: e.g., new seasonal storage, groundwater extraction, divergences
 - Non-Structural Alternatives: e.g., modify reservoir operations, increase capabilities for water transfers between users, water conservation measures
- Building/Implementing Adaptive Capacity
 - Access to information about climate and climate impacts
 - Increase technical capacity to incorporate information on climate impacts
 - Increase legal and administrative capacity to adapt to climate change
- Need for "horizontal integration" among sectors impacted by climate change, e.g., integrated management of our water resources for hydropower, agriculture, ecosystems, flood control, etc...

Hamlet 2011, Miles et al 2010, Stöckle et al 2010, Vano et al 2010, Whitely Binder et al 2010

Summary

- Climate change is associated with warming, changes in precipitation seasonality, changes in the frequency of extreme events, and increases in CO₂
- While annual freshwater supply may slightly increase, freshwater availability will decrease during the growing season without adequate reservoir storage
- Irrigation water demand is also increasing
- Crop yields are impacted by these changes
 - Decreases due to warming
 - Increases due to CO₂ enhancement
 - Decreases due to more frequent curtailment
- Adaptation will involve both crop and water management strategies, and increasing the state's adaptive capacity

Thank you!

Extra Slides

Projected Climate Change and CO₂ Impacts on Potatoes at Othello, WA

Review and Stakeholder Interaction Process

- National Review Panel
- Regional Review Panel
- OCR Policy Advisory Group
- 30-Day Public Comment Period
- Public stakeholder workshops (Tri-Cities, Wenatchee, and Spokane) in Sep 2011
 - Inform stakeholders
 - Seek feedback

CropSyst

Cropping Systems Stöckle and Nelson 1994

VIC Macro-Scale Hydrology Liang et al, 1994

Modeling Scenarios (Low/Middle/ High)

Climate Change Scenarios

- □ HADCM_B1, CCSM_B1, CGCM_B1, PCM_A1B, IPSL_A1B
- Hybrid Delta Downscaling Approach (2030s climate) (UW CIG)
- GCMs and Emission Scenarios chosen for low/middle/high precipitation and temperature change combinations

Water Management Scenarios

- Additional Storage Capacity
- Cost Recovery for Newly Developed Water Supply

Economic Scenarios

- International Trade
- Economic Growth

The Reservoir Model (ColSim)

(Hamlet et al., 1999)

Slide courtesy of Alan Hamlet

ColSim Reservoir Model (Hamlet et al., 1999) for Columbia Mainstem

Model used as is, except for

- Withdrawals being based on VIC-CropSyst results
- Curtailment decision is made part of the reservoir model

Green triangles show the dam locations

Curtailment Rules (Washington State)

Curtailment based on instream flow targets

- □ Lower Snake
- Central Region (Methow, Okanogan, Wenatchee)
- Eastern Region (Walla Walla, Little Spokane, Colville)

Prorated based on a calculation of Total Water Supply Available Vakima

Yakima Reservoir Model

Objectives:

•Reservoir refill by June 1st •Flood space availability

CropSyst

Curtailment rules

Proratable water rights prorated according to Total Water Supply Available (TWSA) calculated each month

Model Calibration/Evaluation

Calibration:

- Streamflows (we used calibration from Elsner et al. 2010 and Maurer et al. 2002)
- Crop Yields (using USDA NASS values)
- Irrigation Rules (using reported irrigated extent by watershed)

Evaluation:

- Streamflows (Elsner et al. 2010 and Maurer et al. 2002)
- USBR Diversions from Bank's Lake (for Columbia Basin Project)

Precipitation

Historical Growing Season Precip (mm)

Change in Precipitation in the Future (mm)

Future Growing Season Precip (mm)

Maximum Daily Temperature

Historical Growing Season Avg Tmax (degree C)

Future Change in Avg Tmax (degree C)

Future Growing Season Avg Tmax (degreeC)

Minimum Daily Temperature

Historical Growing Season Avg Tmin (degree C)

Future Change in Avg Tmin (degree C)

Future Growing Season Avg Tmin (degree C)

