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1) Assessment approaches
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Global Climate Model grid mesh (~2 degrees latitude-
longitude)
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Schematic for Global
Atmospheric Model

Horizontal Grid (Latitude-Longitude)

Vertical Grid (Height or Pressure)
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2) Hydrologic sensitivities



Annual runoff sensitivities per degree of global
warming, continental U.S. and Alaska
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Summer and winter warming sensitivities
for major Western U.S. River basins
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Seasonal differences (3°C warming) at the Dalles
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Unregulated Flow (cfs)

Variations in seasonal streamflow
patterns and sensitivities in the PNW
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Categories of Sub-basin Responses to
changes in annual flow (VIC)
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Future scenarios: Long-term annual average
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2) Hydrologic extremes



Extreme precipitation should be
Increasing as the climate warms
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Figure 4.10: Relative changes in 20-yr retumn values averaged over the global land area of annual 24-h precipitation
maxima (AP20) as a function of globall'v averaged changes in mean surface temperature for B1, A1B, and A2 global
emissions scenarios. with results pooled from 14 GCM runs and for 2046635 and 2081-2100 relative to 1981-2000.
In the left panel, the pooled results are shown along with the median slope of 6.2%/°C and the 15th and 85th
percentiles (dashed and dotted lines, respectively). The right panel shows the results as a histogram. Replotted from

Khann et al (2007: Figure 16).
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Number of statistically significant increasing and
decreasing trends in U.S. streamflow (of 395 stations)
by quantile (from Lins and Slack, 1999)
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Legend

Magnification Factor (p>0.9) \\\‘i )
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Doete Decadal Magnification Factors of
. 25 Floods — Sites w/ no regulation

1,642 of 14,893 USGS Gage Sites with M>1 and p>0.9

- Stream Gage (>10 yrs record)

visual courtesy Rich Vogel



Results
~ Decadal Flood Magnification Factors
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Reconstructed U.S. soil moisture trends, 1915-2003
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Figure 1. Annual trends in model soil moisture. Blue
triangles show upward trends, while downward trends are
shown as red inverted triangles.

from Andreadis and Lettenmaier, GRL 2006



Trends in U.S. drought duration, 2915-2003
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Figure 3. Trends in drought duration. Blue inverted

triangles show downward trends, and red triangles show
upward trends.

from Andreadis and Lettenmaier, GRL 2006



Trends in U.S. drought severity, 1915-2003
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Figure 4. Trends in drought severity. Upward trends are
shown as red triangles, while downward trend as blue
inverted triangles.

from Andreadis and Lettenmaier, GRL 2006



Trends in number of global droughts, 1950-2000
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4) Implications for Washington' s
water resources




Washington Climate Change Impacts
Assessment

2007 State Legislature of Washington passed HB 1303 which mandated the
preparation of a comprehensive assessment of the impacts of climate
change on the State of Washington to be performed by the UW Climate
Impacts Group

The assessment was to be focused on the impacts of global warming
generally, and specifically in relation to:

public health,

agriculture

coastal zone

forestry

Infrastructure (specifically stormwater)
water supply and management
salmon and ecosystems

energy

For summary see Miles et a., Climatic Change 2010 (V. 102, No. 1-2)
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Puget Sound Basin

|

Seattle Tacoma Everett

Chester Morse and S.F. Tolt storage
144000 {ALB
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Variations in impacts within and between systems (A1B)
» Seattle, M&l and environmental flows

« Tacoma, flood control, more constrained storage

* Everett, hydropower, more interannual variability



Puget Sound Basin

municipal supply - current demand

« M&l reliability measures,
differ for all systems

« Current demand, reliability
little impact from future
change (A1B)

« Tacoma, water
allocations closer to
current system capacity

* Everett, largest system
capacity

* Note: simulations prior to
adaptations

Seattle M&I Tacoma FDWR Everett M&I
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Seattle M&I Reliability
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Case study 2: Yakima River Basin

Irrigated crops largest agriculture
value in the state
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Yakima River Basin
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week

Unregulated




Yakima River Basin

Unregulated

« Basin shifts from snow to more rain dominant



Yakima River Basin

management
model
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« Basin shifts from snow to more rain dominant



Yakima River Basin

0.4

Proration Rate, 9%

« Basin shifts from snow to more rain dominant
« Water prorating, junior water users receive 75% of allocation



Yakima River Basin

2080s

2020s

0.4 08 . historical
Proration Rate, 9%

« Basin shifts from snow to more rain dominant

« Water prorating, junior water users receive 75% of allocation

« Junior irrigators less than 75% prorating (current operations):
14% historically
32% in 2020s A1B (15% to 54% range of ensemble members)
36% in 2040s A1B
77% in 2080s A1B



Conclusions

C.om@\a/red_with the rest of the U.S. (and especially the southern
tier) Washington is in an area of modest annual runoff
sensitivity to climate warming.

But, there are substantial differences between summer and
winter sensitivities, and seasonal (not annual ) changes in
runoff and streamflow are the major issue here.

On a continental basis, there is some evidence of increasing
extreme precipitation — although still difficult to detect. The
picture for floods is much less clear, and it s not obvious
whether changes in flooding that has been observed is
primarily driven by land cover change or climate.

Washington’ s west side water supply systems (dominantly
urban) are fairly robust to shifts in the seasonality of
streamflow (so long as demand remains stable, or continues to
go down).

The sjtuation is much different in the Yakima (probably the
state s most climatically sensitive water resources system).
Even modest changes in streamflow patterns (increased winter
flow, reduced spring and summer) will substantially erode the
system s reliability.



