

Distributed Control, Protection, and Automation of Modern Electric Power Systems

Edmund O. Schweitzer, III President Schweitzer Engineering Laboratories, Inc.

Making Electric Power Safer, More Reliable, and More Economical®

Copyright © SEL 2013

Electric power systems deliver energy at the speed of light!

- Legacy power systems had a lot of margin.
- Today, there is less margin, and we must look for new, faster, robust control solutions, like feedback control.
- I believe we will DISTRIBUTE and AUTOMATE control, as we do protection.

Power Systems Are Changing

Less control over sources

Increasing dependence on electric power

Faster dynamics

Characterizing SCADA

- Asynchronous Measurements
- > Asynchronous Communications
- Centralized and Slow Data Gathering
- Control by Operators... No Automation
- Slow State Estimation... May not Converge

Traditional Generation Has MASS!

WESTINGHOUSE

WESTINGHOUSE

Electronic Sources Have Lower "Mass" "Twitchier" Power Systems

- Photovoltaic generation
- Wind farms
- Less energy stored in capacitors than in rotating masses of traditional generators
- Lower "mass" => faster power swings
- Faster swings => better react faster!
- Why not PREDICT trajectory, instead of just reacting to it?

PV Output: Very Rapid Changes

PV Output

2013: Hydro Picks Up When Wind Stops

BPA Balancing Authority Load & Total Wind, Hydro, and Thermal Generation, Last 7 days 06Sep2013 - 13Sep2013 (last updated 12Sep2013 09:06:53)

Guásimas del Metate (Nayarit) Electrifying the remaining 2%

Solar Panels

Microgrid System for Reliability

Stores energy for two days.

Load Trends Over Time

- > Fewer resistive loads ($P = V^2/R$)
- More switchers (P = const.)
 - Electric car chargers
 - Data centers

More "brittle" systems increase risk of voltage collapse

Conservation voltage reduction (brownout) is less effective today...and may even be counter-productive!

50" Flat-Panel TV Test

How Do We Automate Wide-Area Control Today?

- Model the system
- Analyze contingencies for various operating conditions
- Decide if special protection or control systems are needed

Build systems that respond to contingencies in ways that depend on the operating conditions at that moment

Problem With Predicting Contingencies

- Consider IEEE 39-bus 45-line system
- > Number of k line outages = $\binom{45}{k}$

High k Contingencies

- Traditionally rare
- But they cause the largest outages
- Intermittent resources increase k
- Generation and load flow can change quickly today.
- Intentional attacks are "high k"

Contingency-Based Control Problems

- It's hard, and getting harder, to know all the contingencies and operating conditions.
- Each contingency must be carefully analyzed and understood for every operating condition.
- The controller turns out to be a list of "if-then-else" actions, per contingency, and methods of identifying if and what contingency occurred.

Distribution Feeders as Buses

- Looped feed, pilot protection
 - Instantaneous tripping
 - Virtually no loss of service
- Accept generation anywhere
 - Rooftop solar, small wind, fuel cells
 - Integrate and dispatch backup gensets
- Islands ?microgrids? match load to source, and control frequency and voltage

Closed Loop Control

…instead of predicting contingencies,
Directly measure the state
Predict the state evolution
Take anticipatory control actions

What Is the "State" of the Power System?

- A vector of the complex voltages at every node, measured at the same time
- Either estimate state using "state estimator"
- SYNCHROPHASORS

Directly Measure the State V_2 **Power System** Network State Vn Detect bad data Sub n Sub 1 Average SEL-3378 RTAC **SVP** measurements

 V_n

Determine topology

>

Calculate V at adjacent stations: V' = V + ZI

Relay-Speed Processing, Anywhere

- Phasor Math: Self-Checks, Interpolation
 - $V_m = V_n + Z_{mn} I_n$

Maintain Load and Generation Balance

- View system as interconnected regions.
- Directly measure state in each region and share with neighbors, and master.
- When asset is lost, system starts to move from present state to predictable new one.
- If prediction is undesirable, act quickly to preserve as much generation and load as possible.

Predict and Respond Before Instability

Control for Normal and the Unpredicted

Moving Forward

Changes in sources, loads, expectations

- Systems may require automated controls
- General solutions too complex for RAS
- Feedback control will be simpler and better
- DISTRIBUTED control for reliability
- We have the theory and tools today