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Abstract  

 
In the standard design approach to missing observations, the construction of weight classes and calibration are used to adjust 

the design weights for the respondents in the sample. Here we use these adjusted weights to define a Dirichlet distribution 
which can be used to make inferences about the population. Examples show that the resulting procedures have better 

performance properties than the standard methods when the population is skewed. 

 
 

 

1. Introduction 

 
In the design based approach to survey sampling, information about the population is used when selecting the design 

and after the sample has been observed to adjust the sampling weights. In the formal Bayesian approach to survey 

sampling, information about the population is incorporated in a prior distribution. After the sample is observed, 

inferences are based on the posterior distribution of the unobserved units in the population given the values of the 

observed units in the sample. The posterior distribution does not depend on the sampling design. In large scale surveys 

Bayes methods have been little used in practice because it is difficult to find sensible prior distributions. In particular, 

it is not clear how to incorporate into a prior distribution the type of information contained in the design, which is then 

used in calibration to account for missing observations. An advantage of the Bayesian approach is that one can find 

point and interval estimators for many population parameters by simulating from the posterior distribution. Here we 

will argue that one can combine features from both approaches, and this results in improved inferences. Estimates will 

be based on a posterior distribution, but, paradoxically, one need not specify a prior distribution. Instead, after the 

sample has been observed, one selects a posterior distribution that depends on the sampling design and all the other 

information that is available to the statistician. 

 

 

2. The Horvitz-Thompson Estimator 
 

Consider a finite population of size N , where y  is the variable of interest and x  is an auxiliary which carries 

information about y . Given a sampling design of fixed sample size n , let 
i  denote the probability that unit i  is 

selected in the sample. If it is assumed that the iy ’s are roughly proportional to the ix ’s then a popular design is 

random sampling without replacement, where the probability that unit i  is selected is proportional to ix . In this case 

= ( / )i i xn x T , where xT  is the population total of the x  values. If wt =1/i i  then this is the weight assigned 

to unit i . A unit gets a small weight if there are just a few other units in the population with similar x  values and a 

large weight if there are many other units with a similar value of x . Given a unit in the sample its weight represents 

how many other units in the population that are similar to it. 

 

If s  denotes the labels of the units in the sample then HT = wt *i ii s
y

  is the Horvitz-Thompson estimator of 

the population total. It is easy to check that it is an unbiased estimator and that for any sample s  we have 

wt =i i xi s
x T

 . In other words, the HT estimator is calibrated on x (Särndal, 2007). In the design approach to survey 
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sampling these weights play an important role. Not only do they define the estimator but are used to get an estimate 

of variance for the estimator. 

 

If the design is simple random sampling without replacement, then wt = /i N n  and for every sample wt =ii s
N


. For most other designs this is not the case. For this reason the HT estimator is not robust against the assumption that 

i iy x . If one replaces each 
iy  with 

iy   for some fixed number   then the behavior of the HT estimator 

becomes much less desirable. It still is unbiased but its absolute error can become much larger and its confidence 

intervals much wider. This happens because the sum of the weights in a sample does not equal the population size. 

For more discussion of this point see Strief and Meeden (2014). If one renormalizes the weights so that they sum to 

the population size then they will no longer be calibrated for x . A better thing to do, we believe, is to find weights 

which are close to the design weights, are calibrated for x  and sum to N . This is a quadratic programming problem 

and there are many computer packages which will find the solution. 

 

In the next section we will discuss this approach in more detail when we have missing observations and compare it to 

more Bayesian approach. 

 

 

3. Missing Observations 

 

3.1 The standard approach 
 

The standard approach to observations missing at random is to assume that for each i  there is a probability, say   
i

, that unit i  is observed when it is included in the sample. This response probability is assumed to be independent of 

the sampling design and so the probability that we actually observe 
iy  in our sample is 

i i  which then yields a 

weight for the unit. Unfortunately the 
i ’s are almost never known. To overcome this lack of knowledge of the 

i

’s the statistician uses the observed values of x  to construct weighting adjustment classes with the hope that 

respondents and nonrespondents in the same class are similar, that is, the 
i ’s within each class are roughly constant. 

This assumes that the x  values are known for each unit in the full sample. Then within each class the total weight of 

the units in the sample falling in this class is split equally among the respondents in the class. Let rs  be the labels of 

the respondents in the sample. Given a sample s , for 
ri s  let wt i  be its adjusted weight found by this procedure. 

 

In general, the wt i ’s will neither be calibrated nor sum to N . Let ={ : }i ri s    denote a possible set of weights. 

As we indicated just above we recommend finding a new set of weights, say 
* , which is a solution to the problem  

 
2( ) = ( / wt )( wt )min i ii i

i s
r

f x


 


  

subject to the constraints  

 = and = ,i i x i

i s i s
r r

x T N 
 

   

where we assume 
xT  is known. One may also include the additional constraints that bdip  , 

ri s , where 

0 < bd <1 is some number selected by the statistician. 

Our choice of the function measuring how far a set of weights is from the wt i ’s is a popular one but other common 

choices will not change the story very much. We let CHT denote the estimator based on the set of weights found as 

the solution to the above problem. 
 

 

3.2 A stepwise Bayes approach 
 



Implicit within the standard approach is the assumption that the only possible values for units in the population are 

those that have appeared in the sample. Given a sample, let ={ : }i rp p i s , where 
ip  is the proportion of units in 

the population that are assumed to be identical to respondent i . We can think of p  as an unknown parameter that 

we wish to estimate. In fact, any set of weights for the respondents can be converted into an estimate of p  simply 

by dividing by the the total sum of the weights. If p  is an unknown parameter then given a 0 < bd <1 a natural 

parameter space for p  is the polytope which is the collection of vectors p  satisfying  

 =1 and = and 0 bd, for all ,i i i x i r

i s i s
r r

p x p p i s
 

     

where 
x  is the mean of the x  values of the population. We denote this polytope by 

bd . It is usually the case that 

for the *  defining CHT, 
* / N  will be a point in the relative boundary of 

bd . 

 

We will take a stepwise Bayesian (STB) approach to the problem of estimating p  by defining a “posterior” 

distribution for p  after the sample has been observed. Since we are using the STB approach we do not need to define 

a single prior distribution on which inferences will be based. An introduction to this approach can be found in Ghosh 

and Meeden (1997). Because of space limitations, we will omit the STB justification for the methods given here. 

 

Our posterior distribution will also depend on wt ={wt : }i ri s . We get this posterior in two steps. Let 

ˆ ={ : }i rw w i s , where = wt / wti ji r j s
r

w n
 . In the first step we use ŵ  as the parameter for a Dirichlet 

distribution which is restricted to the set 
bd . (We will explain a bit later how we choose bd .) We then use the R 

(R Core Team, 2016) package polyapost (Meeden et al., 2015) to calculate the expectation of p , say p̂  under 

this distribution. Note that p̂  is always in the relative interior of 
bd , in contrast to 

* / N  which is usually on the 

relative boundary. 

 

Note that p̂  depends on the design but also takes into account the information in x . Then ˆ
iNp  is a sensible weight 

for unit i  and ˆ
i ii s

r

Np y
  is an estimate of the population total of y . We denote this estimator by WD. 

 

We still need a way to evaluate the variability of the estimator WD. Rather than using the distribution which gave us 

p̂  we follow Strief and Meeden (2014) and define a second Dirichlet distribution. The parameter for this distribution 

is ˆ= rn p  . From the stepwise Bayes prospective we can base our inferences for the vector p  on the Dirichlet 

distribution with parameter vector  . Note this distribution is no longer restricted to 
bd  but lives on the full 1rn   

dimensional simplex (of probability vectors whose components are nonnegative and sum to one). Because this 

posterior allows for vectors of p  which only satisfy the constraint on average, this helps to account for the fact that 

the ˆ
ip ’s are estimates whose true values are not known. 

 

Given this posterior, it is straightforward to find the posterior variance of the corresponding estimate of the population 

total. We will assume it is approximately normal and use the usual normal approximation to get an approximate 95% 

confidence interval for the population total. We will call this distribution the weighted Dirichlet posterior. For other 

population parameters of interest one can just simulate from this distribution to find point and interval estimates. We 

want to emphasize that this posterior is not based on any model assumptions on how x  and y  are related. It just 

assumes that units which have similar x  values will tend to have similar y  values and that the response probability 

is a “smooth” function of x . 

 

We note that Rao and Wu (2010) also base inferences on a Dirichlet distribution but their justification is different 

from that given here. 
4. Simulation Results 

 



We constructed three populations with =10,000N  units each based on the same population of x  values. Since 

we are interested in skewed populations we let the auxiliary variable x  be a random sample from a lognormal 

distribution whose mean and standard deviation of the log are / 2e  and 
2 2 / 2e e , where e  is the base of 

natural logarithms. The minimum value, the 25%, 50%, and 75% quantiles, and maximum value for this population 

are 0.09, 1.41, 2.26, 3.60, and 26.73. 

 

In the first population, the 
iy ’s were conditionally independent given the 

ix ’s, and the conditional distribution of 

iy  given 
ix  was normal with mean 

28 ix  and standard deviation 0.4. The correlation between x  and y  is 0.825. 

 

In the second population we let the mean function of the y  be a function of x  that is not the identity function. This 

mean function, m , was defined as follows,  

 
2

2
1000(2 ) , 2( ) =

4( 2) , > 2
x xm x

x x
 


 

For this population the correlation between x  and y  is -0.35. 

 

In the third population the conditional distribution of 
iy  given 

ix  was normal with mean 1.5 ix  and standard 

deviation 3. The correlation between between x  and y  is 0.75. In these last two populations the distribution of the 

iy ’s were conditionally independent given the 
ix ’s just like in the first. 

 

Next we need to model the missing observations. To this end we need to define the vector of 
i ’s. We will assume 

that the units with a large x  value will be less likely to respond than units with a small value of x . For convenience 

the population is labeled so that x  is an increasing function of the indices. We begin by considering the vector which 

is the sequence that goes from 0.4 to 0.2 in 9,999 equal steps. This is a smooth decreasing function of the labels. In 

practice, we would not expect the response vector to be so smooth. So we added independent random errors from a 

normal distribution with mean 0 and standard deviation 0.05 to each component. We then applied to the resulting 

vector the linear function that rescaled its components back to the interval [0.2,0.4] . This was the vector   which 

we used to define the probability that a unit responds in our simulations. Of course, none of the estimators we compute 

are based on knowing  . 

 

We used two different sampling designs in our simulations. The first was simple random sampling. Let v  be the 

vector that goes from 0.3 to 0.8 in 9,999 equal steps. The second design used sampling proportional to v . Since the 

the 
ix ’s are an increasing function of the labels this will result in more units with larger values of 

ix  in the sample. 

 

For each of the three populations, we took 500 samples of size =150n  for each of the two designs. In each case the 

average number of respondents was about 44. For each set of simulations for the CHT estimator and the WD estimator 

we calculated their average value, their average absolute error, the average length their approximate 95% confidence 

interval and the frequency of their intervals containing the true population total. 

 

Under simple random sampling the ratios of the average absolute error of the CHT estimator to the average absolute 

error of the WD estimator for the three populations were 1.24, 1.37 and 0.93. For the second design these ratios were 

1.12, 1.27 and 0.93. We have done other simulations which will not be presented here where the populations were less 

skewed. In these cases we found that the behavior of the two estimators are quite similar except when i iy x , where 

the the CHT estimator does slightly better. This suggests that unless there is strong evidence that i iy x  one should 

use the WD estimator especially when the population of interest is skewed. 

 

 

Both estimators were nearly unbiased. For example, in the first two populations both estimators are biased downwards 

by just over one percent. A natural question is how do the CHT weights differ from the WD weights? The WD 

estimator gives more weight to the units with the largest and smallest x  values and hence correspondingly somewhat 

less weight for the units in the middle. For the first population when the design was simple random sampling for a 



given sample considered the units with the minimum value, 0.25 quartile, median, 0.75 quartile, and maximum value 

of x . The average weights assigned to these units under the CHT estimator were 181, 202, 217, 249 and 263. Whereas 

for the WD estimator these average weights were 201, 201,213, 233 and 331. 

 

The frequency of coverage of the WD approximate 95% confidence intervals for the first population was 0.984 and 

0.976 for the two designs. For the second population these numbers were 0.948 and 0.896 while for the third they 

were 0.962 and 0.992. 

 

Our first population is similar to one discussed in Dorfman (1994) and Rao et al. (2003). There it was observed that 

assuming a linear relationship between y  and x  when in fact it was quadratic can lead to poor confidence intervals 

whose actual coverage probabilities are far from their nominal levels. The problem is that one cannot use a quadratic 

model when the population total of the 
2

ix  values are not known. To investigate this further we selected 500 simple 

random samples of size 44 from the first population where there were no missing observations. Recall that 44 is the 

average number of responders we saw in our previous simulations. The ratio of the average absolute error for the 

regression estimator from this set of simulations to the average absolute error of the WD estimator from the first set 

of simulations was 1.06. The associated 95% confidence intervals for the regression estimator contained the true 

population total only 67.8% of the time and the ratio of the average length of the two methods was 0.36. 

 

We did a second similar simulation for the second population and the behavior to the regression estimator with no 

missing observations was similar to the WD estimator with missing observations. 

 

Finally, we did a similar simulation for the third population. Here the ratio of the average absolute error of the 

regression to that of the average absolute error of the WD estimator in the first set of simulations was 0.88. We also 

computed the average absolute error of the HT estimator and of its CHT version which ensures that the weights are 

both calibrated for x  and sum to N . The average absolute error of the second was just 1% larger than that of the 

regression estimator while the average absolute error for the HT estimator was 50% larger then that of the regression 

estimator. So even though i iy x  in this population the HT estimator performs poorly because the population is so 

skewed. 

 

In these simulations, given a sample, we set bd = 5 / rn , where 
rn  is the number of respondents in the sample. If 

instead of 5 we had used in the numerator of bd  any number ranging from 3 to 9 our results would have not changed 

much. But setting bd = 2 / rn  would be too small. So we see that our method is quite robust against the choice of 

bd . 

 

 

5. Comments 
 

All the simulations done here used the R package polyapost which, since version 1.4-2, allows one to compute 

expectations of any Dirichlet distribution constrained to a polytope (the set satisfying a finite family of linear equality 

and inequality constraints). This makes it easy for anyone familiar with R to compute the WD estimator. For simplicity 

we have only considered the situation with just one auxiliary variable but one can incorporate more than one variable 

in the set of constraints. 

 

The stepwise Bayes approach outlined here is an extension of some of the ideas in Strief and Meeden (2014). Those 

authors argued that the sampling design did not matter after the data was collected, and they used linear constraints 

on the auxiliary variables and the uniform distribution over a polytope to come up with a set of weights. Subsequent 

work has shown that the approach given here, which incorporates the design, yields better results. We have seen that 

the resulting procedures make no model assumptions about how y  and x  are related. They combine pre-sample 

and post-sample information available to the sampler in a coherent and objective manner and can yield procedures 

with good design properties for skewed populations where standard methods fail. Further investigation needs to be 

done on the behavior of the approximate confidence intervals of our weighted Dirichlet posterior. Alternatively, one 

could use our weights in standard design based methods to get an estimate of variance of our point estimator. 
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