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1.1 Introduction 

Change in network structure and composition has been a topic of extensive 
theoretical and methodological interest over the last two decades; however, the 
effects of endogenous group change on interaction dynamics within the con-
text of social networks is a surprisingly understudied area. Network dynamics 
may be viewed as a process of change in the edge structure of a network, in 
the vertex set on which edges are defined, or in both simultaneously. Recently, 
Almquist and Butts (2014) introduced a simple family of models for network 
panel data with vertex dynamics—referred to here as dynamic network logistic 
regression (DNR)—expanding on a subfamily of temporal exponential-family 
random graph models (TERGM) (see Robins and Pattison, 2001; Hanneke 
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et al., 2010). Here, we further elaborate this existing approach by exploring 
Bayesian methods for parameter estimation and model assessment. We pro-
pose and implement techniques for Bayesian inference via both maximum a 
posteriori probability (MAP) and Markov chain Monte Carlo (MCMC) under 
several different priors, with an emphasis on minimally informative priors that 
can be employed in a range of empirical settings. These different approaches 
are compared in terms of model fit and predictive model assessment using 
several reference data sets. 

This chapter is laid out as follows: (1) We introduce the standard (expo-
nential family) framework for modeling static social network data, including 
both MLE and Bayesian estimation methodology; (2) we introduce network 
panel data models, discussing both MLE and Bayesian estimation procedures; 
(3) we introduce a subfamily of the more general panel data models (dynamic 
network logistic regression)—which allows for vertex dynamics—and expand 
standard MLE procedures to include Bayesian estimation; (4) through simu-
lation and empirical examples we explore the effect of different prior specifica-
tions on both parameter estimation/hypothesis tests and predictive adequacy; 
(5) finally, we conclude with a summary and discussion of our findings. 

1.2 Statistical Models for Social Network Data 

The literature on statistical models for network analysis has grown substan-
tially over the last two decades (for a brief review see Butts, 2008b). Fur-
ther, the literature on dynamic networks has expanded extensively in this last 
decade - a good overview can be found in Almquist and Butts (2014). In this 
chapter we use a combination of commonly used statistical and graph theo-
retic notation. First, we briefly introduce necessary notation and literature 
for the current state of the art in network panel data models, then we review 
these panel data models in their general form, including their Bayesian rep-
resentation. Last, we discuss a specific model family (DNR) which reduces to 
an easily employed regression-like structure, and formalize it to the Bayesian 
context. 

1.2.1 Network Data and Nomenclature 

For purposes of this chapter, we will focus on networks (social or otherwise) 
that can be represented in terms of dichotomous (i.e., unvalued) ties among 
pairs of discrete entities. [For more general discussion of network represen-
tation, see, e.g., Wasserman and Faust (1994); Butts (2009).] We represent 
the set of potentially interacting entities via a vertex set (V) , with the set of 
interacting pairs (or ordered pairs, for directed relationships) represented by 
an edge set (E). In combination, these two sets are referred to as a graph, 
G = (V, E). (Here, we will use the term "graph" generically to refer to either 
directed or undirected structures, except as indicated otherwise.) Networks 
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may be static, e.g., representing relationships at a single time point or ag-
gregated over a period of time, or dynamic, e.g., representing relationships 
appearing and disappearing in continuous time or relationship status at par-
ticular discrete intervals. 

For many purposes, it is useful to represent a graph in terms of its adjacency 
matrix: for a graph G of order N = | V|, the adjacency matrix Y € {0, l}NxN 

is a matrix of indicator variables such that Yij = 1 iff the ith vertex of G is 
adjacent (i.e., sends a tie to) the jth vertex of G. Following convention in the 
social network (but not graph theoretic) literature, we will refer to N as the 
size of G. 

The above extends naturally to the case of dynamic networks in discrete 
time. Let us consider the time series . . . , Gt~i, Gt, Gt+i, • •., where Gt = 
(Vt, Et) represents the state of a system of interest at time t. This corresponds 
in turn to the adjacency matrix series . . . , Y..t-i,Y..t, Y..t+1,..., with Nt = |V*| 
being the size of the network at time t and Y..t G {0,1} Wt x Nt such that Yijt = 1 
iff the ith vertex of Gt is adjacent to the j t h vertex of Gt at time t. As this 
notation implies, the vertex set of an evolving network is not necessarily fixed; 
we shall be particularly interested here in the case in which Vt is drawn from 
some larger risk set, such that vertices may enter and leave the network over 
time. 

1.2.2 Exponential Family Random Graph Models 

When modeling social or other networks, it is often helpful to represent their 
distributions via random graphs in discrete exponential family form. Graph 
distributions expressed in this way are called exponential family random graph 
models or ERGMs. Holland and Leinhardt (1981) are generally credited 
with the first explicit use of statistical exponential families to represent ran-
dom graph models for social networks, with important extensions by Frank 
and Strauss (1986) and subsequent elaboration by Wasserman and Pattison 
(1996), Pattison and Wasserman (1999), Pattison and Robins (2002), Snijders 
et al. (2006), Butts (2007), and others. The power of this framework lies in 
the extensive body of inferential, computational, and stochastic process the-
ory [borrowed from the general theory of discrete exponential families, see, 
e.g., Barndorff-Nielsen (1978); Brown (1986)] that can be brought to bear on 
models specified in its terms. 

We begin with the "static" case in which we have a single random graph, 
G, with support Q. It is convenient to model G via its adjacency matrix Y, 
with representing the associated support (i.e., the set of adjacency matrices 
corresponding to all elements in Q). In ERGM form, we express the pmf of Y 
as follows: 

P r ( r - , I SAX) - (1.1) 
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where S : X —> Rs is a vector of sufficient statistics, 0 £ Ms is a vector of 
natural parameters, X G X is a collection of covariates, and ly is the indicator 
function (i.e., 1 if its argument is in the support of y, 0 otherwise).1 If \Q\ is 
finite, then the pmf for any G can obviously be written with finite-dimensional 
S, 6 (e.g., by letting S be a vector of indicator variables for elements of this 
is not necessarily true in the more general case, although a representation with 
S, 9 of countable dimension still exists. In practice, it is generally assumed that 
5 is of low dimension, or that at least that the vector of natural parameters 
can be mapped to a low-dimensional vector of "curved" parameters [see, e.g., 
Hunter and Handcock (2006)]. 

While the extreme generality of this framework has made it attractive, 
model selection and parameter estimation are often difficult due to the nor-
malizing factor ( k ( 6 , S , X ) = exp(0TS(y', X))) in the denominator of 
equation (1.1). This normalizing factor is analytically intractable and difficult 
to compute, except in special cases such as the Bernoulli and dyad-multinomial 
random graph families (Holland and Leinhardt, 1981); the first applications 
of this family (stemming from Holland and Leinhardt's seminal 1981 paper) 
focused on these special cases. Later, Frank and Strauss (1986) introduced 
a more general estimation procedure based on cumulant methods, but this 
proved too unstable for practical use. This, in turn, led to an emphasis on 
approximate inference using maximum pseudo-likelihood (MPLE) estimation 
(Besag, 1974), as popularized in this application by Strauss and Ikeda (1990) 
and later Wasserman and Pattison (1996). Although MPLE coincides with 
maximum likelihood estimation (MLE) in the limiting case of edgewise inde-
pendence, the former was found to be a poor approximation to the MLE in 
many practical settings, thus leading to a consensus against its general use 
[see, e.g., Besag (2001) and van Duijn et al. (2009)]. The late 1990s saw the 
development of effective Markov chain Monte Carlo strategies for simulating 
draws from ERG models (Anderson et al., 1999; Snijders, 2002) which led 
to the current focus on MLE methods based either on first order method of 
moments (which coincides with MLE for regular ERGMs) or on importance 
sampling (Geyer and Thompson, 1992).2 

Theoretical developments in the ERGM literature have arguably lagged 
inferential and computational advances, although this has become an increas-
ingly active area of research. A major concern of the theoretical literature on 
ERGMs is the problem of degeneracy, defined differently by different authors 
but generally involving an inappropriately large concentration of probabil-
ity mass on a small set of (generally unrealistic) structures. This issue was 

1Hjj can also be interpreted here as the counting measure on Although this is adequate 
for all cases considered here, see Krivitsky (2012) for the importance of reference measures 
in valued ERGM settings. 
2 Algorithms for parameter estimation and model selection using these approaches are 
implemented in a number of software packages (see, e.g., Snijders et al., 2007; Handcock 
et al., 2003; Wang et al., 2009), and empirical applications are increasingly common (e.g., 
Goodreau et al., 2009; Robins and Pattison, 2001, etc.). 
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recognized as early as Strauss (1986), who showed asymptotic concentration 
of probability mass on graphs of high density for models based on triangle 
statistics. [This motivated the use of local triangulation by Strauss and Ikeda 
(1990), a recommendation that went unheeded in later work.] More gen-
eral treatments of the degeneracy problem can be found in Handcock (2003), 
Schweinberger (2011), and Chatterjee and Diaconis (2011). Butts (2011) in-
troduced analytical methods that can be used to bound the behavior of general 
ERGMs by Bernoulli graphs (i.e., ERGMs with independent edge variables), 
and used these to show sufficient conditions for ERGMs to avoid certain forms 
of degeneracy as N —> oo. One area of relatively rich theoretical development 
in the ERGM literature has been the derivation of sufficient statistics from 
first principles (particularly dependence conditions). Following the early work 
of Frank and Strauss (1986), many papers in this area employ Hammersley-
Clifford constructions (Besag, 1974) in which initially posited axioms for con-
ditional dependence among edge variables (usually based on substantive the-
ory) are used to generate sets of statistics sufficient to represent all pmfs with 
the posited dependence structure. Examples of such work for single-graph 
ERGMs include Wasserman and Pattison (1996), Pattison and Robins (2002), 
and Snijders et al. (2006), with multi-relational examples including Pattison 
and Wasserman (1999) and Koehly and Pattison (2005). Snijders (2010) has 
showed that statistics based on certain forms of dependence allow for models 
that allow conditional marginalization across components (i.e., graph com-
ponents are conditionally independent); this suggests statistics that may be 
appropriate for social processes in which edges can only influence each other 
"through" the network itself, and provides insight into circumstances which 
facilitate inference for population network parameters from data sampled at 
the component level (see also Shalizi and Rinaldo, 2013). An alternative way 
to motivate model statistics is via generative models that treat the observed 
network as arising from a stochastic choice process. Examples of such devel-
opments include Snijders (2001) and Almquist and Butts (2013). 

1.2.2.1 Bayesian Inference for ERGM Parameters Given t h e likelihood of equa-
tion (1.1), Bayesian inference follows in the usual fashion by application of 
Bayes' Theorem, i.e., 

mY = V,S,X)= ERGms,x)mstx) 
JRS ERG(y\9>,S,X)p(9'\S,X)d9> 

ocERG{y\9,S,X)p{0\S,X), 

where p(9\Y = y, S, X) is the posterior density of 9 given the observed state of 
Y, statistic vector S, and covariate set X, p(9\S, X) is the corresponding prior 
density of theta on Rs, and ERG(y\9,S,X) represents the ERGM likelihood 
for Pr(Y = y\9, S, X) from equation (1.1). In the case of ERGMs belonging 
to regular exponential families (e.g., non-curved), we can immediately obtain 
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a conjugate prior for 9 using known properties of exponential families: 

exp (9T(j> — v\n k(9, S, X)) 
p(9\S,X) = 

fRs exp (9,T(f) - ^ In k(9', S, X)) d9'' 

where tp G Rs and v > 0 are hyperparameters and k is the ERGM normalizing 
factor (as defined above). Note that (j> and v have natural interpretations in 
terms of "prior pseudo-data" and "prior pseudo-sample size," as is clear from 
the joint posterior: 

exp (9Tcj>-v In k(9,S,X)) 
p(9\Y = y,S, X) oc ERG(y\9, S, X) ^ ^ ' ' >> 

fR. exp (9'T<j) -uln k{6', S, X)) d9' 
_ exp (9TS(y, X)) exp (9T(f> - v In k(9, S, X)) 

K ( 9 , S , X ) fxs exp {9'T4> - v1iik(9', S,X)) d0' 
_ exp (9T (</> + S(y, X))-{v + l) In k(9, S, X)) 

fRs exp (9,T4> - v In k(9', S, X)) d9> 
e x p (9T (<{> + S(y, X ) ) - ( v + l ) In K(0, S, X ) ) 

X fRS exp (9>t (tj, + S(y, X)) - {v + 1) In K(0', 5, X)) d9" 1 ' ) 

with equation (1.2) giving the (re)normalized form. 
Despite the attractiveness of the conjugate prior, it is less helpful than it 

might be due to the intractability of the ERGM normalizing factor. While 
standard MCMC methods (e.g., the Metropolis-Hastings algorithm) can of-
ten manage intractable normalizing constants of a posterior density when 
the posterior density in question is known up to a constant, the kernel of 
equation (1.2) also involves the (usually intractable) normalizing factor k 
from the ERGM likelihood. Such posteriors have been described as "dou-
bly intractable" (Murray et al., 2012), and pose significant computational 
challenges in practice. In the more general case for which p(9) does not nec-
essarily include k (i.e., non-conjugate priors), MCMC or related approaches 
must generally deal with posterior odds of the form 

p(0\Y = y,S,X) = ERG(y\9,S,X) p(9\S,X) 
p[9'\Y = y, S, X) ERG(y\9\ S, X) p(9'\S, X) 

(v y\T(a ^ k(9',S,X) p(9\S, X) = exp (S(y,X) (9-9)) ^ ^ p(g<|s>x), 

which still require evaluation of normalizing factor ratios at each step. Pro-
vided that the prior ratio can be easily calculated, the complexity of this 
calculation is no worse than the associated ratios required for likelihood maxi-
mization, and indeed MAP can be performed in such cases using MCMC-MLE 
methods (see e.g. Hunter et al., 2008, 2012, for the MLE case) via the addition 
of prior odds as a penalty function. Approaches to direct posterior simulation 
in this regime include the use of exchange algorithms (Caimo and Friel, 2011) 
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and other approximate MCMC methods (see Hunter et al., 2012, for a review). 
To date these latter methods have proven too computationally expensive for 
routine use, but the area is one of active research. 

An alternative (if less generically satisfying) approach to the problem arises 
by observing that there are some classes of models for which k is directly com-
putable, and hence for which Bayesian analysis is more readily performed. 
An early example of this work is that of Wong (1987), who provided a fully 
Bayesian treatment of the p\ family of Holland and Leinhardt (1981). Be-
cause the likelihood for this family factors as a product of categorical pmfs 
(the four edge variable states associated with each dyad), k is easily calculated 
and Bayesian inference is greatly simplified. This intuition was subsequently 
elaborated by van Duijn et al. (2004), who used it as a basis for a much richer 
family of effects. Although we are focused here on models in ERGM form, it 
should also be noted that many latent variable models for networks can be 
viewed as positing that Y is drawn from an ERGM with strong conditional 
independence properties (leading to a tractable normalizing factor), given a 
(possibly very complex) set of latent covariates on which a prior structure is 
placed. Models such as those of Hoff et al. (2002), Handcock et al. (2007), 
Nowicki and Snijders (2001) and Airoldi et al. (2008) can be viewed in this 
light. While the simultaneous dependence in cross-sectional data tends to 
limit the utility of simplified ERGMs (or to require a shifting of computa-
tional burden into a complexly specified parameter structure), this problem 
is sometimes reduced in dynamic data due to the ability to condition on past 
observations (i.e., replacing simultaneous dependence in the present with de-
pendence on the past) (Almquist and Butts, 2014). It is to this setting that 
we now turn. 

1.2.3 Temporal Models for Network Data 

Temporal models for social network data can be generally classified into two 
broad categories: (1) continuous time models; and (2) panel data models. 
Here we will focus only on panel data models - for examples of models for 
continuous time interaction data see Butts (2008a), DuBois, Butts, McFar-
land, and Smyth (2013), and DuBois, Butts, and Smyth (2013). Current 
theory and software are focused on statistical inference for panel data models 
based on four general approaches. The first is the family of actor oriented 
models, which assumes an underlying continuous-time model of network dy-
namics, where each observed event represents a single actor altering his or her 
outgoing links to optimize a function based on sufficient statistics (for details, 
see Snijders, 1996; Snijders and Van Duijn, 1997; Snijders, 2001, 2005). The 
second is the family of latent dynamic structure models, which treat network 
dynamics as emerging from a simple network process influenced by the evo-
lution of set of latent covariates; for example, see Sarkar and Moore (2005), 
Sarkar et al. (2007), and Foulds et al. (2011). The third is the family of tem-
poral exponential family random graph models (TERGMs), which attempt to 
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directly parameterize the joint pmf of a graph sequence using discrete expo-
nential families (Hanneke and Xing, 2007a; Hanneke et al., 2010; Hanneke and 
Xing, 2007b; Cranmer and Desmarais, 2011; Desmarais and Cranmer, 2011, 
2012; Almquist and Butts, 2012, 2013, 2014). Finally, the fourth approach 
is the separable temporal ERGM family (or STERGM), which assumes each 
panel observation is a cross-sectional observation from a latent continuous 
time process in which edges evolve via two separable processes of edge forma-
tion and edge dissolution (Krivitsky and Handcock, 2010). Here, we focus on 
the TERGM case. 

TERGMs can be viewed as the natural analog of time series (e.g., VAR) 
models for the random graph case. Typically, we assume a time series of 
adjacency matrices . . . , Yt-\,Yt,... and parameterize the conditional pmf of 
Yf|Yt-i, Yt-2, • • • in ERGM form. As with classical time series models, it is 
typical to introduce a temporal Markov assumption of limited dependence on 
past states; specifically, we assume the existence of some k > 0 such that that 
Yt is independent of Yt-fc-i, Yt-k-2, • • • given Yt-1, • . . , Yt_k = Y ^ . Under 
this assumption, the standard TERGM likelihood for a single observation is 
written as 

p r , y _ „ | yt—1 _ ,.t-1 f ) q x ) - 6 X P ( ^ S f a ' V t - l ' X J ) I /-. ^ 
Fr(yt - yt | Yt_k - yt_k,V,b,Xt) - — x 1 y(yt). 

IZy'ey e x P Vt-k' Xt)) 
(1.3) 

As before, S is an s-vector of real-valued sufficient statistics, but for the 
TERGMs S : yk+l,X Rs (i.e., each function may involve observations at 
the k time points prior to t instead of a single graph). Otherwise, nothing 
is intrinsically different from the cross-sectional case. (In particular, note 
that from the point of view of Yt, yl

tZ\ is a fully observed covariate. This is 
useful for the development that follows.) The denominator of (1.3) is again 
intractable in the general case, CLS it is for ERGMs. 

For a complete TERGM series, the joint likelihood of the sequence Yi,... ,Yt 
is given by f l ' = 1 TERG{yi\Y^ = y^l, 9, S, X,), where TERG refers to the 
single-observation TERGM likelihood of equation (1.3). MCMC-based maxi-
mum likelihood estimation for 9 is feasible for very short series, but becomes 
costly as sequence length grows. Cranmer and Desmarais (2011) propose es-
timation via MPLE combined with a bootstrapping procedure to estimate 
standard errors as a computationally cheaper alternative. Alternately, scal-
able estimation is greatly simplified for TERGMs with no simultaneous de-
pendence terms; i.e., models such that Yijt is conditionally independent of Ykit 
given Y{Zk for all distinct (i,j), (k, I). The TERGM likelihood for such mod-
els reduces to a product of Bernoulli graph pmfs, and hence the corresponding 
inference problem is equivalent to (dynamic) logistic regression. Although by 
no means novel, these conditional Bernoulli families have recently been advo-
cated by Almquist and Butts (2014) as viable alternatives for network time 
series in which the time period between observations is on or faster than the 
time scale of network evolution, or whether it is for other reasons possible to 
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capture much of the simultaneous dependence among edges by conditioning 
on the past history of the network. Almquist and Butts (2014) also show how 
this family can be easily extended to incorporate endogenous vertex dynamics 
(a feature not currently treated in other dynamic network families). In the 
remainder of this chapter, we focus on this case, with a particular emphasis 
on Bayesian inference for joint vertex/edge dynamics. 

1.2.3.1 TERGM with Vertex Dynamics T h e T E R G model in Section 1.2.3 
can be further extended to handle vertex dynamics by employing a separable 
parameterization between the vertex set and edge set as proposed by Almquist 
and Butts (2014). Here we take the vertex set Vt to arise at each point in 
time from a fixed support of possible vertex sets, V, with the associated pmf 
parameterized via a discrete exponential family. Yt then arises from an ERG 
distribution conditional on Vt. To clarify notation, let Zt = (Vt. Yt) be a 
representation for graph Gt, and as before let Zh

(1 be the network time series 
Za,... ,Zb. The pmf for a single observation under vertex dynamics is then 

Pr (Z t = zt I zlzl = 4-1 e, W, S, Xt) 
= Pr(Vt=vt\Zt

tI1
k=zt-l,^W,Xt) 

x Pr(Yt = yt\Vt = vt, Zlzl = z\zl 0, S, Xt) 
exp {^(vuzlzlXt)) exp(0TS(yt,vt,zt

tzl,Xt)) 
£ , , 6 V e x p ( r W W ^ z l z l X t ) ) X Y , y l e y ^ { e T S ( y ' t , v t , z l z l X t ) y 

(1.4) 

where yv t is the set of possible adjacency matrices compatible with vertex 
set vt, W is a w-vector of sufficient statistics on the vertex set, and ip is a 
(/.'-vector of vertex set parameters. The joint TERGM likelihood for a time 
series is then the product of the likelihoods for each observation. We refer to 
the conditional likelihood of a single observation in equation (1.4) as TERGV 
(i.e., temporal exponential family random graph with vertex processes) in the 
discussion that follows. 

The likelihood of equation (1.4) is inferentially "separable" in the sense 
that it factorizes into terms respectively dealing with ip (and the vertex set) 
and with 6 (and the edge set). These may be estimated separately, even when 
both depend on the same data (i.e., the edge history and vertex history may 
both enter into S and W). On the other hand, inferential separability does 
not imply predictive separability: the vertex model will strongly impact the 
edge structure of graphs drawn from the model, and in some cases vice versa. 
[See Almquist and Butts (2014) for a discussion.] 

1.2.3.2 Bayesian Estimation of TERGMs As before, Bayesian inference for 
the full TERGM family (with vertex dynamics) is based on the posterior 
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distribution of 6, tp given Z i , . . . , Zt: 

P(i>,e\z\ = 4,s, w,x) ex p{ii>,e\s, w,x) 
t 

Y[TERGV(Zi\Zizl = zill,il>,8,W,S,Xi). 
t 

x 
i=1 

It is frequently reasonable to treat the parameters of the edge and vertex 
processes as a priori independent given X. In that case, the above factors as 

PU>, 0\z[ = z[,S, W, X) a p(i;\W, X)p(0\S, X) 
t 

x 
t=l 
J] TERGV(zi\Zizl = z$Zlil>, 0, W, S, Xt) 

exp { ^ T W ( v t , z l z l X t ) ) 
= p(il>\W,X) 

xP(6\S,X); 

E^ev^xp ^TW(v't,zlZl
k,Xt)) 

exp (6TS(yt,vuzt
tzlXt)) 

E „ ' 6 y B t e x p {eTS(y>t,vuzlzl,Xt))' 

which implies that the joint posterior itself factors as 

exp ( ^ W f v u z l - L X t ) ) 

Ev ' ev e x P W(v't, zt_k, Xt)) 

(awt t Q /aic e x P (0 S(Vt,Vt,zt_k,Xt)) p(6\Z1=z1,S,X)<xp(0\S,X)— . t - i Y v V (1-5) 
2ly'eyvt

 e x P ie S(Vt, vt, zt_k, Xt)) 

This is a manifestation of the inferential separability remarked on previously. 
Although ip and 9 are jointly dependent on both the covariates and the ob-
served data, the two may be analyzed independently. In the special case where 
no vertex dynamics are present, or where such dynamics are exogenous, the 
joint posterior simplifies to that of equation (1.5). 

As with the ERGM case, posterior estimation for TERGMs inherits the 
normalizing factor problem (exacerbated in the case of vertex dynamics by 
the presence of two distinct exponential families, each with a normalizing fac-
tor!). Because of these technical complications there has been very little work 
in applying Bayesian analysis to the more general TERGM framework.3 In 
the special case in which all observations in the present are independent con-
ditional on the past, however, the normalizing factor becomes tractable and 
analysis is greatly simplified. As noted above, the similarity of the resulting 
inference problem to logistic regression (and the direct analogy with existing 

3There has been some work into modeling the generative process of TERGM models through 
Bayesian networks (not to be confused with Bayesian models of networks) by Guo et al. 
(2007). 
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network regression models) has led to these being dubbed "dynamic network 
logistic regression" (DNR) families (Almquist and Butts, 2014). In the fol-
lowing section we will discuss Bayesian estimation in the DNR case, with and 
without vertex dynamics. 

1.3 Dynamic Network Logistic Regression with Vertex Dynamics 

Dynamic Network Logistic Regression with vertex dynamics was introduced 
by Almquist and Butts (2014), who modeled Pr(Vt = vt | Zt-k,Xt) and 
Pr(yt = yt | Vt,Zt-k,Xt) as separable processes whose elementwise realiza-
tions are independent conditional on covariates and past history. Under the 
necessary conditional independence, homogeneity, and temporal Markov as-
sumptions one can derive the likelihood function for DNR from the general 
TERGV likelihood, with the vertex likelihood given by 

Pv(Vt=vt\Zt-l = 4-l^W,Xt) 

= f[B(l{vW e vt) llogit"1 { ip T W( i , z l l lX t ) ) ) 
i=i 

and the edge likelihood by 

Pr(yt = yt\Vt = Vt, Z\zl = z\zle, s, xt) 
n 

I! B(Yijt=yijt (logit-1 {eTS(i,j,vt,zlzl,Xt))), (1.6) 
(vW ,v(i))evtxvt 

where B is understood to be the Bernoulli pmf, I is the indicator function, 
and v^ indicates the ith vertex from a known total risk set Vmax. (Thus, 
the support V of Vt is the power set of Vm a x.) The analogy of this model 
family with logistic regression is clear from the form of the joint likelihood, 
which is equivalent to a (relatively complex) logistic regression of indicator 
variables for edge and vertex set memberships on a set of statistics associated 
with the network history and/or covariates. In the special case when Vt is 
exogenously varying, the joint likelihood of the data reduces to the edge pro-
cess in equation (1.6); when it is fixed, the likelihood reduces to the "classic" 
dynamic network logistic regression model. Model specification, maximum 
likelihood based inference, and adequacy checking for this family are discussed 
in Almquist and Butts (2013, 2014). 

1.3.1 Bayesian Inference for DNR Parameters 

Because the DNR family reduces to a logistic regression structure, Bayesian 
inference is nominally straightforward. However, choice of prior structure for 



1 2 BAYESIAN ANALYSIS OF DYNAMIC NETWORK REGRESSION WITH JOINT EDGE/VERTEX DYNAMICS 

DNR families has not been explored to date. Justifiably or otherwise, re-
searchers typically seek to employ a default prior specification if they do not 
have a strong rationale for endorsing a specific prior. There is an extensive 
literature on noninformative, default, and reference prior distributions within 
the Bayesian statistical field (see Jeffreys, 1998; Hartigan, 1964; Bernardo, 
1979; Spiegelhalter and Smith, 1982; Yang and Berger, 1994; Kass and Wasser-
man, 1996). More recent work has continued the traditions of both research 
on informative prior distributions using application-specific information and 
on minimally informative priors (often motivated by invariance principles) (for 
a review see, Gelman et al., 2008). One increasingly widely used approach 
to evaluating default priors (particularly in the machine learning literature) 
is the use of predictive assessment, i.e., examination of the extent to which 
a given prior structure reliably leads to accurate predictions on test data for 
a given body of training data. While arguably less principled than priors 
derived from other considerations, priors found to give good predictive per-
formance on past data may be attractive on pragmatic grounds; by turns, 
such priors can also be justified more substantively as representing distribu-
tions compatible with past observations on similar data, and hence plausible at 
least as a crude starting point. Likewise, priors that consistently lead to poor 
predictive performance on test data should be suspect, whatever the princi-
ples used to construct them. The balance of this chapter is thus concerned 
with the predictive evaluation of various candidate priors in the context of 
DNR models. 

While both MCMC and MAP are feasible for inference in DNR families, 
our focus here will be on posterior simulation via MCMC. In addition to giv-
ing us a more complete view of the posterior distribution, posterior simulation 
is particularly well-adapted to predictive model adequacy checking (Gelman 
et al., 2004). Specifically, simulation of future observations conditional on a 
point estimate (e.g., the posterior mean or mode) can greatly underestimate 
the uncertainty associated with the posterior distribution, and by extension 
can fail to reveal the benefits to be gained by, e.g., prior specifications that 
reign in extreme parameter values without greatly changing the central ten-
dency of the posterior distribution. 

Given the above, there are many reasonable choices of prior specifications 
for DNR families that may be applicable in one or another context. Given 
that our focus here is on evaluating simple, default priors, we will focus our 
attention on four prior specifications suggested as default priors for logistic 
regression in the Bayesian statistical literature (e.g., Gelman et al., 2008). 
Our core questions are as follows. First, what are the inferential consequences 
of employing these reference priors versus maximum likelihood estimation for 
DNR families in typical social network settings? Second, to what extent do 
various reasonable default priors lead to differences in either point estima-
tion or posterior uncertainty in such settings? Finally, what differences (if 
any) does selection of one or another default prior make to prediction, in the 
specific sense of forecasting properties of an evolving network? If, in typical 
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settings, inferential and predictive outcomes are fairly insensitive to choice of 
prior, then selection based on computational or other factors may be a rea-
sonable practice. If, by contrast, we find substantial differences in inferential 
and/or predictive performance among default priors, then these choices must 
be scrutinized far more carefully. The balance of this chapter is intended as 
a first step towards assessing these questions. 

Although simulation and inference for ERGMs is in general a highly spe-
cialized art (see, e.g., Snijders, 2002; Hunter et al., 2008; Wang et al., 2009), 
the logistic form of DNR families facilitates parameter estimation (if not net-
work simulation) using more standardized tools and techniques. Examples of 
off-the-shelf toolkits suitable for posterior simulation in the cases studied here 
include Winbugs, JAGS or MCMCpack in R (Spiegelhalter et al., 2003; Plum-
mer, 2003; Martin et al., 2011). Here, we employ the Metropolis-Hastings 
algorithm as implemented Martin et al. (2011) for posterior simulation, with 
sufficient statistics computed in the same manner as Almquist and Butts 
(2014, 2013) via custom statnet-based tools (Handcock et al., 2003). The 
latter were also used for posterior predictive simulation of graph-theoretic 
quantities. MCMC convergence was assessed using both Geweke's conver-
gence diagnostic (Geweke et al., 1991) and Raftery and Lewis's diagnostic 
(Raftery and Lewis, 1992). 

1.3.2 Bayesian Estimation of DNR with Vertex Dynamics 

As noted above, inferential separability of the edge and vertex processes in 
the DNR context allows both to be treated as independent logistic regression 
problems (so long as the associated parameters are a priori independent). As 
this implies, there is no reason that the same prior structure must be used 
for both; for simplicity and practicality, however we here consider the case 
where we assume both the edge and vertex parameters have the same prior 
distributions. 

As noted above, we here consider a number of typical priors for logistic re-
gression (which have been recommended in the literature) for use as priors in 
DNR with and without vertex dynamics. The baseline point of comparison for 
all Bayesian results will be the ML estimate (and its sampling distribution), 
reflecting the dominant practice within the ERGM literature. In addition to 
this baseline, we consider five prior specifications within three general classes: 
(1) an improper uniform prior (i.e., the fully-Bayesian counterpart to max-
imum likelihood estimation); (2-3) independent normally distributed priors 
(one centered at 0, and one offset to inflate prior density); and (4-5) weakly 
informative t families of proper priors recommended by Gelman et al. (2008) 
(a Cauchy distribution centered at 0 with a scale parameter of 2.5, and a t j 
prior centered at 0). Empirical experiments on the effects of these priors on 
the analysis and interpretation can be found in Section 1.4. 
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1.4 Empirical Examples and Simulation Analysis 

Given the six specifications described above (including the MLE), we seek to 
evaluate the practical consequences of these priors for Bayesian inference in 
typical settings. To that end, we consider a comparative analysis of inference 
under our proposed priors for two empirical cases. The first is a dynamic 
network of citations among bloggers during the 2004 US presidential election 
("Blog"), and the second is a dynamic network of face-to-face communica-
tion ties among windsurfers on a southern California beach ("Beach"). Both 
networks are typical of social network data sets in that each involves multi-
ple, complex mechanisms of interaction as well as actor-level heterogeneity. 
These networks have also been studied in the literature, making them useful 
reference cases for our present analysis. 

1.4.1 Blog Data 

The first data set considered in this chapter is a dynamic inter- and intra-group 
blog citation network collected by Butts and Cross (2009) and previously ana-
lyzed with DNR in Almquist and Butts (2013). This dynamic network consists 
of interactions among all blogs credentialed by the Democratic National Com-
mittee (DNC) or Republican National Committee (RNC) for their respective 
2004 conventions. The vertex set is comprised of actors representing 34 DNC 
and 14 RNC credentialed blogs, as well as the one blog credentialed by both 
groups, and is static over the observation period. The edge set is comprised of 
directed hyperlinks on the front pages of the aforementioned blogs as observed 
over a 121 day period. The data was obtained by automatically querying the 
main page of each blog at six hour intervals starting at midnight, Pacific time. 
The period of study begins on 7/22/04 (shortly before the DNC convention) 
and ends 11/19/04 (shortly after the Presidential election), leading to a total 
of 484 time points. There exists an edge from blog i to blog j at time t iff a 
link to blog j appears on the main page of i at time t. Specifically, this data 
is represented as an adjacency array, Y, such that Y^t = 1 if cites (i.e., links 
to) j at time t, and 0 otherwise. 

1.4.2 Beach Data 

The second data set considered in this chapter was originally collected by 
Freeman et al. (1988). It is a dynamic interpersonal communication network 
of windsurfers in the late 1980s which Freeman et al. (1988) subsequently 
analyzed in aggregate. These data have been used in a number of influential 
articles (see Cornwell, 2009; Hummon and Doreian, 2003; Zeggelink et al., 
1996, among others), and later analyzed dynamically using DNR with vertex 
dynamics in Almquist and Butts (2014). The network was originally collected 
daily (aggregated over a morning and an afternoon observation period) for 31 
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days from August 28, 1986 to September 27, 1986.4 The data set consists of 
95 individuals which were originally classified ethnographically by Freeman 
et al. (1988) into "regulars" (N = 54)—frequent attendees who were well-
integrated into the social life of the beach community—and "irregulars" (N = 
41). Further, the regulars were categorized by the researchers into two groups, 
group 1 (N = 22) and group 2 (N = 21), with 11 individuals not classified as 
belonging to either group 1 or group 2. The number of windsurfers appearing 
on the beach ranged from 3 to 37 individuals over the observation period. The 
number of communication ties per day ranging from 0 to 96 in the network. 

1.4.3 Case Analysis: Static Vertex Set 

Given a collection of alternative priors, what are the consequences of choosing 
one or another for inference in the case of a DNR family with a fixed vertex 
set? To assess this, we consider parameter estimation and prediction on the 
Blog data. While the entire time series consists of 484 time points, we here 
restrict ourselves to a much smaller series of 32 time points, in order to form 
a reasonable comparison with the Beach data. As noted below, the likelihood 
specification (i.e., sufficient statistics or effects) for models employed here 
is based on prior work by Almquist and Butts (2013); we hold the effects 
constant across all models to isolate the impact of prior specifications. 

Because Vt is fixed here, we need only consider priors for the edge param-
eters (0). Posterior distributions based on these models are compared the 
standard ML estimate derived from iterative weighted least squares meth-
ods (McCullagh and Nelder, 1999), noting that the ML estimate can also be 
thought of as a MAP estimator under an improper uniform prior. The pos-
teriors evaluated are as follows: (1) an improper uniform prior (i.e., a fully 
Bayesian analog to the MLE); (2) independent N(0, .1) priors on each param-
eter (a simple default choice with relatively strong shrinkage towards 0); (3) 
independent A''(5,1) priors on each parameter (included as a non-normative 
test to evaluate the consequences of poor prior specification); (4) indepen-
dent standard t-j priors on each parameter, emulating the example used by 
Gelman et al. (2008); and (5) independent scaled Cauchy priors C(0,2.5) as 
recommended by Gelman et al. (2008) for logistic regression in another con-
text. All Bayesian DNR models were be estimated via posterior simulation 
by MCMC, thus allowing for improved predictive modeling. This is discussed 
in the following section. 

Our specification of the Blog network model follows Almquist and Butts 
(2013); for expository purposes, we have simplified the original model slightly 
by removing less important effects. Those retained fall into two main classes: 
(1) density effects, e.g., DNC/RNC mixing and daily seasonality; and (2) 

4 Unfortunately, one day (September 21st) is missing due to a race on a different beach, 
which precluded data collection. Thus, complete data is available for 30 days during the 
observation period. 
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lagged network effects, e.g., interaction or preferential attachment effects 
(Wasserman and Faust, 1994). In Table 1.1 we consider first mixing effects 
for DNC and RNC internal ties (respectively), followed by terms for interac-
tion between DNC and RNC blogs; next we consider daily effects, Tuesday 
to Sunday effects with Monday as the reference category; a lag effect ( i t - i ) ; 
and a lagged indegree effect log(.Deg(Yt_i)), which can be thought of as pref-
erential attachment effect. The table is laid out to illustrate the differences 
and similarities of the parameter estimates for different minimally informative 
priors on estimation. Table 1.1 demonstrates that most reasonable minimally 
informative priors produce results comparable to each other and the MLE, as 
suggested by Gelman et al. (2008). It is worth pointing out that the prior can 
have a large effect on the parameter estimate (and thus the resulting predic-
tions, see Section 1.4.3.1): the N(5,1) parameter is noticeably farther from 
the other estimates (although the bias is not always in a positive direction, 
e.g., for the lag and lagged degree terms). That said, it is perhaps reassuring 
that even a fairly strong prior still leads to generally comparable estimates 
for a data set of only moderate size (44 nodes over 32 time points). In gen-
eral, the MLE and posterior mean estimates for the standard default priors 
differ by an amount that is approximately an order of magnitude smaller than 
the statistical uncertainty associated with the estimates themselves; for the 
"extreme" iV(5,1) prior, the differences are on the scale of the posterior stan-
dard deviation. Likewise, the posterior standard deviations themselves are 
generally quite similar to each other, and to the standard error of the MLE 
(although, again, the "extreme" prior deviates somewhat). 

To further illustrate the similarities and differences among estimates, we 
consider Figure 1.1 which contains the 95% posterior marginals for each pa-
rameter (where the ML case shows the asymptotic Gaussian approximation 
to the sampling distribution of the MLE). Here we see again that the typical 
minimally informative priors result in relatively similar posterior distributions, 
both in the central mass and in the tails; all are likewise quite similar to the 
MLE. The deviations associated with the "extreme" prior are clearer here, 
and demonstrate visually the fact that (for models of this sort) a bias in the 
prior may not manifest within the posterior in a clear way. Specifically, for 
this case the inflated prior mean on the baseline interaction rate parameters 
tends to lead to a compensating deflation of the lagged terms; such effects sug-
gest that it is important to be careful when using highly informative priors, 
since influence on one parameter may propagate to the posterior marginals 
for other parameters in a non-obvious manner. 

The fact that all reasonable prior specifications lead to posterior marginals 
that are close to each other and to the sampling distribution of the MLE sug-
gests that we are effectively operating within the regime in which the posterior 



EMPIRICAL EXAMPLES AND SIMULATION ANALYSIS 1 7 

DNC RNC DNC->RNC 

RNC-J-DNC Tuesday Wednesday 

Thursday Friday Saturday 

Sunday Yt-, DegiYt-t) 

* m m • 

Figure 1.1: Posterior marginals for the five prior specifications discussed in 
Section 1.4.3; MLE sampling distribution based on asymptotic Gaussian ap-
proximation 
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Table 1.1: Parameter estimates: MLE and posterior means under the five 
prior specifications discussed in Section 1.4.3 (standard errors and posterior 
standard deviations are given in parentheses). 

MLE U N(0,.l) N( 5,1) *7 C(0,2.5) 
DNC -5.598 -5.599 -5.543 -5.308 -5.547 -5.589 

(0.176) (0.184) (0.176) (0.152) (0.164) (0.164) 
RNC -4.959 -4.956 -4.919 -4.61 -4.917 -4.966 

(0.208) (0.219) (0.217) (0.178) (0.201) (0.216) 
DNC-^RNC -6.486 -6.494 -6.432 -6.027 -6.425 -6.474 

(0.225) (0.243) (0.221) (0.196) (0.238) (0.218) 
RNC^DNC -5.728 -5.711 -5.672 -5.37 -5.681 -5.714 

(0.199) (0.212) (0.196) (0.164) (0.198) (0.194) 

Yt-i 9.284 9.317 9.302 9.121 9.296 9.302 
(0.119) (0.129) (0.122) (0.108) (0.117) (0.119) 

Deg(Yi-i) 0.069 0.068 0.067 0.045 0.065 0.068 
(0.013) (0.013) (0.013) (0.011) (0.013) (0.013) 

Monday - - - - - -

Tuesday -0.469 -0.495 -0.509 -0.461 -0.501 -0.482 
(0.213) (0.219) (0.219) (0.197) (0.198) (0.205) 

Wednesday -0.717 -0.728 -0.781 -0.683 -0.734 -0.745 
(0.214) (0.222) (0.221) (0.193) (0.198) (0.202) 

Thursday -0.167 -0.187 -0.216 -0.257 -0.197 -0.179 
(0.184) (0.182) (0.183) (0.147) (0.174) (0.169) 

Friday -0.619 -0.636 -0.667 -0.601 -0.646 -0.635 
(0.219) (0.232) (0.222) (0.186) (0.216) (0.219) 

Saturday -0.388 -0.388 -0.428 -0.412 -0.388 -0.393 
(0.216) (0.231) (0.206) (0.183) (0.211) (0.208) 

Sunday -0.51 -0.517 -0.571 -0.505 -0.529 -0.514 
(0.217) (0.213) (0.210) (0.195) (0.217) (0.210) 

is close to its asymptotic Gaussian limit (Gelman et al., 2004). Although this 
phenomenon is data dependent, our case suggests that, for models of this 
kind, data sets of moderate size may prove adequate for the asymptotic ap-
proximation to hold. As such, any long-tailed, symmetric prior distribution is 
likely to work well from an inferential point of view, and choice of distribution 
can be reasonably made for computational or other reasons. 
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1.4.3.1 One-step Prediction for Model Assessment Inference is vi tal for hy-
pothesis testing, model understanding, and the like; however, one can obtain 
parameters that are qualitatively reasonable from models that nevertheless 
predict poorly. In this section we will focus on one type of predictive model 
assessment procedure, described by Almquist and Butts (2014) in the DNR 
context as inhomogeneous Bernoulli prediction. The algorithm as suggested 
by Almquist and Butts (2014) is as follows: for each time point t we predict 

n times (in other words, we take n draws from the posterior 
predictive distribution of the network at time t given the previous k observed 
time steps) to predict the edge structure. We then summarize the result-
ing network via a suite of Graph Level Indices (GLI; Anderson et al., 1999), 
yielding a GLI distribution for each time point. 

Here we consider two important graph level indices: density (Wasserman 
and Faust, 1994) and the fraction of triads that form 3-cliques (i.e., triangles) 
(Wasserman and Faust, 1994). The first of these is an extremely fundamental 
GLI that describes the fraction of all possible ties that are present in the 
network; the second is a simple index related to clustering. For purposes of 
assessment, we examine the one-step inhomogeneous Bernoulli predictions of 
graph density and 3-clique formation rates (respectively) under the ML and 
Bayesian posterior predictive distributions. The results are summarized in 
Figures 1.2 and 1.3. An important advantage of using posterior predictive 
distributions in a temporal modeling context (versus point estimates) is that 
this allows for a realistic propagation of posterior uncertainty in parameter 
estimates into the resulting predictive distribution for prediction in temporal 
modeling is that it allows for more realistic prediction through sampling of 
the prior distribution. We can see this quite clearly in Figures 1.2 and 1.3, 
where the prediction intervals for the MCMC Bayesian estimates are typically 
much larger than those of the MLE (blue dotted lines). Further, the we 
see that the "extreme" N(5,1) prior has surprisingly minimal effect on the 
prediction estimates and prediction intervals. Overall, it appears that the 
increased variance in the model is a more realistic portrayal of the data as 
wider prediction interval often covers the observed data, while the "pure" ML 
estimated prediction often does not. 

1.4.4 Bayesian DNR with Vertex Dynamics 

To experiment with the effects of different minimally informative priors on 
models with vertex dynamics, we again look to an empirical case; here we 
begin by considering the beach data set collected by Freeman et al. (1988), 
which is comprised of windsurfers engaging in interpersonal communication 
on a beach in South California in early fall of 1986. This is a temporally 
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Figure 1.2: One-step prediction of graph density; red dots indicate observed 
values. 

Figure 1.3: One-step prediction of fraction of triads forming 3-cliques; red 
dots indicate observed values. 
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evolving network that includes endogenous vertex dynamics, i.e., change in 
windsurfers who show up over time. Thus, our priors here involve two classes 
of parameters: 6 (the edge parameters), and tp (the vertex parameters). For 
the present study, we use the same priors as in the Blog case (along with the 
MLE), with the same prior specification employed in each instance for 6 and 
for ip. 

Our specification of the likelihood for the Beach data is a simplified version 
of the model employed by Almquist and Butts (2014). Because the model 
includes vertex dynamics, note that effects must be specified for both the edge 
set (given the vertices present each day) and the vertex set (given the past 
history up to the day in question). We include two main classes of effects: 
(1) density effects, e.g., weekday/weekend effects and log of the vertex set 
size5; and (2) lagged network effects, e.g., interaction or appearance on the 
day before and the number of interactions one engaged in the day before (i.e., 
degree effects). Degree effects may be particularly important in this context 
as they capture general tendency towards engagement in the network the 
day before. In Table 1.2 we consider weekend and weekday effects for both 
the vertex and edge set dynamics (in a beach setting we expect this to be 
particularly important as it captures the natural rhythm of activity of the 
work week in the United States), a log(rct) effect for the edge set, a lag effect 
for both the edge (Yt_i) and vertex set (Vt_i), and last a lagged degree effect 
for both the edge \og(Deg(Yt-\)) and vertex set Deg(Vt-1). The table is laid 
out to illustrate the differences and similarities of the parameter estimates for 
different minimally informative priors on estimation (as well as the "extreme" 
N(5,1) prior as a point of comparison). 

Table 1.2 demonstrates that (as with the Blog model), we obtain compa-
rable point estimates using either the MLE or standard default priors, with 
variation across prior specifications generally at or below the level of statis-
tical uncertainty associated with the estimates themselves. As before, the 
"extreme" prior has a noteworthy effect, although for many parameters the 
posterior means given this prior are quite close to those obtained via other 
specifications. The primary exceptions in this regard are the density related 
effects, which are more weakly estimated and subject to considerable influence 
by a strongly informative prior. On the whole, however, our results suggest 
that reasonable default priors would lead to qualitatively (and quantitatively 
similar conclusions) for the processes shaping the Beach network. 

Turning to the posterior marginal distributions, Figure 1.4 shows results 
that closely parallel the above (and our findings for the Blog data). The pos-
teriors under reasonable default priors closely mirror each other and the MLE 

5This helps to stabilize mean degree in the presence of changing vertex set sizes; see Kriv-
itsky et al. (2011) and Butts (2011). 
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Table 1.2: Posterior means and MLE estimates for the Beach data under the 
prior specifications discussed in Section 1.4.4 (posterior standard deviations 
and MLE standard errors given in parentheses). 

Edge Parameters 
MLE U N( 0,.l) N( 5,1) tr C(0,2.5) 

Weekend (E) -0.966 -0.932 -0.922 0.240 -0.687 -0.875 
(s.e./p.s.d.) (0.379) (0.390) (0.375) (0.318) (0.337) (0.367) 

Weekday (E) -1.679 -1.635 -1.635 -0.318 -1.365 -1.583 
(s.e./p.s.d.) (0.428) (0.434) (0.423) (0.356) (0.380) (0.415) 

log(nt) -0.096 -0.108 -0.110 -0.491 -0.188 -0.126 
(s.e./p.s.d.) (0.125) (0.127) (0.123) (0.105) (0.111) (0.121) 

Yt-! 0.995 0.989 0.991 1.072 0.956 0.981 
(s.e./p.s.d.) (0.174) (0.176) (0.175) (0.173) (0.171) (0.175) 
Deg(Yt 0.037 0.036 0.037 0.026 0.036 0.037 

(s.e./p.s.d.) (0.015) (0.014) (0.015) (0.014) (0.014) (0.014) 
Vertex Parameters 

MLE U N( 0,.l) AT(5,1) t7 C(0,2.5) 
Weekday (V) -1.858 -1.86 -1.858 -1.828 -1.846 -1.858 

(s.e./p.s.d.) (0.076) (0.073) (0.077) (0.075) (0.076) (0.076) 
Weekend (V) -1.935 -1.93 -1.937 -1.850 -1.910 -1.930 

(s.e./p.s.d.) (0.128) (0.129) (0.128) (0.122) (0.126) (0.128) 
Vt-i 0.737 0.725 0.727 0.768 0.699 0.723 

(s.e./p.s.d.) (0.230) (0.232) (0.235) (0.221) (0.223) (0.231) 
Deg(Vt-i) 0.596 0.598 0.602 0.57 0.604 0.603 

(s.e./p.s.d.) (0.144) (0.142) (0.146) (0.141) (0.139) (0.146) 

sampling distribution, suggesting that we are once again within the Gaus-
sian asymptotic regime. The use of an extreme informative prior does clearly 
disrupt inference, with a stronger effect on some parameters than others; as 
before, the sign of the effect on a given parameter may not reflect the direction 
of prior bias, due to relationships among the parameters within the likelihood. 

1.4.4.1 One-step Prediction for Model Assessment For t h e Blog models , we 
saw that while the MLE was inferentially comparable to the posterior distribu-
tions obtained by reasonable default priors, the resulting predictions (MLE-
based simulations versus the full posterior predictive) were quite different. 
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Figure 1.4: Posterior marginals and MLE sampling distributions for the Beach 
data. 

Here, we repeat this analysis for the Beach models, bearing in mind that we 
now sample vertices as well as edges. (I.e., at each step we first draw the 
vertex set from the associated model, next drawing the edge set conditional 
on the realization of the vertex set.) As before, we employ the density and 
fraction of triads forming 3-cliques in the next time period as our outcome 
measures. 

The results of our simulation experiment are summarized in Figures 1.5 and 
1.6. Broadly, the results are similar to those of the Blog data: incorporat-
ing posterior uncertainty into our predictions leads to much wider prediction 
intervals, and these are often necessary to capture the observed data. In gen-
eral, predicting clique structure is hard for this model (it has no simultaneous 
dependence, and many other potential predictors have been removed), but the 
uncertainty associated with the model predictions is clearer for the Bayesian 
models than for the MLE. There is not an obvious "winner" from the default 
priors, although the extreme tails of their prediction intervals do vary some-
what from time point to time point. In general, the differences between them 
appear small and unsystematic. 
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Figure 1.5: One-step prediction of graph density on the Beach data for all five 
Bayesian DNR models and MLE. 

Figure 1.6: One-step prediction of graph 3-cliques on the Beach data for all 
five Bayesian DNR models and MLE. 
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1.5 Discussion 

In our test cases for Bayesian DNR with and without vertex dynamics, we see 
that several standard minimally informative priors produce both inferential 
and predictive results that are comparable to each other and—in the case of 
inference—to maximum likelihood estimation. Differences between point esti-
mates for the default priors tested here are typically smaller (often by an order 
of magnitude) than the statistical uncertainty associated with the estimates 
themselves, and any are hence likely to lead to very similar interpretation in 
practice. Since these results were achieved with two very different types of 
dynamic social networks of relatively moderate size, we are led to the prelim-
inary conclusion that selection of default priors for DNR families is unlikely 
to strongly impact results in typical settings (and the choice of prior can thus 
be made on computational or other grounds). 

It is noteworthy that there is a general advantage for the use of Bayesian 
posterior predictive distributions versus predictive distributions based on the 
MLE, in terms of reduced overconfidence. This is a general and well-known 
phenomenon, and not particular to network models; however, it is perhaps 
worth reinforcing the point that predictions should incorporate uncertainty 
regarding parameters, and the Bayesian approach greatly facilitates this prac-
tice. 

While we saw that inference in our test cases was generally fairly robust 
to prior specification, it is of course possible to "break" a data set by em-
ploying a sufficiently informative prior. Here, we observed that use of an 
"extreme" prior biased in a single direction strongly affected some (but not 
all) parameters, and that the direction of bias in the posterior did not nec-
essarily correspond to the direction of bias in the prior (due to correlations 
among the associated statistics). As would be expected, parameters that are 
more poorly estimated are more subject to influence from the prior, and these 
(along with others closely related to them via the likelihood) are the ones 
that are most vulnerable to poor prior specifications. As in other contexts, 
our results suggest that use of strongly informative priors in DNR must be 
undertaken with caution, and in particular with an awareness of the degree 
to which parameters are entangled via the likelihood. Robustness tests are 
strongly recommended. 

The strong concordance between posteriors under various choices of prior 
with each other and the sampling distribution of the MLE strongly suggests 
that our test cases place us in the asymptotic Gaussian regime, an encouraging 
development given that our networks are of relatively modest size. That 
said, it is important to bear in mind the large number of degrees of freedom 
inherent in dynamic network data. In general, data size for such problems 
grows as 0(N2T), where N is the vertex set size and T is the number of time 
points. For graphs of even moderate size—and even for small numbers of time 
points—this can easily result in an extremely large number of edge variables. 
Of course, the asymptotic limit depends on more than simply the number 



2 6 BAYESIAN ANALYSIS OF DYNAMIC NETWORK REGRESSION WITH JOINT EDGE/VERTEX DYNAMICS 

of degrees of freedom (the sparsity of the data is also important), but this 
heuristic provides a reasonable intuition for why the Gaussian approximation 
is likely to work well here. This is a property that is potentially exploitable 
for e.g. approximate Bayesian computation in large N,T settings. 

1.6 Conclusion 

In this chapter, we have reviewed the problem of modeling static and dynamic 
networks in exponential family form. As we have shown, Bayesian analysis 
of both problems in the general case is made difficult via the central role of 
the incomputable ERGM normalizing factor, which enters into the likelihood 
(and sometimes the prior) in a manner that makes traditional MCMC-based 
sampling schemes slow and/or impractical. For some model families, however, 
this problem does not apply (due to the presence of a tractable normalizing 
factor); such families are especially useful in the case of dynamic network 
modeling, where conditioning on the past can in some cases allow us to model 
edges as conditionally independent in the present. For such cases, the tempo-
ral ERGM form reduces to a simple product of inhomogeneous Bernoulli graph 
likelihoods, dubbed "dynamic network regression" because of the similarity 
of the resulting model to logistic regression on time series data. Because of 
the simplicity of this family, and its similarity to logistic regression, it would 
be desirable to be able to employ standard "default" priors for analysis in 
routine settings. Our experiments with two different data sets suggest that 
this is a reasonable approach: alternative default priors lead to very similar 
conclusions, with all being similar to inferences resulting from maximum like-
lihood estimation. One reason for this concordance is that even fairly modest 
dynamic network data sets supply enough data degrees of freedom to—for 
DNR families—place the posterior within the asymptotic Gaussian regime. 
While it is possible to obtain poor results by selection of an especially inap-
propriate prior, reasonable choices thus lead to reasonable outcomes. Given 
this, and given the advantages of the Bayesian approach for problems such 
as prediction, there seems little reason not to recommend this as a standard 
technique for analyzing network dynamics with TERGM DNR families. 
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