
Theme issue article
Urban Analytics and
City Science

Large-scale spatial network
models: An application
to modeling information
diffusion through the
homeless population of
San Francisco

Zack W Almquist
University of Minnesota, USA

Abstract

To address the effects of increasing homeless populations, planners must understand the size and

distribution of their homeless populations, as well as how information and resources are diffused

throughout homeless communities. Currently, there is limited publicly available information on

the homeless population, e.g. the estimates of the homeless, gathered annually by the US Housing

& Urban Development point in time survey. While it is theorized in the literature that the

networks of homeless individuals provide access to important information for planners in areas

such as health (e.g. needle exchanges) or access (e.g. information diffusion about the location of

new shelters), it is almost never measured, and if measured, only at a very small scale.

This research addresses the question of how planners can leverage publicly available data on

the homeless to better understand their own homeless networks (e.g. relations among the

homeless themselves) in a cost-effective and reliable way. To this end, we provide a method

for simulating realistic networks of a social relation among the homeless population and

perform a diffusion analysis over the resultant homeless-to-homeless networks, and also over

a simulated homeless youth Facebook network. We validate the former through novel use of

historical data, while the latter is based on recent work that demonstrated that the homeless

youth have similar size Facebook networks and usage. We see much stronger spatial hopping and

quicker diffusion over the youth network, i.e. we expect information to pass among the youth

network much faster than the homeless-to-homeless network. This finding implies that non-

government organizations and public health efforts that seek to provide information, goods or

services to the homeless should start with the homeless youth, given the potential for faster

diffusion when homeless youth are the initial transmitters. Overall, these methods and analysis

provide a unique opportunity for visualizing, characterizing and inferring information for large-

scale and hard to measure social networks.
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Introduction

In recent years, the prevalence of homelessness in the United States (US), and its
well-established contributions to adverse outcomes – including social and economic
inequality – has led to what many refer to as a nationwide emergency. Perhaps most
notably, the state of Hawaii and the cities of Los Angeles, California, Portland, Oregon
and Seattle, Washington have all made emergency declarations typically reserved for natural
disasters such as earthquakes or fires. In combating homelessness in the US, organizations –
city, county, state, federal and nongovernmental organizations (NGOs) – attempt to
engage homeless individuals at the micro-level; most large-scale (public) data on
homelessness in the US are based primarily on the US Housing & Urban Development
point in time (PiT) survey conducted every January, which provides only a count of the
homeless population in spatial aggregates once a year. Further, this is limited to simple
count data of the sheltered and unsheltered homeless populations in the US, and sometimes
a limited survey run at the same time; however, the more detailed survey is not typically
made public or coordinated with other geographic areas. One data source that would be of
particular interest to planners would be that of the social support networks of the homeless
population. In particular, we know from Wolch and Rowe (1992) and others that the
social support networks (e.g. homeless-to-homeless) are particularly important for
planning issues related to public health (e.g. sanitation), information (e.g. provider
locations) or safety (e.g. information on safe places to sleep at night). Networks can be
particularly important in a health context. For example, a recent outbreak of Hepatitis A in
San Diego County over the course of January 2018 resulted in 577 infections with 20 deaths
(3.5%) and 395 hospitalizations (68.5%). Hepatitis A is spread via person-to-person contact
and through contact with a fecally contaminated environment, where the typical public
health response is the distribution of hand-wash stations and sanitizers. To contain this
outbreak, public health workers need to engage the network of homeless individuals to
encourage them and to let them know where these stations will be located.1 Further, we
know that social support networks (e.g. Coleman, 1988; Putnam, 1995) are important
mechanisms for how information and goods diffuse through the population, e.g. finding
out about new shelters, access to resources, public health information and so forth. These
networks also underlie modern methods for enumeration of hard-to-reach populations like
the homeless.

To date, there have been numerous small-scale qualitative studies assessing the level of
access that homeless populations have to social capital and organizational resources
(e.g. Elvy et al., 1986). Scholars such as Mitchell (1987) have investigated the strength of
weak ties (Granovetter, 1974) in the context of homeless women – describing the multiplex
social support network (e.g. emotional support or practical aid) of these women based on
their weak ties (e.g. relationships with care providers or other homeless) and strong ties (e.g.
kin or close friends). There also exists an extensive literature of small-scale health-based
research of the homeless and the importance of social support for mental illness (e.g. Hwang
et al., 2009; Irwin et al., 2008; Rice et al., 2011, 2012; Rowe and Wolch, 1990; Shinn et al.,
1991), but there continues to be a dearth of population-level measures of the social relations
of the homeless.
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Thus, the goal of this work is to show the ability to leverage knowledge of spatial location
(or approximate location) to understand and predict social interaction. Here, we focus on a
spatial network framework, referred to as spatial Bernoulli networks, which have been used for
obtaining intuition and inference on problems with minimal data and no network information,
e.g. homeless-to-homeless social networks in the US. This work takes advantage of new
developments in spatial networks (Onnela et al., 2011) and resulting integration with GIS
Systems (Andris, 2016) to provide a basic understanding and initial hypotheses of what
homeless-to-homeless social networks may look like and their resulting characteristics.

This article is laid out as follows. First, we introduce the statistical and computational
methods needed for simulating and inferring the characteristics of a spatially distributed
homeless-to-homeless network and the online social network of homeless youth. Next, we
review the simulation procedures and simulate the homeless population locations from PiT
count data and then simulate spatial networks. Finally, we perform some validation of the
models and a diffusion simulation to understand how goods or information passing through
these two homeless-to-homeless networks might occur. We conclude with a discussion of
how this could be used to inform public planners.

Spatial network models for extrapolative simulation
of homeless-to-homeless networks

Wolch and Rowe (1992) and others have found that the coping abilities of the homeless are
impacted by their social networks (homeless-to-homeless networks) and their daily paths.
Specifically, homeless-to-homeless networks allow for access to food, clothes, shelter,
emotional support, security, etc. While this work and others have detailed the importance
of homeless-to-homeless networks, it is unfortunately expensive and complex data to collect.
So the question becomes: can we gain traction on this problem using existing publicly available
data? This is largely limited to count data in spatial aggregate units (e.g. cities or counties; Burt
et al., 2007). Hence to answer this question, we need a way to take aggregate spatial data and
simulate a social network with the desired properties. Almquist and Butts (2012) have shown
this can be done for some populations and both Almquist and Butts (2015) and Hipp et al.
(2013) have further demonstrated that spatial Bernoulli networks with an appropriate data set
can produce spatially embedded networks that correlate with social outcomes of interest such
as regional identification (e.g. I am a Parisian or I am from New York) or crime. To apply this
method, we do not need to know an individual’s exact location, but we do need to assume they
have some sort of stable ‘‘home’’ location. If, again, we take an insight from Wolch and Rowe
(1992) that homeless maintain a set of stable relationships and tend to have stable locations to
which they return (e.g. shelters, tent camps, etc.), and we combine this with Tobler’s First Law,
‘‘everything is related to everything else, but near things are more related than distant things’’
(Tobler, 1970), then we might imagine that given a homeless individual’s base location, we
might be able to get leverage on their social network.

In the next section, we will review spatial Bernoulli networks and their properties before
applying them to gain traction on two homeless-to-homeless networks.

Methods

Spatially embedded networks

Human social systems often reside in a geographic space, which can constrain social
structure (e.g. friendships or even needle exchanges) in complex ways. In this section, we
will focus on the formal definitions of a spatial network as well as key components in the
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larger geographic and planning literature that have looked into how both space and place
may structure human interaction such as road systems or neighborhood associations.

To define a spatially embedded network, we need to first define a network (Wasserman
and Faust, 1994). A network in this case refers to a collection of entities (e.g. individuals or
organizations) and a set of relations between these entities (e.g. friendship or collaboration).
We typically represent networks as mathematical objects known as graphs. A graph (G) is a
set composed of two subsets: (1) a vertex (V) or node set (e.g. a homeless individual) and (2)
an edge (E) set (e.g. friendship or communication). Together these sets are referred to as a
graph, G ¼ ðV,EÞ. The graph can also be represented as a binary adjacency matrix
Yij ¼ 1 or 0 with size n vertices. Self-ties (i.e. Yii) are typically assumed to be NA or 0,
but can be considered in the analysis if desired. This resulting network is said to be
directed when Yij does not have to equal Yji, and is said to be undirected if Yij¼Yji (i.e.
the adjacency matrix is symmetric).

Examples of directed networks include relations such as communication or self-reported
friendship while undirected networks include relations such as Facebook friendship or co-
occurrence in a geographic location. A spatially embedded network is one where the vertices
(and/or edges) have a geographically associated property (e.g. the longitude and latitude
location of a home).2 It is worth pointing out that, generally speaking, spatial networks can
refer to brain networks, cosmology networks and other non-geographic networks; however,
in this work, we will not distinguish between spatial and non-geographic networks.

From the point of view of researchers, geolocated information is either a powerful
covariate/control for modeling/predicting social action or is, itself, the endpoint of the
analysis. Recently, there has been work on studying the latter case. For example, large-scale
complex systems arise naturally in many social science and public planning applications,
especially when studying large-scale systems such as cities or states, and large-scale social
structure is inevitably shaped by geographic factors through its ability to inhibit or
encourage interaction (e.g. Bossard, 1932; Festinger et al., 1950; Freeman et al., 1988;
Hägerstrand, 1966; Latané et al., 1994). Further, there is a growing literature focusing on
various methods, models and concepts of spatial networks, which includes numerous studies
on migration and location-based social networks (e.g. Cho et al., 2011; Csáji et al., 2013),
issues of social contagion and propagation (e.g. Christakis and Fowler, 2013; Pentland, 2014)
and social movements (e.g. Almquist and Bagozzi, 2016; Conover et al., 2013). Much of this is
made available by extensive developments in software and computing, as well as developments
in the theory of spatial networks (e.g. Acedo et al., 2017b; Acedo et al, 2017b; Li et al., 2017;
Pelcer-Vujačić and Kovačević, 2016; Psyllidis, 2016; Xu et al., 2017). Other key GIS network
activities include investigating geographic communities (Comber et al., 2012), mapping kinship
networks (Koylu et al., 2014) and exploring network centrality/influence measures
(Barthélemy, 2011; Crucitti et al., 2006; Gil, 2016; Wang et al., 2011). Most of this work is
empirically driven through modern data collection (e.g. Carrasco et al., 2008) and
computational storage considerations (e.g. Câmara et al., 1996) as well as new methods for
plotting and displaying spatial network data (e.g. Heer and Perer, 2014).

Spatial Bernoulli networks

There is a history of network-related spatial models in the social science literature, such as
gravity models (e.g. Haynes and Fortheringham, 1984; Wilson, 2011). Recently, there has
been a great deal of development in the spatial network subfield (e.g. Butts et al., 2012),
including the development of a holistic framework for spatial network models based on a
mapping F d d, ð Þ that (for some real parameter  ) indicates the distance between two
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vertices (d) into the probability of an i, j edge. This function is generic and can take on a
number of reasonable functional forms, which are discussed in detail in the next section.
These models are collectively known as spatial Bernoulli graphs (Butts, 2003) and rely on a
kernel function (F d d, ð Þ) referred to as the spatial interaction function (SIF), which models
the form of the relationship between the spatial distribution of nodes and the network
structure (details discussed in the following subsection). These models have been shown to
correlate with social processes of interest and to study spatial networks in a variety of
settings such as organizational collaboration during disasters (Butts et al., 2012) or
interpersonal relations (e.g. Butts, 2002; Butts and Acton, 2011; Hipp and Perrin, 2009).
We begin first by defining the canonical parameters �  , dð Þ ¼ logitF d d, ð Þ, which allow us
to write the probability mass function (pmf) for random graph G with support G (represented
via its adjacency matrix Y 2 Y) as a curved exponential family (Hunter and Handcock, 2006)
of the form

Pr Y ¼ y j D, ð Þ ¼
Y

fi, jg

B yij j F d ðdij, Þ
� �

ð1Þ

where B is the Bernoulli pmf and D is a distance matrix on the elements of V. Notice that this
model can be extended to a fully spatial exponential random graph model with the addition
of network sufficient statistics (i.e. statistics on the network such as clustering terms like
triangles or cliques) (Robins et al., 2007). Further, these network models have been shown to
provide good approximations of the behavior of more complex spatial network models in
many empirical and simulated settings (Butts, 2011). Spatial Bernoulli graphs include gravity
models as a special case.

The spatial interaction function

The key to being able to either estimate or simulate spatial Bernoulli graphs depends
on the SIF, F d, that controls how distance relates to marginal tie probability. In other
words, the SIF contains the information necessary to predict the likelihood of sharing a
social relation (e.g. a friendship) between two individuals given their distance from each
other. For example, if person A and person B live within a quarter mile of each other, then
there may be a high probability that they are friends, but if person C lives 5000 miles away,
then they are unlikely to be friends with either person A or B.

This work exploits the observation that marginal tie probability, e.g. ties of groups such
as the homeless, in social networks is often structurally related to the distance between two
individuals. Often as distance increases the likelihood of two individuals having a social
relation decreases, i.e. there is an inverse relationship with distance. Many empirical research
articles have shown the likelihood of a given social relation to decay with distance (e.g.
Bossard, 1932; Festinger et al., 1950; Freeman et al., 1988; Hägerstrand, 1966; Latané et al.,
1994; McPherson et al., 2001). The model in equation (1) treats edges as conditionally
independent given distance, which is a simplification that approximates many aspects of
complex human behavior such as communication or friendship (Butts, 2011). The choice
of a given parametric form for the SIF can have large ramifications and is preferably found
by measuring the network of interest. If this is not possible, selecting an SIF that has the
right characteristics should be done with care. Butts et al. (2012) – implemented in software
(Butts and Almquist, 2015) – have proposed six different forms (shown in Table 1). The
choice of a given parametric form can have a very distinct effect on the resulting social
network. To illustrate the importance of the underlying SIF, we plot three different social
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networks – see Figure 1 – resulting from a power law (PL), an attenuated power law (APL),
and a uniform case – where the network is constructed to yield expected density equal to the
mean of the other two network distributions. The center and right columns depict
visualizations of the same simulated network, respectively, in non-spatial (Fruchterman–
Reingold) and spatial form so as to allow the reader to see both the effect of the SIF (e.g.
PL and APL versus the Uniform case with no spatial component). The network clustering
(groups of highly connected nodes) can be seen to vary greatly depending on the choice of
the functional form of the SIF. To perform this simulation, we use tools in the
networkSpatial package (Butts and Almquist, 2015), which allows us to simulate a two-
dimensional Halton sequence (an algorithm often used to generate points in space for
numerical methods, which is deterministic, but appears random; see Braaten and Weller,
1979, for more details) for the vertex set. In the next subsection, we will discuss statistical
estimation of an SIF using data from San Francisco.

Case study: Modeling the social support networks of the homeless
in San Francisco

The simulation of spatial networks can be accomplished by either first attempting to estimate
the SIF of the population of interest (e.g. Spiro et al., 2016) or to employ an SIF already
computed from empirical data (see for example, Butts, 2003, 2002). One immediate issue is
that these models require that all vertices have a spatial location. If this is known, we can use
it directly. For example, we could use the address database maintained for tax records in a
given city or county in the US for estimating or simulating a spatial network of households
within a given city. If the specific location is not known, we can use a Poisson point process
model as demonstrated by Almquist and Butts (2012). Here, we will simulate the location of
homeless individuals and homeless youth population based on the Continuum of Care
(CoC)3 count for San Francisco. Using these two resultant data sets, we will simulate a
social network for homeless individuals and a Facebook friendship network for homeless
young adults. To fully appreciate the scale of these simulation models, two different
simulations are performed: (1) a homeless-to-homeless social network, which we validate
with the characteristics of a Respondent Driven Sample (RDS) of homeless in Atlanta; and
(2) a youth network of a homeless population on Facebook based on Guadagno et al.’s

Table 1. Six parametric models for the SIF kernel function

from Butts (2002), where PL is power law, APL is attenuated

power law, AT is arctangent law, ED is exponential decay, LP

is logistic probability and CP is constant probability law.

Model F d ðd Þ

PL pb

ð1þ�d Þ�

AP pb

1þ �dð Þ�

AT pb 1� 2
� tan�1 �dð Þ

� �

ED pb

e�d

LP 2pb

1þe�d

CP pb

SIF: spatial interaction function.
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(2013) finding that homeless youth’s Facebook usage was similar to college students.
Implications are discussed in the final section of the paper.

Simulating homeless locations

To simulate the location of homeless individuals for the year 2017, we use the PiT count data
made available at the SF supervisor district level as reported in the San Francisco Homeless
Count & Survey Comprehensive report (see Table 2 for details). While the ideal case would be
neighborhood or US Census block aggregates, larger units can still provide reasonable
boundary data for spatial point simulation for spatial Bernoulli networks as described in
Almquist and Butts (2012). Further, the supervisor district level is the best approximation to
neighborhood level data available and appears to capture the key clustering of homeless
individuals in San Francisco. Here, we simulate the homeless individual locations with a
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Figure 1. Three by three plot of SIF, standard network plot (e.g. Fruchterman–Reingold) and spatial plot

(points placed on a plain via a Halton sequence). Plots use the networkSpatial package in R.

SIF: spatial interaction function.
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Poisson point process model, which is a maximum entropy solution in which the homeless
are placed uniformly at random, subject to geographic constraints. This is a good solution
when there is not much information available as in this case. We can visualize these
distributions in Figure 2.

Simulation of a social network of homeless in San Francisco

Given the simulated homeless locations, we can now simulate a spatial network model given
a plausible SIF. Here, we propose to use a face-to-face SIF estimated from a month of
observations of individuals congregating in a large open area to best approximate
the social space of the homeless network (PL  ¼ (0.859, 0.035, 6.437); Butts, 2002;

Table 2. PiT homeless counts by SF supervisor district in 2017 for sheltered,

unsheltered and youth populations from the San Francisco Homeless Count & Survey

Comprehensive report.

District Sheltered Unsheltered Youth

1 79 57 37

2 7 53 5

3 96 293 30

4 0 31 7

5 316 143 85

6 1957 1723 477

7 17 74 7

8 65 236 116

9 271 281 96

10 174 1101 359

11 0 48 6

PiT: point in time.

Figure 2. Poisson’s simulated homeless locations based on PiT homeless counts by SF supervisor district in

2017 for unsheltered and youth populations for 2017. Supervisor districts are id’d 1 to 11 by the city.

PiT: point in time.
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Freeman et al., 1989). We can visualize this network in Figure 3, where we can observe the
spatial clustering around the center of the city and greater disbursement in outer
neighborhoods. Figure 3 also provides a visualization of the standard network plot based
on Fruchterman and Reingold’s force-directed placement algorithm, showing a large variety
of differing social clusters. This visualization provides a good sense of how we might expect
connections between homeless individuals to be dispersed. Further, we will be able to use this
simulation to make some predictions, and to develop hypotheses for future research and
public health applications.

Comparison to a known homeless social network. Unfortunately for validation purposes,
a complete network of homeless-to-homeless social interactions does not exist. However,
a collection of historical RDS data sets is available, focused on HIV and drug use (Morris
and Rothenberg, 2011). One of these data sets was from an urban environment, the Atlanta
Antiretroviral Adherence Study (AAS). Included in this data set is a coding for a social
relationship, and if the respondent (in network language, ego) was living on the ‘‘streets’’
and if the respondent’s alter (social friend) was living on the ‘‘streets.’’ From this data set, we
can build an egocentric sample of homeless-to-homeless social relations in an urban setting
(visualized in Figure 4). This resulting egocentric network will be a degree-biased sample
(Gile and Handcock, 2010b) of a true homeless-to-homeless social network. Because of the
nature of this sampling scheme, there is somewhat limited network information provided;
however, it does potentially provide a reasonable estimate of the observed degree
distribution of a homeless-to-homeless network, albeit weighted to the higher degree cases
(i.e. individuals with higher numbers of social ties). The degree distribution is an important
set of statistics on a network (Wasserman and Faust, 1994), and is the table of counts of
individuals (egos) with a particular degree score (see Figure 5 for an example of a boxplot of
the degree distribution of a network).

Figure 3. Large-scale network plot of face-to-face SIF with individual place location based on spatial point

process model for the SF city supervisor districts and connected PiT Count data of the unsheltered

homeless. Neighborhood shape-files provided by Open SF project. Network plot of the face-to-face SIF using

standard Fruchterman and Reingold’s force-directed placement algorithm.

SIF: spatial interaction function; PiT: point in time.
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We will do the validation test on the city of Atlanta (Figure 5). The Atlanta CoC in 2016
had 4063 homeless individuals. We simulate the homeless-to-homeless network in the same
way as in the SF case using the same SIF. First, we compare the estimated population level
mean degree of the AAS data ( �dAAS ¼ 6:9) to the mean degree from our simulated network
( �dsim ¼ 7:1), which has a difference p-value of approximately 0.99. Hence we do very well on
an important aggregate measure. The degree distribution is particularly important for
understanding network sampling schemes for reaching and measuring hard-to-reach
populations, and for acquiring good diffusion simulations (e.g. to understand information
flow over homeless-to-homeless populations; Watts, 2002), and thus the choice of this

Figure 4. Egocentric representation of homeless-to-homeless social interaction derived from the Atlanta

Antiretroviral Adherence Study and archival data, Morris and Rothenberg (2011). Resulting network is plotted in

standard Fruchterman and Reingold’s force-directed placement algorithm.

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Degree

Fr
eq
ue
nc
y

Figure 5. (On the left) Atlanta CoC simulated homeless-to-homeless network of 4063 homeless

individuals. (On the right) Boxplots represent the predicted degree distribution estimates from a weighted

sample of 1000 iterations of size 57 from the simulated face-to-face social network. Observed degree

distribution – from the egocentric representation of homeless-to-homeless social interaction derived from

the Atlanta Antiretroviral Adherence Study and archival data (Morris and Rothenberg, 2011) – is plotted in red.

CoC: Continuum of Care.
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metric is defensible. To mimic this degree bias and limit the effects of having a sample and not
a census of the network, we simulated 1000 draws of a degree-biased egocentric sample of size
57 (the size of the resulting homeless-to-homeless social network sample). We then computed
the prediction interval of the degree distribution of this resulting process and compared it
against the Atlanta data. This can be visualized in Figure 5. This procedure follows the same
logic as Hunter et al. (2008) who introduced methods evaluating network models against
observed data. In this case, we see that our degree-biased samples capture the observed
data for all but degree two cases, but also include occasional higher degree cases (19, 20
and 21). Note that this is a very hard test as we are attempting to capture 21 different
statistics with a parameter free model (i.e. a model not fit to the data). Overall the trend is
generally captured and makes a reasonable attempt at capturing the weighted-degree
distribution of the observed homeless-to-homeless social network.

Simulation of a Facebook network of homeless youth

In this example, we simulate the spatial network of a homeless Facebook network using an
SIF estimated from college students in 2009 (APL with  ¼ (0.6266, 0.0489, 6.527); Spiro et al.,
2016) and simulate the spatial distribution of homeless in San Francisco in 2017 using PiT
Count data of the homeless youth population. This simulation is based on the work of
Guadagno et al. (2013), who found that homeless young adults have similar Facebook
networks and usage patterns as college students. This network can be visualized in Figure 6.

Analysis of information-diffusion over the simulated networks

To further investigate the properties of these two networks, we simulate a process of
diffusion of information (e.g. location of a new shelter) or goods (e.g. condoms or needle

Figure 6. Large-scale network plot of Facebook friendships SIF with individual place location based on

spatial point process model for the SF city supervisor districts and connected PiT Count data of the

homeless youth population. Neighborhood shape-files provided by Open SF project. Network plot of the

face-to-face SIF using standard Fruchterman and Reingold’s force-directed placement algorithm.

SIF: spatial interaction function; PiT: point in time.

Almquist 11



exchange) throughout the two simulated networks of relations among the homeless and
homeless youth of San Francisco.

We use the estimated interaction rates from the face-to-face SIF and Facebook SIF to
inform our diffusion process models.4 The diffusion process we consider follows a standard
network model (Frambach, 1993), where an initial signal (or seed) will be provided to either
the highest degree node(s) or randomly to several nodes. This type of diffusion is also known
as ‘‘Poisson diffusion’’ and operates in the following manner. At a given time t, every
individual is either ‘‘infected’’ or ‘‘uninfected’’. An individual (v), once infected, initiates
an infection event for each of their out-neighbors (vn), which occurs at time tþX (where
X � e�vvn a Poisson distribution). An uninfected individual becomes infected at the first
interaction event; subsequent infection events have no effect. The simulation terminates
when all reachable neighbors have been infected. As suggested above, the speed of the
diffusion process is governed by the edge-specific rates, �, in this case assigned by the
probability of interaction estimated from the spatial Bernoulli model based on the face-to-
face SIF (on the unsheltered population) and Facebook SIF (on the homeless youth
population).

Social network. We can visualize this process in Figure 7 over the simulated social network of
homeless-to-homeless relations. Here, we observe a strong spatial component and an
important social component as well, ranging down the center of the city with specialized
hot spots, where the social interaction allows goods or information to skip around
geographically. Starting from a single point (in this case, the highest degree individual as
is often practiced in health RDS designs), we see that the network is almost completely
diffused by 25 iterations, but takes about 30 for the network to be completely saturated
(Figure 7). We also note that a random seed does not do much worse than picking the
highest degree individual until about five iterations out, suggesting that low iteration RDS
might be quite successful in practice. We can further analyze the relationship between this
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Figure 7. Large-scale network plot of the face-to-face SIF with individual place location based on their

simulated location along with neighborhood polygons from the SF Open Data project. Quartile diffusion

pattern plotted in five colors from red to blue.

SIF: spatial interaction function.
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diffusion pattern and key landmarks of interest such as neighborhoods within the City of
San Francisco. Table 3 in the online supplementary material shows the counts of homeless
cross-tabulated with the quartile in which they received information or goods and the 41 SF
neighborhoods reported by the city. A few key areas emerge, such as the critical
neighborhoods of the Financial District, Bayview, Mission, Mission Bay, Potrero Hill,
South of Market and the Tenderloin, which see strong spatial and social diffusion
patterns (i.e. each continue to see large numbers of new diffusions in each quarter of the
simulation procedure). We see that some neighborhoods (i.e. the Financial District) see high
spatial cohesion – most of the individuals who receive goods or information do so within a
short time interval. This further suggests that there are core neighborhoods in which one
might pilot a public health survey as well as neighborhoods that may require a considerable
amount of work to make sure information or goods are provided to the intended recipients
(e.g. Outer Richmond).

Facebook network. We can visualize this process in Figure 8 over the simulated Facebook
network of homeless youth. Here, we observe that the degree start is not nearly as effective.
This is likely because of the very large average degree of a Facebook network. In addition,
we see much stronger spatial hopping and a quicker diffusion process (i.e. we expect
information to pass among the youth network much faster than the homeless-to-homeless
network). This finding implies that non-government organizations (NGOs) and public health
efforts that seek to provide information, goods or services to homeless should start with the
homeless youth, given the potential for these information/goods to diffuse more quickly
when homeless youth are the initial transmitters. Again, we can look at the diffusion
pattern over the neighborhoods of San Francisco (Table 4 in the online supplementary
material), which largely mimics the same pattern as the homeless-to-homeless network,
but with a few notable areas such as Visitacion Valley and Golden Gate park standing out.
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Discussion

The use of large-scale spatial networks for urban planning and understanding the social sphere
of entire cities is potentially quite extensive. However, one of the key areas where the inference
and simulation of such networks may contribute is prior to analysis in hypotheses-testing of
network-based sampling strategies. For example, RDS methods (e.g. Gile and Handcock,
2010a; Heckathorn, 1997; Salganik and Heckathorn, 2004), and more general random-walk
methods (e.g. Gjoka et al., 2010), which are often used to measure hard-to-reach populations,
are time-intensive and very expensive to run. Simulation strategies such as those presented here
could be used by either government officials, NGOs or academic researchers as a method for
developing key hypotheses before engaging in large (or small) RDS procedures. Similar
methods have been used extensively for public health issues such as enumerating the
population of individuals with HIV/AIDS (e.g. Magnani et al., 2005) or drug users (e.g.
Hathaway et al., 2010), and for measuring properties of homeless populations (e.g. Salazar
et al., 2007; Williams, 2010; Wincup et al., 2003). RDS and its comparable methods (e.g.
capture-recapture) would certainly be the core method used to estimate the social relations
of the homeless, as well as the social support of the homeless broadly. Employing these
simulation studies and methods may allow researchers to acquire a sense of the number of
individuals needed in order to both reach optimal penetration (e.g. to allow for large coverage
of the social network) and for unbiased estimation of the parameters of interest (e.g. the
average number of family support ties or friendship ties). The work presented here offers
recommendations for such an analysis. In addition, this type of information is needed by
large federal organizations (e.g. the National Institute of Health) or private NGOs to
conduct a wider, more detailed examination of the homeless support system in the US.

A key finding includes the spread of information over the homeless networks within
San Francisco. This analysis strongly suggests that one might expect information to flow
faster over youth networks than with older residents. The interaction of these two networks
could be engaged for both measurement of the population (virtual RDS) or to pass
information using Facebook advertising targeted at homeless youth. One potential policy
implication of this finding is that NGOs/government/health providers could most effectively
target homeless-directed interventions and information passing to homeless youths, as this
information will spread more quickly via such groups. However, this relies on the assumption
that there will be (guaranteed) spillover between homeless youths and homeless communities
more generally.

There are also limitations to this analysis. All statistical and simulation models must work
with the data available and the mathematical assumptions made – this framework is no
different. The key limitations in this framework are that the model requires location and
network information for both inference and simulation. To this end, we must simulate both
the homeless locations and the social networks although we have used reasonable empirically
driven SIFs and have attempted to validate them with publicly available data and research.

Overall, these methods provide a unique opportunity for visualizing, characterizing and
inferring information from large-scale social networks. This allows for a deeper
understanding of the social fabric of different groups within urban centers, extrapolative
simulation for use in hypothetical analysis, and preliminary work prior to implementing
large expensive studies of hard-to-reach populations, or other traditionally marginalized
and/or underrepresented groups.
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Notes

1. www.sandiegocounty.gov/content/sdc/hhsa/programs/phs/community_epidemiology/dc/Hepatitis_

A/outbreak.html
2. Note that there are more complex socio-demographic or ‘‘latent’’ embeddings that can also be of

interest, such as the latent spaces in the statistical literature (e.g. Krivitsky and Handcock, 2008),
anthro-spaces (Andris, 2016) or the ‘‘Blau’’ spaces (Blau, 1977; McPherson and Ranger-Moore,

1991) of the sociology literature.
3. CoCs are administrative units for homeless care in the US, more information can be found at US

Department of Housing and Urband Development Office of Community Planning and

Development (2009).
4. The simulation software used is from the diffusion package in R (Butts, 2008).
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Latané B, Nowak A and Liu JH (1994) Measuring emergent social phenomena: Dynamism,

polarization, and clustering as order parameters of social systems. Behavioral Science 39: 1–24.

Li M, Ye X, Zhang S, Tang X and Shen Z (2018) A framework of comparative urban trajectory
analysis. Environment and Planning B: Urban Analytics and City Science 45(3): 489–507.

Magnani R, Sabin K, Saidel T, et al. (2005) Review of sampling hard-to-reach and hidden populations
for HIV surveillance. AIDS 19: S67–S72.

McPherson M, Smith-Lovin L and Cook JM (2001) Birds of a feather: Homophily in social networks.
Annual Review Sociology 27: 415–444.

McPherson MJ and Ranger-Moore JR (1991) Evolution on a dancing landscape: Organizations and

networks in dynamic Blau space. Social Forces 70(1): 19–42.
Mitchell JC (1987) The components of strong ties among homeless women. Social Networks 9(1):

37–47.

Morris M and Rothenberg R (2011)HIV Transmission Network Metastudy Project: An Archive of Data
from Eight Network Studies, 1988–2001. Inter-university Consortium for Political and Social
Research (ICPSR). Online. University of Michigan, Ann Arbor. Access date: 10/01/2017.

Almquist 17



Okabe A (1992) Spatial Tessellations. 22: Wiley Online Library.
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