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Social scientists characterize social life as a hierarchy of environments, from the
microlevel of an individual’s knowledge and perceptions to the macrolevel of large-scale
social networks. In accordance with this typology, individuals are typically thought to
reside in micro- and macrolevel structures, composed of multifaceted relations (e.g.,
acquaintanceship, friendship, and kinship). This article analyzes the effects of social
structure on micro outcomes through the case of regional identification. Self-
identification occurs in many different domains, one of which is regional; that is, the
identification of oneself with a locationally associated group (e.g., a “New Yorker” or
“Parisian”). Here, regional self-identification is posited to result from an influence
process based on the location of an individual’s alters (e.g., friends, kin, or coworkers),
such that one tends to identify with regions in which many of his or her alters reside. The
structure of this article is laid out as follows: initially, we begin with a discussion of the
relevant social science literature for both social networks and identification. This dis-
cussion is followed with one about competing mechanisms for regional identification that
are motivated first from the social network literature, and second by the social psycho-
logical and cognitive literature of decision making and heuristics. Next, the article covers
the data and methods employed to test the proposed mechanisms. Finally, the article
concludes with a discussion of its findings and further implications for the larger social
science literature.

Introduction

Social scientists characterize social life as a hierarchy of environments, from the microlevel of an
individual’s knowledge and perceptions to the macrolevel of large-scale social networks. In
accordance with this typology, individuals are typically thought to reside in micro- and
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macro-level structures, composed of multifaceted relations; that is, acquaintanceship, friendship,
and kinship (Mayhew and Levinger 1976). In this article, we treat self-identification as occurring
when an individual chooses to associate him or herself with a given label (e.g., Sam’s mother).
Self-identified groups occur when each of two or more individuals choose to identify with a label
(or category) that exists a priori as a result of a consensus (e.g., “I am black” and/or “I am a
mother”). Thus, in this context self-identified groups arise from microlevel processes of indi-
vidual decision making.

Although this article focuses on the particular case of regional self-identification, self-
identification, more broadly, is of special concern to social scientists because it determines
racial/ethnic, sexual, gender, class, and other identities (Howard 2000). Self-identified groups
also are of particular interest to the subfields of social psychology, social boundaries, and
gender relations (see Turner et al. 1987; Howard 2000; Jenkins 2000). Howard (2000) argues
that these subfields view identity (self-identification) as a product of modern society and as a
core issue, especially when compared with societies with rigidly imposed identities. Specifi-
cally, this article proposes that the basic underlying mechanisms for self-identification is a
cognitive system, where an individual selects his or her identification from within a set of
salient items (e.g., cities) and employs a heuristic—or set of rules—for choosing among those
items.

The main hypothesis of this work, here dubbed the Social Network Hypothesis of Regional
Self-Identification (SNH), is that individuals choose the region with which they identify based on
the salience of the relations of the social networks in which they are embedded (e.g., friends,
acquaintances, coworkers, kin; for a visualization of a spatial network see Fig. 1). In other words,
individuals choose to identify with the region in which they have the most alters (e.g., friends or
kin; see Almquist 2012). We contrast this hypothesis with a series of alternatives that are
motivated by, arguably intuitive, salient components of modern life (e.g., maps, advertisements,
schools, postal codes). For example, one might argue that the region that is most salient to an
individual is the one that is most proximal, more so even than the one in which he or she has the
most social relations.

To date, social scientists primarily have studied regional identification in the context of
national identification (see Gould and White 1986; Tan 2005), with a few studies about urban/
rural identification (see Wirth 1938; Fischer 1982). More recently, new developments in online
data processing and management allow for larger scale and higher quality geographic data
collection by nonprofessionals, what the geographic literature has dubbed volunteered geo-
graphic information (VGI) (Goodchild 2007). VGI data are detailed geographic data (e.g.,
latitude and longitude coordinates) collected by nonprofessionals, employing modern geographic
information software (GIS; e.g., Google maps). One of the more famous of these collection
efforts is the Common Census Internet Project (Flanagina and Metzger 2008; Baldwin 2010), the
data source for this article.

Background: social networks and geography

Spatially embedded social networks have a long history in the geography literature (e.g., gravity
models; Phillips, White, and Haynes 1976; Haynes and Fortheringham 1984) and the social
network literature (for a review, see Barabási and Frangos 2002; Butts 2002; Butts and Acton
2011). In the geography literature, a historical and recent revival of formal network models has
taken place that builds on graph theory, statistics, and machine learning literatures (Tinkler 1972;
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Gopal and Fischer 1996; Rogerson 1997; Gahegan 2000; Griffith 2011). Related extensions
within this context include clever optimization and uses of point process models (Boots 1977;
Serra and ReVelle 1999; Okabe and Yamada 2001; Schneider 2005; Yamada and Thill 2007;
Shiode 2008; Almquist and Butts 2012) and the application and inclusion of network autocor-
relation models in the geographic literature (Páez, Scott, and Volz 2008; Farber, Páez, and Volz
2009; Peeters and Thomas 2009; Townsley 2009). Possibly the longest running literature about
spatially embedded networks is that for roads (e.g., Hudson 1969; Morley and Thornes 1972;
Zemanian 1980; Osleeb and Ratick 1990; Black 1992; Okabe, Yomono, and Kitamura 1995;
Peeters, Thisse, and Thomas 1998; Okabe and Yamada 2001; Xie and Levinson 2009; Bentley,
Cromley, and Atkinson-Palombo 2013). More recent developments in the network and geogra-
phy literature include developments concerning the problem of small worlds (e.g., Rogerson
1997; Xu and Sui 2009) originally introduced by Travers and Milgram (1969) and Milgram
(1967), and later extended by Watts and Strogatz (1998). Other important examples of empirical
spatial networks include those for cities (Portugali, Benenson, and Omer 1994; Taylor 2001; Neal
2012), drainage networks (Werner 1972), and t-communities (Grannis 2009; Whalen et al. 2012),

Figure 1. A simulated spatial Bernoulli network for San Francisco, CA. The simulation was
performed using the procedure outlined in the Social Network Model (Tie Volume Model)
Section using the Facebook SIF in section. The map is as an orthogonal projection around the
centroid point in meters. Gray lines represent U.S. Census block lines, dots represent individuals,
and black lines represent a social relation (e.g., friendship).
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and the use of networks in cognitive models and spatial thinking problems (Morley and Thornes
1972; Mirchandani 1980; Smith, Pellegrino, and Golledge 1982).

Regional identification as a cognitive process

The definition of self-identification employed in this article (i.e., individual y identifies with
object x) is that of a behavior requiring an individual to match him or herself with a label that is
drawn from a set of potential labels (or categories) that exist in his or her cultural repertoire (e.g.,
doctor or Asian). In this sense, a component of self-identification exists that requires a decision
from an actor, and which can be further described as a choice. This choice, at least at some level,
must involve the act of information processing, if only for the actor to allocate him or herself to
some default option (see Gigerenzer and Todd 1999; Hutchinson and Gigerenzer 2005).

In the case of regional identification, these assumptions imply that an individual has a
mechanism for identifying the set of potential geographic categories (e.g., towns, cities, or other
culturally recognized places) at the situationally relevant scale, and a way to choose an item from
within a given set (e.g., Irvine) with which he or she identifies. This process can be seen in
everyday life in a variety of contexts; for example, when an individual proclaims “I am a Persian”
or “I am a New Yorker” therefore regional identification can be characterized by the combination
of (1) a choice set and (2) a heuristic. Much of the following discussion is dedicated to describing
potential mechanisms that are competing for the “best” (i.e., most predictively accurate) choice
set and heuristic in a model of regional identification, including mechanisms involving social
structures.

Scale and regional identification

As implied by the proceeding discussion, an individual is potentially able to identify him or
herself with a preferred geographical unit at multiple scales; each scale is defined by a culturally
relevant set of geographical units (e.g., neighborhoods or local communities, towns or cities,
states or provinces, nations), which constitutes the choice set for an identification decision.
(Meaningful scales for such identification are themselves culturally defined.) Thus, we may
envision the regional identification process as producing for each individual a “cone” of valid
identities x0 ⊆ x1 ⊆ . . . , each having the property that individual y associates more strongly with
region xi than any other region ′xi at the same scale in his or her cultural repertoire. This is
depicted schematically in Fig. 2.

Our focus in this article can be viewed as follows: given a uniform “slice” through the cones
of regional identities in a population at a given scale, what predicts the units with which each
individual will identify? In particular, we here consider identification for local communities
among residents of the United States, at a scale that corresponds to “places” designated by the
U.S. Census.

Mechanisms of regional identification

We may hypothesize a variety of processes by which regional identification may occur at a given
scale. The mechanisms we consider here are divided into two key subgroups: the SNH and the
geography and prominence hypotheses. The first of these hypotheses is based on social structure
in which individuals are embedded; the subsequent competing hypotheses are based on particu-
larly salient properties of modern life.
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A SNH

One potential mechanism for regional identification is based on the social context in which
individuals are embedded (e.g., friendship, coworker, and kinship networks). In such a case,
regional identification might be an individual performing a search over his or her personal
networks (Dodds, Muhamad, and Watts 2003), and selecting the region that contains within it the
largest number of alters. Tying this notion back to the concept of salience will be important
throughout this article; this hypothesis can be rephrased as an argument that regions containing
the maximal number of an individual’s alters are the most salient regions to that individual for
this type of identification.

SNH. Individuals choose to identify with the region in which they have the largest number of
alters.

Different processes (or combinations thereof) could potentially underlie the ultimate mecha-
nism of regional identification and inform the SNH. Intuitively, we might suspect this hypothesis

Figure 2. At a given culturally defined scale (planes), an individual most closely identifies with
a given geographical unit (circled areas). Identification at any given scale can be conceptualized
as eliciting a “slice” through the cone-like structure formed from the union of possible elicita-
tions. “Slicing” at a uniform level allows us to examine identification mechanisms across
individuals.
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to be plausible for many reasons. For example, (1) individuals search over their alters and select
the region to identify with based on a plurality heuristics; (2) individuals have more exposure to
the places they have more alters, and thus such an area is more salient; and (3) individuals mimic
their peers and thus choose to identify with the area with which they view the bulk of their peers
as identifying. As the data do not allow us to distinguish between these microlevel processes, we
view the SNH as representing a class of mechanisms (one or more of which may be active at
once), which we collectively distinguish from other classes of identification mechanisms.

Geography and prominence hypotheses

The SNH involves one class of mechanisms for regional identification, but others can be
entertained. The first alternative hypothesis proposed here is dubbed the proximity hypothesis.
The proximity hypothesis is based on the intuitive salience of certain geographies to an indi-
vidual, particularly those who are the closest (most proximal) to an individual (e.g., one lives near
Irvine, CA, and identifies with Irvine).

Proximity hypothesis. Individuals choose to identify with the region that is most proximal
(closest) to them, given their current geographic location of residence.

An alternative hypothesis—although, one which is related to the proximity hypothesis—is
one in which the most salient region is not simply the most proximal, but is a balance of being
both the most prominent (salient given some characteristics/threshold) and also most proximal to
an individual’s location. In this case, one assumption is that an individual limits his or her choice
set to only those regions that meet a particular prominence characteristic/threshold (e.g., pres-
ence of National Football League team/population threshold; see Gigerenzer and Todd 1999),
and subsequently selects the most prominent region within this limited set.

Prominence hypothesis. Individuals choose to identify with the closest prominent region
to their geographic locations.

One might also propose the reverse of the aforementioned hypothesis, where an individual
first limits his or her choice set by the saliency criterion of distance, and then chooses a region
to identify with based on some prominence characteristic/threshold.

Distance hypothesis. Individuals choose to identify with the most prominent region
within a given distance radius.

The prominence and distance hypotheses are motivated, first, by the elimination heuristics
that have been shown to be fast and frugal, as well as accurate in judgement making (Berretty,
Todd, and Blythe 1997), and second, by the vetting models in the fields of population biology and
public health (Handcock and Jones 2004).

Elimination models in the cognitive science literature were conceived for choice tasks; in
these models, an object is chosen by repeatedly eliminating subsets of objects from further
consideration, thereby whittling down the set of remaining possibilities (Tversky 1972). These
heuristics have been extended to include categorization tasks such as length and widths of flower
parts by Berretty, Todd, and Blythe (1997). Similarly, the prominence and distance hypotheses
may be perceived as a series of elimination heuristics (i.e., limiting the choice set by one criterion
after another until a single item remains).
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The vetting models were conceived as a two-stage process model for how individuals form
sexual partnerships: (1) individuals generate a list of acquaintances and (2) choose their sexual
partners (Handcock and Jones 2004). Similarly, the prominence and distance hypotheses may be
defined as a two-stage process model in which an individual first limits his or her choice set (e.g.,
only cities greater than 50,000), and then selects an item in his or her choice set (e.g., the closest
remaining city).

The case of community identification

The regional identification processes outlined in the previous section are hypothesized to predict
the identification within a scale-induced choice set; to test these hypotheses, it suffices to consider
a set of identification decisions (1) made on a common scale, for which (2) a consensus choice
set is readily available. In this article, we employ data on identification with local communities
collected by the Common Census Project (CCP; Baldwin 2010). As discussed further subse-
quently, CCP respondents overwhelmingly (> 95%) selected regions of identification that corre-
spond to census-designated places (CDPs) as defined by the year 2000 U.S. Census (US Census
Bureau 2001). CDPs are constructed to correspond to towns, cities, or other well-defined local
population aggregates with a commonly identified name, and thus serve as an effective opera-
tionalization of culturally recognized “communities”; respondents readily selecting CDPs when
describing the local community or area with which they identify (despite being given the
opportunity to enter alternative labels) further validate the intelligibility of this geographical unit
to the study population. Henceforth, we employ CDPs as our geographical unit of interest, using
the term community as an intuitive shorthand to describe what these units represent.

Our subjects identifying with units at the community scale does not preclude them from
identifying with units at other scales. Rather, the community scale serves as a uniform slice
through a respondents’ regional identification cones, giving us a basis for systematic prediction
across respondents. We do not, in particular, require that respondents’ strength of identification
of the community scale be stronger or more salient than, for example, their identification at larger
scales. What we do require is that each respondent identify more strongly with the community he
or she selects than any other available community, an assumption that is consistent with the
nature of the CCP data.

Of particular use to researchers investigating regional identification (of cities or other
geographical levels) is the body of spatial and geographic data from the 2000 U.S. Census (US
Census Bureau 2001; Almquist 2010) and data from the Common Census Internet project
(Baldwin 2010), each of which is readily available, detailed resource of geographic and identi-
fication data. Next are a detailed descriptions of the necessary U.S. Census and the Common
Census data sets. Before proceeding to a description of our analysis techniques, we provide an
overview of these data sets.

U.S. census demographic and geographic data

The 2000 U.S. Census Summary File 1 data consist of population counts and other basic
demographics at five geographic resolutions: blocks, block groups, tracts, counties, and states
(for detailed definitions, see the US Census Bureau 2001), each of which exhaustively covers the
land mass of the United States. The U.S. Census data also contain geographic and demographic
data for what it calls CDPs, which shall be referred to as communities in the remainder of this
article.

Zack W. Almquist and Carter T. Butts Self-Identification from Spatial Network Models

7



As noted previously, the U.S. Census Bureau’s definition of CDPs closely approximates
what most individuals of the United States would consider communities. This linage is rein-
forced by analysis of the CCP data, for which 96% of respondents’ reports of identification are
found to coincide with places as they are defined by the U.S. Census Bureau (e.g., a respon-
dent might choose Irvine for his or her identification). This outcome occurs even though
respondents were both given the option of choosing items outside the category of places,
and provided the option of writing in their own preference. There are a total of 24,670
places ranging in population size from 0 to 8 million (there is no minimum population
requirement for a place; US Census Bureau 2001), with most corresponding to towns, cities,
or well-defined and commonly named areas within larger urban areas. CDPs can also
include military installations or other areas that are well recognized (and which may have a
residential population), but that are not captured by conventional definitions of “city,” “town,”
or the like.

Our analysis employs a GIS implementation of the 2000 U.S. Census data by Almquist
(2010), implemented in the R statistical computing environment (R Development Core Team
2010). R’s spatial tools (Bivand, Pebesma, and Gómez-Rubio 2008) were used for associated
data manipulation and analysis.

Common Census Internet project

The Common Census Internet project is a website started in 2005 by Baldwin (2010) to develop
a “natural” (perceptual consensus) mapping of the United States such that the borders of/within
an area emerge from a consensus among the individuals who reside in that area. In practice, the
CCP data are a convenience sample from 2005 to present, which consists of five questions related
to one’s geography, several of which focus on regional identification. In this work, responses to
three of the five questions are used to test the hypotheses proposed in this article. The proceeding
analysis also utilizes data from the first of the five questions from the online questionnaire, which
elicits a respondent’s address and automatically geocodes his or her location (after which these
results were anonymized to the census geography of the block).1

Given that respondents may answer any of the Common Census questions at idiosyncratic
geographic levels, we limit our analyses to those respondents who supply at least one answer
at the community (CDP) level. The first2 and third3 questions pertain largely to community-
level identification, and approximately 96% of respondents supply an answer corresponding to
a CDP.

Crucially, both questions request that a respondent ignore any official boundaries and answer
only with the region he or she feels that he or she identifies with, which should elicit the processes
of regional identification this work is interested in, rather than simply a report of the geographic
location of individuals.

Responses collected after 2007 were omitted from analysis as a result of the faulty geocoding
of respondents’ locations; this elimination left a total 51,655 respondents, of which 45,167
answered with a CDP for the second question; this number increases to 49,769 when results of
the second and third question are combined. Using a combination of questions two and three, this
analysis utilized a sample of 49,769 respondents, which is 96% of the total surveyed population
(2005–2007). Fig. 3 visualizes the location of each respondent. The resulting sample includes
individuals who identify with 10,325 different places, where approximately 20% of these indi-
viduals selected out-of-state places.
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Because the Common Census is an Internet-based self-selected sample, it contain systematic
biases.4 We would expect that these biases would follow those commonly found in Internet
surveys (e.g., respondents are younger, wealthier, and more educated people5).

Methodology

In order to utilize the Common Census data to evaluate the previously discussed hypotheses,
these hypotheses must first be operationalized for a specific level of regional identification (here,
the community level). What follows is a series of model proposals, each of which represents one
of the aforementioned hypotheses in an analytical framework. The first of these proposals is for
a baseline model, here dubbed the uniform choice model. This baseline model provides a
comparison point for all other models, assuring a reader that the regional identification data of
interest here does, in fact, contain structure (is nonrandom).

The uniform choice model

The uniform choice model is a family of parameterized models that, given a respondent and his
or her geographic location, map each respondent’s location to a randomly chosen item (place)
from within the choice set (P). The location of a respondent is coded, using an anonymization

Figure 3. Centroid locations of the Common Census Internet Project respondents in the conti-
nental United States, in an Albers Conical Equal Area projection (in meters).
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procedure, in terms of the centroid longitude and latitude coordinates of the U.S. Census block
in which the respondent resides. Consequently, multiple respondents can have the same coordi-
nates, although they do not live in the same household. The choice set of locations available to
individuals for identification is the set of all CDPs in the continental United States (24,670
places).

In effect, the uniform choice model is a mapping of respondents’ locations to a CDP
randomly drawn from a uniform probability distribution, and is implemented using the following
algorithm: (1) map all CDPs onto the natural numbers; (2) select each respondent’s place of
identification by drawing a random number from a uniform distribution; and (3) map that number
back to the corresponding place (e.g., if a respondent with a location [−108.62, 44.97] selects
Ardmor, AL, the model predicts this respondent identifies with Ardmor, AL).

Tie volume and the SNH

Interest in large-scale, spatially embedded networks has a long history in the social sciences,
stemming from the famous Milgram experiments (Milgram 1967; Travers and Milgram 1969),
later repopularized as the “small-world” phenomenon by Watts and Strogatz (1998). Recently,
methods for statistical and simulation-based modeling of large-scale spatially embedded net-
works have been developed by Butts (2003; Butts and Acton 2011; Butts et al. 2012).

Spatial Bernoulli graphs and the spatial interaction function (SIF)

A well-established empirical regularity is that the marginal probability of a social tie between two
persons declines with increasing geographical distance for a wide range of social relations (e.g.,
Bossard 1932; Festinger, Schachter, and Back 1950; Hägerstrand 1966; Freeman, Freeman, and
Michaelson 1988; Latané, Nowak, and Liu 1994; McPherson, Smith-Lovin, and Cook 2001).
Butts (2003) demonstrates that, under fairly weak conditions, spatial structure is adequate to
account for the vast majority of network structure (in terms of total entropy) at large geographical
scales. Simple network models based on the distance/tie probabiliy relationship have been shown
to produce reasonable distributions for structural features such as degree distributions (Butts et al.
2012) and have been found to have predictive power, for example, crime rates in neighborhoods
(Hipp et al. 2013).

The most basic family of such network models is the set of spatial Bernoulli graphs. We
define a spatial Bernoulli graph in the manner of Butts and Acton (2011). Consider a set of
vertices, V, that are spatially embedded with a distance matrix D ∈ [0, 1]N×N. Let G be a random
graph on V, with stochastic adjacency matrix Y ∈ [0, 1]N×N. The pmf of G given D is

Pr | , |
,

Y y D B y dd ij d ij
i j

=( ) = ( )( )
{ }
∏F F (1)

where B is the Bernoulli pmf, and Fd : , ,0 0 1∞[ ) → [ ] (the SIF). The SIF controls the underlying
structure of a network and thus is the key component within this family of models; specifically,
the SIF relates distance to the marginal tie probability. Empirically, real-world social networks
typically appear to have an SIF, where the marginal tie probability decays with distance (see Butts
2003). Another well-known empirical regularity is that the marginal probability of a tie between
two persons declines with geographical distance for a broad range of relationships (e.g., Bossard
1932; Festinger, Schachter, and Back 1950; Hägerstrand 1966; Freeman, Freeman, and
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Michaelson 1988; Latané, Nowak, and Liu 1994; McPherson, Smith-Lovin, and Cook 2001;
Arentze and Timmermans 2005; Axhausen 2007; Carrasco, Miller, and Wellman 2008). This
tendency suggests that the functional form for a social network SIF is some variant of a power
law. Here we consider two basic functional forms of an SIF based off of empirical data estimated
from two large communication networks (see section Social Network Model [Tie Volume
Model]):

Fd
dx

p

x
( ) =

+ ( )
( )

1 α γ , attenuated power law (2)

Fd
dx

p

x
( ) =

+( )
( )

1 α γ , power law (3)

where pd is the baseline tie probability at distance 0, γ is a shape parameter governing the distance
effect, and α is a scaling term. For a typical visualization of a network drawn from a model of this
type, see Fig. 1.

As the preceding discussion suggests, network structure and geography are intricately
linked, and the spatial Bernoulli graphs can be viewed as providing a social structural interpre-
tation of the classical gravity models (Haynes and Fortheringham 1984) that are replete in the
geographical literature. The gravity models can be viewed as a family of nonlinear regression
models for valued relational data, in which the expected degree of interaction between elements
is taken to be a product marginal rates (i.e., row/column effects) and an attenuation function
dependent on the distance between them. Formally,

E Y P i P j d i jij d[ ] ∝ ( ) ( ) ( )( )F , , (4)

where P(x) is the interaction potential of element x, and Fd is the SIF. Thus, the spatial Bernoulli
graphs can be viewed as a special class of gravity models for dichotomous interactions (although
this does not extend to the general class of spatial random graph models; e.g., see Daraganova
et al. 2012). Although gravity models are not always motivated by a clear social mechanism, here
models of this form (i.e., spatial Bernoulli graphs) are used to capture the expected number of
social ties between an individual respondent and all individuals in a given areal unit (based on
extrapolative simulation from models fit to network data in prior work). Thus, this article
provides an example of the connection between classical geographical techniques and other
forms of relational analysis.

Tie volume

Geographically embedded networks have many properties that are jointly related to space and
social structure Butts (2003; forthcoming), the most relevant to this work being tie volume. The
tie volume, V A B,( ) between areal units A and B for graph G is the number of edges (i, j) such
that vertex i resides in unit A and vertex j resides in unit B. If we take Ai to be an arbitrarily small
region around vertex i (such that Ai contains no other vertices), V A Bi,( ) also can be used to
express the total number of ties from vertex i to individuals in areal unit B; we use the shorthand
V i B,( ) to denote this special case. When dealing with extrapolatively simulated networks (as in
the present context), it is natural to work with the expected tie volume EF Vd A B,( ) rather than the
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tie volume for an observed graph; in the foregoing, we refer to the expected tie volume simply as
the “tie volume” where there is no danger of confusion.

Now, SNH can be operationalized in terms of tie volume in a straightforward manner. Given
the calculations of the expected tie volume between two locations (e.g., a respondent’s home
location and each community in the United States), the SNH predicts that an individual identifies
with the community that has the largest expected tie volume with his or her residential location.

Social network model (tie volume model)

To obtain identification predictions from the tie volume model, we proceed as follows: first,
calculate the expected tie volume between a respondent’s home block to the block groups that
make up a given community, dividing by the population of a respondent’s block to obtain the
expected number of ties from the respondent to residents of each block group in the community.
Next, sum the expected tie volumes from a respondent to each block group in the community,
providing the expected tie volume between the respondent and the community as a whole. Repeat
this procedure for each community in a choice set, then select the community with the maximum
expected tie volume as the location with which an individual identifies. This procedure may be
written explicitly as follows:

(1) Let P be the set of communities, with each Pk consisting of nk block groups g gk knk1, ,… ,
with population counts given by P. Let ri be the census block in which the ith respondent
resides.

(2) For each k ∈ 1 . . . , |P|, calculate E EV Vi P
r

r gk
j

j kjj

nk
,

1
,

1
( ) = ( ) ( )

=∑P
.

(3) Select argmaxP P kk i P∈ ( )EV , ; this is the community with which i is predicted to identify.

The expected tie volume between a respondent’s location and a given block group depends
on both the detailed geometry of the blocks/block groups and the SIF, and is computed via a
Monte Carlo quadrature algorithm (Butts forthcoming).6 In this article, we employ two distinct
SIFs. The first is a classic SIF estimated from a large-scale phone network, and the second is a
modern example from the social networking site Facebook.7

The first SIF used in this article is based on Hägerstrand’s data set of phone calls made
between regions in rural Sweden in 1950. Butts (2002) computed this SIF from Hägerstrand’s
(1966), “technologically mediated communication” relation, which acts as a long-tailed example
with a slowly decaying distance function (approximately d−2.95). The parametric form is an
attenuated power law (see equation 2), with parameters (0.937, 0.538, 2.956).

The second SIF used in this article is based on a uniform sample of Facebook users in 2009
collected by Gjoka et al. (2010), where the authors recorded (when identified) a user’s university
affiliation and his or her alter’s affiliation. From this information, Spiro, Almquist, and Butts
(2012) computed an SIF for Facebook friendship between university-affiliated individuals. This
SIF represents a “modern technologically mediated communication” relation, which acts as a
long-tailed example with a slowly decaying distance function (approximately d−6.527). Its para-
metric form is a power law (see equation 3), with parameters (0.627, 0.049, 6.527).

The regional identification proposed in the SNH suggests that a weak interaction SIF such as
that from a communication network might be representative of the type of macrolevel structure
underlying this phenomenon. The SIFs employed here are two examples of how such a network
can scale with distance; by representing a fairly wide range of scaling parameters, they allow us
to examine the robustness of the SNH while still employing SIFs based on (previously) observed

Geographical Analysis

12



network structure. Both SIFs were inferred from observed networks in previous studies and were
not in any way fit to the CCP (or other regional identification) data. Thus, these models are zero
parameter with respect to CCP prediction, because they contain no free parameters that are
adjusted to improve fit for the regional identification data.

Because optimal prediction from the tie volume model requires that one have either a priori
knowledge of the exact SIF governing identification-relevant relationships or infer an SIF from
the data (to guarantee the best fitting model), computing the expected tie volume in the manner
implemented here is a more stringent test of the SNH than for example fitting the observed data
to a gravity model. If the tie volume model outperforms competing models in predicting regional
identification, the extent of this superior performance would only increase in a better-fitted
model. In effect, the aspects of sub-optimality of this model make it a stronger test of the effects
of large-scale social networks on regional identification.

To demonstrate the tie volume model, we consider an illustrative case within California.
Respondent A lives within a census block in Albany, CA. First, we compute the expected tie
volume of respondent A, given their home location within the city of Albany to all other
communities in California under the aforementioned SIF (see Fig. 4). We then rank the results
and select the community with the highest expected tie volume between respondent A and all
communities within California. In this case, respondent A lives in Albany but identifies with
Berkeley, as the tie volume model predicts (see Fig. 4).

The proximity model

The proximity model is a family of parameterized models that map the location of each respon-
dent to the nearest item (community) in the choice set (P), where nearest here is defined as the
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Figure 4. An example of tie volume model for single a respondent living in Albany, CA. Results
logged for visualization purposes (log is a rank-preserving transformation and therefore does not
change the results). (a) Full state example of the tie volume model for a single respondent living
in Albany, CA. (b) A close up of the example of the tie volume model for a single respondent
living in Albany, CA.
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item with minimum distance between itself and the respondent’s location. Given the notation of
the The Uniform Choice Model section, in combination with a distance function d(·, ·), the
algorithm first calculates a respondent’s distance from his or her location to every item in the
choice set, and then selects the item with the smallest corresponding distance.

In order to best approximate the actual physical distance between a respondent and each
place in the continental United States, the great circle distance8 is calculated between the
longitude and latitude of each respondent and the center point of each community. For example,
a respondent with a location (−107.53, 41.03) would be predicted to identify with Dixon, WY, as
a result of the respondent having a distance of zero between his or her location and the location
of Dixon, WY, and greater than zero distance for all other places.

Vetting models

Given the notation in section and the distance function of The Proximity Model section, two
distinct families of single-parameter vetting models are proposed: the first of which is a distance-
based vetting model, here dubbed the distance vetting model, and the second of which is a
prominence-based vetting model, here called the population vetting model. All vetting models are
named according to the initial rule an individual uses to first limit his or her choice set.

Each vetting model may be viewed as a two-stage process (Handcock and Jones 2004) in
which an individual first limits his or her personal choice set with a decision rule, and subse-
quently selects a final choice based on a different decision rule. This procedure follows the same
basic logic as the elimination heuristics in the cognitive science literature (Tversky 1972;
Berretty, Todd, and Blythe 1997) and involves the following three basic steps:

Step 1) Select a rule to limit the choice set (e.g., individuals contemplate only communities
within 50 miles of where they live).
Step 2) Select a rule to pick from among the limited choice set (e.g., individuals choose the
highest population community within the resulting choice set).
Step 3) Apply the conjunction of steps 1 and 2.

Step 1 constrains a choice set using a decision rule, motivated by the hypotheses in the
Mechanisms of Regional Identification section, which is operationalized as a parameter con-
straint, θ, and relation operator, R (e.g., a binary relation R usually is defined as an ordered triple
[X, Y, G] where X and Y are arbitrary sets, and G is a subset of the Cartesian product X × Y; this
is commonly written xRy). For example, in the case of the distance vetting model, a choice set is
limited to only those communities less than θ distance from a respondent.

In step 2, another decision rule is chosen, again motivated by the hypotheses in the Mecha-
nisms of Regional Identification section. In this article, two decision rules are proposed: closest
(C) and largest (L). closest is where an actor chooses the community nearest to where he or
she lives that is contained within his or her limited choice set. largest is where an actor chooses
the most salient item in terms of population size (e.g., largest) within the limited choice set. The
largest decision rule requires a monotonicity assumption for a choice set, which can be
accomplished by listing cities in descending order based on population size.

The distance vetting model

The distance vetting model assumes that, in the process of regional identification, an individual
considers only those regions within some maximum distance of where he or she lives. This initial
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limitation is achieved by narrowing the choice set to only those cities that are less than or equal
to θ distance from an individual (i.e., R is the ≤ operator). Subsequently, an individual makes his
or her ultimate choice by selecting the most prominent community from within that radius (θ).

For example, a respondent with a location (−86.816, 33.272) and a θ = 106.58 km has an
initial, limited choice set of 171 communities. The largest three communities within this radius
(in descending order) are Birmingham, AL (population 242,820); Tuscaloosa, AL (population
77,906); and Hoover, AL (population 62,742). Thus, this respondent is predicted to identify with
Birmingham, AL.

The population vetting model

According to the population vetting model, an individual considers only communities whose
population is greater than or equal to θ (e.g., population ≥50,000, for θ = 50,000). This individual
then makes his or her final choice by selecting the closest community from within this choice set.9

For example, a respondent with a location (−86.816, 33.272) and θ = 289,315.4 has a
resulting initial choice set of 57 communities. The closest three communities from within this set
are (in ascending order of distance) Atlanta, GA (228.9 km); Nashville, TN (322.3 km); and
Memphis, TN (356.6 km). Thus, this respondent is predicted to identify with Atlanta, GA.

Computational considerations

Each of the aforementioned algorithms employed in this article are implemented in the R
statistical programing environment (R Development Core Team 2010). The uniform choice
model and proximity model are implemented exactly as discussed, as is the tie volume model,
including estimation of the expected tie volume between a respondent’s block and the block
groups of a given city using the spatialNetwork package (implemented in R). The population
vetting model and distance vetting model employ modern techniques of optimization (specifi-
cally, we employ the optimization function provided in the R base code; R Development Core
Team 2010) to obtain their parameter estimates (all code written in the R statistical programing
language).

For parametric models, estimates of model standard errors and confidence intervals are
performed using a nonparametric bootstrap (10,000 replications), allowing for tests of statisti-
cally significant differences in performance among the proposed models (Dwass 1957).

Analysis and results

Uniform choice model and baseline models
To test the hypotheses proposed in the Mechanisms of Regional Identification section, each
model discussed in the Methodology section has been applied to the Common Census data set,
the results of which (at national-level estimates) are summarized in Table 1. Currently, compu-
tation of the tie volume model solutions for the entire national data set is not feasible; rather, it
has been applied on a state-by-state basis to the contiguous United States. This implementation
means that any individual who resides in one state, but selects a city in another state, counts
against the model for its predictive analysis (e.g., if a respondent lives in New Jersey and selects
New York City as the city with which he or she identifies, then the model cannot predict it and
is penalized).

Table 1 shows model prediction for community-level regional identification. These results
illustrate the poor performance of the uniform choice model, which predicts only 0.02% of the
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data. This performance is interpreted as evidence of the presence of underlying structure in the
data set (i.e., individuals do not choose to identify with a place at random). Of the four baseline
models proposed, the proximity model performs the best. The distance vetting model performs
quite poorly ( ˆ .θ = 53 13 kilometers), which may be a result of heterogeneity of human settlements
(an assumption not accounted for in the single-parameter distance vetting model). Although
including additional parameters in any of the models, including the distance vetting model,
improves overall performance, the relative performance of the distance vetting model most likely
would not change given its initial shortcomings in the single-parameter version (e.g., 20%
reduction in accurate predictions compared with the proximity model). The proximity model and
population vetting model ˆ ,θ = 1 480 people) are statistically indistinguishable, and the limit of the
population vetting model is the proximity model (if θ = 0 the population vetting model is identical
to the proximity model). Overall, from the national results presented in Table 1 imply (1) regional
identification is not a random process and (2) of the baseline models proposed, the proximity
hypothesis is the most likely mechanism for regional identification at the community scale.

Tie volume model versus the proximity model: a state-by-state analysis
Because it was not possible to utilize the tie volume model nationally, this article presents a
state-by-state comparison of the proportion correctly predicted by the tie volume model and the
proximity model (where both models have been provided a limited choice set such that only the
cities within a state are considered; both models are penalized by individuals who select com-
munities out of state; Table 2). The proximity model is chosen for this comparison because it is
the best performing model for the baseline hypotheses.10,11

Inspecting the pattern of results presented in Table 2, the tie volume model consistently
outperforms the proximity model, sometimes by as much as 27% in the Hägerstrand SIF case and
by as much as 45% in the case of Facebook SIF. The tie volume model performs significantly
better than the proximity model for 31 of the 48 continental states and DC in the case of the
Hägerstrand SIF, and 47 of the 48 continental states and DC in the case of the Facebook SIF. In
other words, the tie volume model has significantly better prediction of regional identification for
almost all of the states analyzed, and a greater raw number of correct predictions for all but one
state analyzed (and this case is not significant) in the case of the Hägerstrand SIF, and all states
in the case of Facebook SIF. If one takes the aggregation of the tie volume model applied to each
state individually as an estimate for the full contiguous United States and then compares this
estimate to that for proximity model, one again finds a highly significant result for both SIFs

Table 1 National Comparison of Each Model; Standard Errors and 95% CI Calculated Using a
Nonparametric Bootstrap with 10,000 Replications

Proportion 95%
Correct CI

Uniform choice model 0.00020 (0.00007, 0.00033)
Tie volume model N/A N/A
Proximity model 0.62968 (0.62028, 0.63909)
Distance vetting model 0.34939 (0.34002, 0.35874)
Population vetting model 0.62956 (0.62003, 0.63908)

CI, confidence interval; N/A, not applicable.

Geographical Analysis

16



Table 2 State-by-State Comparison of the Tie Volume Model versus the Proximity Model; Tie
Volume Model and Proximity Model Proportions Predicted Correctly Where Both Models Have
Been Provided a Limited Choice Set Such That Only the Cities within a State Are Considered

Hägerstrand SIF Facebook SIF

TV Prox. Diff. P-value TV Prox. Diff. P-value

Alabama 0.7107 0.6311 0.0796 0.0046* 0.7767 0.6311 0.1462 0.0000*
Arizona 0.7120 0.4839 0.2281 0.0000* 0.7414 0.4839 0.2540 0.0000*
Arkansas 0.8320 0.7033 0.1286 0.0000* 0.8594 0.7019 0.1618 0.0000*
California 0.6384 0.5302 0.1081 0.0000* 0.6763 0.5302 0.1476 0.0000*
Colorado 0.7684 0.4433 0.3250 0.0000* 0.8067 0.4429 0.3626 0.0000*
Connecticut 0.3984 0.3938 0.0047 0.8642 0.5611 0.3938 0.1738 0.0000*
DC 0.5510 0.5510 0.0000 1.0000 0.5510 0.5510 0.0000 1.0000
Delaware 0.5852 0.5057 0.0795 0.1351 0.6640 0.5057 0.1619 0.0000*
Florida 0.6435 0.4597 0.1838 0.0000* 0.6925 0.4488 0.2426 0.0000*
Georgia 0.5430 0.4547 0.0883 0.0000* 0.5803 0.4547 0.1252 0.0000*
Idaho 0.4081 0.3969 0.0112 0.7318 0.4271 0.3969 0.0334 0.1334
Illinois 0.8121 0.6002 0.2120 0.0000* 0.8768 0.6002 0.2761 0.0000*
Indiana 0.6151 0.5666 0.0485 0.0294* 0.6659 0.5666 0.1003 0.0000*
Iowa 0.8291 0.7450 0.0840 0.0001* 0.8794 0.7450 0.1341 0.0000*
Kansas 0.7930 0.6356 0.1573 0.0000* 0.8805 0.6343 0.2455 0.0000*
Kentucky 0.4859 0.4382 0.0477 0.1067 0.5181 0.4374 0.0797 0.0000*
Louisiana 0.7340 0.4601 0.2739 0.0000* 0.7778 0.4601 0.3190 0.0000*
Maine 0.5447 0.5000 0.0447 0.3218 0.7688 0.5000 0.2754 0.0000*
Maryland 0.5244 0.4810 0.0434 0.0252* 0.5703 0.4781 0.0897 0.0000*
Massachusetts 0.4604 0.4490 0.0113 0.4667 0.5824 0.4490 0.1338 0.0000*
Michigan 0.6858 0.6585 0.0273 0.1174 0.8081 0.6585 0.1484 0.0000*
Minnesota 0.8231 0.6248 0.1983 0.0000* 0.8559 0.6224 0.2334 0.0000*
Mississippi 0.7429 0.6381 0.1048 0.0192* 0.8430 0.6351 0.2089 0.0000*
Missouri 0.7093 0.6166 0.0927 0.0000* 0.7794 0.6166 0.1598 0.0000*
Montana 0.7228 0.7065 0.0163 0.7278 0.7727 0.7065 0.0721 0.0201*
Nebraska 0.8000 0.7323 0.0677 0.0422* 0.8543 0.7278 0.1295 0.0000*
Nevada 0.6842 0.3454 0.3388 0.0000* 0.6574 0.3454 0.3109 0.0000*
New Hampshire 0.5535 0.5203 0.0332 0.4385 0.7636 0.5203 0.2429 0.0000*
New Jersey 0.5105 0.5252 −0.0147 0.4331 0.6851 0.5252 0.1614 0.0000*
New Mexico 0.8182 0.5273 0.2909 0.0000* 0.8374 0.5273 0.3130 0.0000*
New York 0.4409 0.4337 0.0072 0.5943 0.5171 0.4336 0.0830 0.0000*
North Carolina 0.7440 0.5245 0.2195 0.0000* 0.8225 0.5245 0.2981 0.0000*
North Dakota 0.8288 0.6937 0.1351 0.0162* 0.8700 0.6937 0.1798 0.0001*
Ohio 0.6341 0.5592 0.0749 0.0000* 0.7034 0.5595 0.1450 0.0000*
Oklahoma 0.7896 0.4239 0.3657 0.0000* 0.8171 0.4239 0.3939 0.0000*
Oregon 0.6785 0.5302 0.1483 0.0000* 0.6924 0.5302 0.1594 0.0000*
Pennsylvania 0.5421 0.4730 0.0691 0.0000* 0.6299 0.4730 0.1560 0.0000*
Rhode Island 0.6080 0.5227 0.0852 0.1047 0.6923 0.5169 0.1757 0.0000*
South Carolina 0.6524 0.5025 0.1499 0.0000* 0.7145 0.5025 0.2106 0.0000*
South Dakota 0.8226 0.7661 0.0565 0.2700 0.8981 0.7661 0.1242 0.0007*
Tennessee 0.5272 0.4877 0.0395 0.1348 0.5618 0.4871 0.0772 0.0001*
Texas 0.7317 0.5213 0.2104 0.0000* 0.7832 0.5214 0.2616 0.0000*
Utah 0.6831 0.6399 0.0432 0.1525 0.7315 0.6399 0.0895 0.0001*
Vermont 0.4533 0.3667 0.0867 0.1233 0.8243 0.3667 0.4551 0.0000*
Virginia 0.5623 0.5192 0.0430 0.0044* 0.6313 0.5192 0.1092 0.0000*
Washington 0.4770 0.3730 0.1040 0.0000* 0.4830 0.3730 0.1108 0.0000*
West Virginia 0.6270 0.5164 0.1107 0.0133* 0.7015 0.5164 0.1952 0.0000*
Wisconsin 0.7799 0.5619 0.2181 0.0000* 0.8876 0.5602 0.3282 0.0000*
Wyoming 0.8601 0.8042 0.0559 0.2060 0.8958 0.8042 0.0902 0.0060*
Pooled 0.6330 0.5199 0.1131 0.0000* 0.7010 0.5190 0.1814 0.0000*

The difference of the two proportions compared using an unpooled z-test and bootstrap estimated standard errors.
*Denotes significant at 0.05 alpha level.
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(Table 2; over 11% for the Hägerstrand SIF and over 18% in the case of Facebook SIF). The
Facebook SIF performs significantly better than the national estimates of all the baseline models
with a 7% improvement over the best performing model (Tables 1 and 2). As a cautionary
note, the pooled tie volume model only moderately outperforms the unconstrained proximity
model in the case of the Hägerstrand SIF (which would not be statistically significant); this
outcome is moderated by the Facebook SIF results, which statistically outperform all the baseline
models.

For the states that do not exhibit a statistically significant difference in the performance of the
tie volume versus proximity models (20 of 49, < 50% for the Hägerstrand SIF and 2 of 49; < 5%
for the Facebook SIF), at least some of these cases may be due to power constraints (e.g., a state
like Delaware, which has only 176 respondents, may lack the requisite statistical power for such
a comparison). A closer look at several of the worst performance states (from the perspective of
the tie volume model) reveals that several of these cases are ones furnishing arguably fertile
ground for out-of-state identification based on the size of the state, as well as the size of nearby
(yet not in-state) cities (e.g., Connecticut or Maryland, which are near NewYork and Washington,
DC, respectively).

Discussion and conclusion

This article outlines a cognitive representation of self-identification, and further makes a case for
regional self-identification as a particularly interesting case study of self-identification. Further,
it summarizes an evaluation of six competing hypotheses where we find the social influence
model performs the best. The social network model performs the best without fitting to the data
(i.e., it is a zero parameter model), whereas the other five models are optimized to the data, thus
providing a stronger result. The superior performance of the SNH-based model affirms the theory
that regional identification is both a social and a geographical process.

The application of comparable models (and hypotheses of social structure) to other forms of
identification (e.g., gender, racial/ethnicity, urban/rural, and national) may possibly shed light on
many different areas of identification. For example, the large-scale social network methods can
be used to accurately predict even difficult cases of identification (e.g., boundary cases of ethnic
identity).

Finally, the successful application of large-scale social network models to the regional
identification problem provides further validation for geographical factors as critical drivers of
social process (Mayhew 1984). Even very simple spatial network models, incorporating mar-
ginal distance effects, are able to predict a complex social psychological process. Applications
of such models to other social processes would seem to be a fruitful direction for further
research.
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Notes

1 As a volunteered, self-reported/administered survey, the CCP is necessarily limited by both the design
of the instrument and informant inaccuracy. Although error from such sources can never be ruled out, we
did not observe evidence suggestive of data quality problems, and we note that our findings are robust
to fairly large perturbations in the data set.

2 Question two states: manyAmericans have addresses that say they live in one town or neighborhood, have
a government or police force of another name, and fall in the school district of yet another area. For this
question, forget about what all “official” sources have told you and answer whatever you feel you identify
with most. What do you consider to be your local community? Do not confuse this with your whole local
area; that will be in the next step. This is about the single local community you most feel you live in.

3 Question three states: this step asks for you to identify with a slightly larger area. Again, please ignore
all “official” boundaries like counties, telephone area codes, or zip codes, and answer what you feel you
identify most with. We need a way to identify your local area—the local community you just specified,
together with the local communities that immediately surround it. So, please choose the name of the
local community that you feel is the natural cultural and economic center within your local area. Or, if
you feel a general name (i.e. “Hope Valley,” “Pleasant Lake Area,” or “Midway-Fairview Area”) is more
descriptive of your local area culturally than the name of a single central community, then please give
what you feel to be the best commonly accepted name for your local area.

4 It is not obvious that this should be a problem for this article as the mechanisms proposed should be
largely universal; however, one might be concerned that the geography/population of the respondents
could be systematically different than most “Americans.” This however does not appear to be the case
as far as can be tested with the anonymized data. We used the block-level data of each individual’s home
as proxy for their neighborhood and calculated the racial composition of each respondents neighbored
as compared with the city, county, and state over series of common demographics and detected only
minor variations from what would be expected from a random sample of individuals.

5 The Pew Internet & American Life Survey, December 2010, http://www.pewinternet.org.
6 These algorithms have been implemented in the spatialNetwork in the R statistical environment

(R Development Core Team 2010; Butts and Almquist 2013). The spatialNetwork software package
requires the user choose a particular parametric form of the SIF.

7 Facebook, an online social networking site, offers a rich context in which to study social relations.
Further, it has attracted researchers from many different fields (Lewis et al. 2008; Tufekci 2008;
Wimmer and Lewis 2010). Users of the website build detailed personal profiles, including information
about demographics, interests, and activities. Beyond personal characteristics, Facebook allows users to
publicly declare “friendships” with other users (so called Facebook friendship). Declared friendships
must be confirmed by both parties involved, and therefore constitute mutual relationship acknowledged
by both individuals. Although much debate exists over the nature of Facebook friendships evidence
suggests that Facebook users maintain a significant degree of online/offline integration (Lampe, Ellison,
and Steinfield 2006; Wimmer and Lewis 2010). That is, individuals primarily use the service to “friend”
others whom they met in an offline context, rather than search out friends with whom they have had no
offline interaction. The popularity and global penetration of Facebook makes it extremely attractive to
researchers as a source for rich population-level social interaction data. It is one of the most prominent
sources for large-scale social network data. Given its extremely high membership (and daily usage)
rates, Facebook users have access to a extremely large, diverse (both spatially and demographically)
population of potential social contacts.

8 d(vi, vj) = Cr cos−1 [cos(vi)2 cos(vj)2 + cos ((vi)1 − (vj)1) sin(vi)2 sin(vj)2], where Cr is the spherical radius
(approximately 6,371 km in the case of the earth).

9 Note that the population vetting model reproduces the proximity model when θ = 0, resulting in a
“limited” choice set that is, in fact, the entire choice set. This effect also may be observed in cases in
which θ is sufficiently small.

10 One might worry that performing a state-by-state comparison unfairly limits the choice set for the tie
volume model. Although this might be the case, we have no evidence that this should be an issue. To this
effect we took a moderately sized state (Nebraska) and performed our procedure giving the choice set
as all contiguous states with Nebraska and itself (i.e., Wyoming, South Dakota, Iowa, Missouri, Kansas,
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Colorado) and the model performed approximately identically with the sole state constraint. Notice that
many of the adjoining states have large nearby cities that might influence the prediction, for example,
Denver, CO.

11 Results for the baseline models maintain their rank order when given the more limited choice set with
a linear decrease in prediction.
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