
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: 1061-8600 (Print) 1537-2715 (Online) Journal homepage: https://www.tandfonline.com/loi/ucgs20

Stable Multiple Time Step Simulation/Prediction
From Lagged Dynamic Network Regression Models

Abhirup Mallik & Zack W. Almquist

To cite this article: Abhirup Mallik & Zack W. Almquist (2019): Stable Multiple Time Step
Simulation/Prediction From Lagged Dynamic Network Regression Models, Journal of
Computational and Graphical Statistics, DOI: 10.1080/10618600.2019.1594834

To link to this article: https://doi.org/10.1080/10618600.2019.1594834

View supplementary material

Accepted author version posted online: 03
Apr 2019.
Published online: 28 May 2019.

Submit your article to this journal

Article views: 36

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/loi/ucgs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2019.1594834
https://doi.org/10.1080/10618600.2019.1594834
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2019.1594834
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2019.1594834
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2019.1594834&domain=pdf&date_stamp=2019-04-03
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2019.1594834&domain=pdf&date_stamp=2019-04-03

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
https://doi.org/10.1080/10618600.2019.1594834

Stable Multiple Time Step Simulation/Prediction From Lagged Dynamic Network
Regression Models

Abhirup Mallika and Zack W. Almquistb

aSchool of Statistics, University of Minnesota, Minneapolis, MN; bDepartment of Sociology and eScience, University of Washington, Seattle, WA

ABSTRACT
Changes in computation and automated data collection have greatly increased interest in statistical models
of dynamic networks. Many of the models employed for inference on large-scale dynamic networks suffer
from limited forward simulation/prediction capabilities. One major problem with many of the forward
simulation procedures is a tendency for the model to become degenerate in only a few time steps, that
is, the simulation/prediction procedure results in either null graphs or complete graphs. Here, we describe
an algorithm for simulating a sequence of networks generated from lagged dynamic network regression
models DNR(V), a subfamily of TERGMs. Further, we introduce a smoothed estimator for forward prediction
based on smoothing of the change statistics obtained for a dynamic network regression model. We focus
on the implementation of the algorithm, providing a series of motivating examples with comparisons to
dynamic network models from the literature. We find that our algorithm significantly improves multistep
prediction/simulation over standard DNR(V) forecasting. Furthermore, we show that our method performs
comparably to existing more complex dynamic network analysis frameworks (SAOM and STERGMs) for small
networks over short time periods, and significantly outperforms these approaches over long time time
intervals and/or large networks. Supplementary materials for this article are available online.

ARTICLE HISTORY
Received July 2017
Revised February 2019

KEYWORDS
Dynamic networks; ERGM;
Logistic regression; Logit;
Network simulation; TERGM

1. Introduction

Dynamic network analysis, prediction, and simulation have a
long history in statistics, computer science, and the sciences
(e.g., Almquist and Butts 2013, 2014b; Farmer et al. 1987; Foulds
et al. 2011; Casteigts et al. 2011; Goetz et al. 2009; Hanneke, Fu,
and Xing 2010; Kolar et al. 2010; Krivitsky 2012; Leskovec 2008;
Snijders 2005, 1996; Zimmermann, Eguìluz, and San Miguel
2004). Interest in dynamic systems arises from change in either
the relation of interest (e.g., friendship) or the nodes (e.g.,
individuals). In the social sciences, dynamic network models
have been used to understand important issues of disease trans-
mission (e.g., sexual contact networks Morris [1993]), informa-
tion transmission (e.g., communication during disasters Butts
[2008]), and other important phenomena (e.g., friend forma-
tion, peer influence, etc. [McFarland et al. 2014; Centola 2010]).
In statistics and computer science, new methods and models
have been developed for understanding panel data (e.g., Kolar et
al. 2010), sampled data (e.g., Ahmed and Xing 2009; Almquist
and Butts 2017), and continuous time data (Butts 2008). In
the physical sciences and engineering, dynamic network mod-
els have been employed to understand server load, and other
complex systems. Recently, the advent of “Big Data”—that is,
large-scale behavioral trace data—have increased the interest
in scalable models such the lagged logistic regression models
introduced by Robins and Pattison (2001) and expanded by
Hanneke, Fu, and Xing (2010), Cranmer and Desmarais (2010),

CONTACT Zack W. Almquist zwa@uw.edu Department of Sociology and eScience, University of Washington, 410 Spokane Ln, Seattle, WA 98105.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/r/JCGS.

Supplementary materials for this article are available online. Please go to www.tanfonline.com/r/JCGS.

Desmarais and Cranmer (2010), Leifeld, Cranmer, and Des-
marais (2015), Almquist and Butts (2014a), Almquist and Butts
(2017), and others. Currently, methods for multistep forecasting
and simulation from classic DNR models is quite limited, but
has ready applications in the social sciences (e.g., agent-based
modeling [Helbing 2012], prediction [Liben-Nowell and Klein-
berg 2007], and simulation based experimentation [Rahmandad
and Sterman 2012]) as well as applications to computer science
(e.g., predicting server load [Prodan and Nae 2009]).

Lagged dynamic network logistic-regression (DNR) mod-
els provide a scalable framework for inference on large scale
temporal networks collected as panel data (e.g., network data
collected hourly, daily, weekly, monthly, etc. [Almquist and Butts
2013]). In addition, DNR models readily allow for missing
data (Almquist and Butts 2017) and vertex dynamics (DNR(V))
(e.g., change in the network via population dynamics [Almquist
and Butts 2014b]). DNR models are a subset of the Temporal
Exponential-family Random Graph Models (TERGM) (Hanneke,
Fu, and Xing 2010) and are employed in computer science
(Kolar et al. 2010), social science and the physical sciences
(Almquist and Butts 2013; Desmarais and Cranmer 2010) to
great effect. DNR models are also conceptually similar to vector
autoregressive (VAR) models and depend only on the past and
exogenous variables, and therefore do not require informa-
tion on the current time point such as the general TERGM
case which makes them an ideal framework for problems of
prediction.

© 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America

https://doi.org/10.1080/10618600.2019.1594834
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2019.1594834&domain=pdf&date_stamp=2019-05-24
mailto:zwa@uw.edu
http://www.tandfonline.com/r/JCGS
http://www.tanfonline.com/r/JCGS

2 A. MALLIK AND Z. W. ALMQUIST

0.0

0.1

0.2

0.3

0.4

0.5

−10 0 10 20 30 40 50
Time

D
en

si
ty DataIndex

Beach
BeachNS
Blog
densEdgeNS

Network density vs Time

(a)

Blog data with smoothing Blog data without smoothing

Beach data with smoothing Beach data without smoothing

(b)

Figure 1. Comparison of simulated networks for Beach and Blog data with or without smoothing. (a) Time series plot of network density of original sequence of networks
and 50 time point forward simulation. Negative time points indicate original networks. Dotted lines indicate density of simulated networks. “NS” in ending indicate “no-
smoothing” for the lines in the plot. Without smoothing, networks seem to saturate. (b) Visualization of adjacency matrix of simulated network at time point 50 for Blog
and Beach data, with and without smoothing. Both plots indicate that without smoothing, simulated networks seem to saturate.

A common problem with using DNR for either simulation
modeling or prediction is that the model often leads to degener-
ate results (e.g., all networks are predicted to complete or uncon-
nected) in only a few time steps (Hanneke, Fu, and Xing 2010).
This is a standard problem in the larger literature in statistical
network models (for a review of this problem see the work of van
Duijn, Gile, and Handcock [2009] or Schweinberger and Hand-
cock [2015]). The issue of instability in simulation of networks
is quite common in the network literature. In Figure 1, we show
the effect of our proposed smoothing algorithm on simulated
networks for both fixed and dynamic vertex cases. Here we
have simulated up to time point 50 in future for both cases. We
plot the network density of the simulated networks with time
as well as the final network adjacency matrix. It is clear that
without smoothing, the networks seem to saturate. In several
of our experiment, we have also noticed the case when without
smoothing the networks become more sparse eventually becom-
ing a disconnected network. This effect in its turn affects the
future predictions, as the network statistics that are calculated
from these network statistics will also display tendency toward
degeneracy; this can be readily observed in Figure 3.

In this article, we introduce a smoothed estimator for
forard prediction, based on smoothing of the change statistics
(see Section 3 for details) obtained from a dynamic network
regression model. We focus on the implementation of the
algorithm, providing a series of motivating examples with
comparisons to dynamic network models from the literature.
We find that our algorithm significantly improves multi-
step prediction/simulation over standard DNR forecasting.
Furthermore, we show that our method performs compa-
rably to existing more complex dynamic network analysis
frameworks (stochastic actor oriented models and separable
temporal exponential random graph models) for small net-
works over short time periods, and significantly outperforms
these approaches over long time time intervals and/or large
networks.

In the following sections, we will begin by introducing the
general TERG model and subfamily DNR (with and without
vertex dynamics). We then cover our setting for inference, and
our smoothing algorithm for prediction and simulation. This
is then followed by a comparison of DNR prediction with our
smoothing algorithm and without our smoothing algorithm.
Next, we compare the predictive properties of our algorithm
against the two main competitors in the dynamic network
literature—(i) the separable temporal exponential random
graph model (STERGM) (Krivitsky and Handcock 2014), and
(ii) the stochastic actor oriented models (SAOM) (Snijders
1996)—on key metrics in the computer science and social
network literatures. Finally, we concluded with brief discussion
of our findings.

2. Dynamic Network Analysis

A dynamic network is composed of entities (e.g., actors, respon-
dents, computers, etc.) and relations (e.g., friendship, communi-
cation, needle-sharing, etc.) and is typically represented as the
mathematical object known as a graph G = (E, V), where E
represents the set of relations and V represents a set of vertices.
This can be readily extended to handle time by adding an
index t. In practice, we represent a graph as binary adjacency
matrix, [Y]n×n, and temporal network as time indexed array
of adjacency matrices (typically the diagonal is treated as 0 or
NA in most settings). In this work, we follow the notation of
Almquist and Butts (2014b). We begin by considering networks
with a fixed number vertices, that is, |Yt| = n for all time points
t. (See Almquist and Butts [2014b] for a discussion of dynamic
networks with vertex dynamics for comparison.)

In the following sections, we will use the notation Yt as a ran-
dom variable denoting an adjacency matrix, with an instance of
this random variable denoted by yt . The shorthand notation Yb

a
is used to denote the set of adjacency matrices (Ya, . . . , Yb). We
use Xt to denote covariates associated with edges of a network

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 3

Yt . The function s(.) will be used to denote the set of sufficient
statistics for an ERGM model described next.

2.1. Temporal Exponential-Family Random Graph Models

The framework for TERGMs is based on extending the classic
exponential random graph models (ERGM) (Holland and Lein-
hardt 1981; Handcock 2003) to the temporal case via a VAR-
type process with a kth order temporal Markov assumption.
This assumption is as follows, for all times t, Yt | Yt−1, . . . , Yt−k
is independent of Yt−k−1, . . . (Almquist and Butts 2014b), and
allows us to write the TERGM likelihood in the following form
(following Almquist and Butts’s [2014b] notation)

Pr(Yt = yt | Yt−1
t−k = yt−1

t−k, Xt) (1)

= exp
(
θTs(yt , yt−1

t−k, Xt)
)

∑
y′

t∈Yt
exp

(
θTs(y′

t , yt−1
t−k, Xt)

) IYt (yt),

for yt belonging to the support, Yt . s here is a vector of real-
valued sufficient statistics with parameter vector θ , and Yt−1

t−k =
Yt−1, . . . , Yt−k. Notice that the denominator of (1) is intractable
in the general case as it is in the static ERGM.

There have been two core methods of inference attempted
for the TERG models: (i) treat this as a pooled ERGM problem
(likelihood), where the past time points are treated as covariates
and estimate θ using MCMC-MLE (Geyer 1991) or psuedo-
likelihood methods (Strauss and Ikeda 1990), and (ii) treat the
transitions between time points as a separable process where one
distinguishes between tie formation and tie dissolution—this is
known as separable TERGM or STERGM and will be discussed
later in this article.

2.2. Dynamic Network Regression

DNR as subfamily of TERGM makes the same VAR assumption,
but also conditional independence given past information. This
simplification has a number of advantages due to known issues
in TERGMs of degeneracy (Schweinberger and Handcock 2015;
van Duijn, Gile, and Handcock 2009) and scalability (Almquist
and Butts 2014b). Further, this model lends itself naturally to
problems of network prediction as it does not rely on the current
time-step for inference and updating and handles missing data
(Almquist and Butts 2017). Here, again, we follow the language
of Almquist and Butts (2014b),

Pr(Yt | Yt−1
t−k , θ , s, Xt) (2)

=
n∏

(i,j)∈Vt×Vt

Bern
(
Yijt

∣∣logit−1 (
θTs(Yt−1

t−k , Xt)
))

,

where Bern(.) is understood to be the Bernoulli pmf, I is the
indicator function, Xt is a covariate set (potentially includ-
ing dynamic latent variables, see supplement for discussion),
Yt−1

t−k = Yt−1, . . . , Yt−k is the graph structure given the vertex
set from time t−k to t−1, and s is the sufficient statistics for the
graph with θ being the real valued parameters of interest. Typical
examples of sufficient statistics constructed from the edges of a
set of networks can be found in the documentation of Hunter
et al. (2008) and many of them have been implemented in the R
package ergm.

2.3. Dynamic Network Regression With Vertex Dynamics

DNR can be extended to handle vertex dynamics in a natural
way through a separability condition introduced by Almquist
and Butts (2014b). Similar to the notation of edges, we use
Vt to denote the set of vertices at time point t for the graph
Gt = (Et , Vt). Vector of sufficient statistics for the vertices
is calculated using the function W(.) and the corresponding
coefficients for the likelihood would be denoted by a vector ψ .
So we will represent a graph at time t using (Vt , Yt). If we take
Nv = | ∪ Vt| to be the maximal set of nodes and Yb

a denote the
adjacency matrix in a time series Ya, . . . , Yb then we can write
P(Gt|Gt−1

t−k, ψ , θ , w, s, Xt) = P(Vt = vt|Gt−1
t−k, ψ , w, Xt)×P(Yt =

yt|Vt = vt , Gt−1
t−k, θ , s, Xt). Following this logic, Almquist and

Butts proposed a dynamic network regression with vertex
dynamics (DNRV) as a double logistic process

P(Gt|Gt−1
t−k, ψ , θ , w, s, Xt)

= P(Vt = vt|Gt−1
t−k, ψ , w, Xt)

× P(Yt = yt|Vt = vt , Gt−1
t−k, θ , s, Xt)

= exp(ψTw(vt , Gt−1
t−k, Xt))

∑
v′∈V exp(ψTw(v′

t , Gt−1
t−k, Xt))

× exp(θTs(yt , vt , Yt−1
t−k , Xt))

∑
y′∈Yvt

exp(θTs(yt , vt , Gt−1
t−k, Xt))

=
Nv∏

(i)∈Vt

Bern
(
Vit

∣∣logit−1 (
ψTw(Gt−1

t−k, Xt)
))

×
n∏

(i,j)∈Vt×Vt

Bern
(
Yijt

∣∣logit−1 (
θTs(Yt−1

t−k , Xt , Vt)
))

.

(3)

Here, the sufficient statistics for vertex model is denoted by w(.)
and for the edge model it is s(.). The coefficients for the vertex
set is given by φ and the edge model coefficients are given by
θ as in the previous model. The model is conditional on fixed
lag k, which determines the previous state of the networks given
by Yt−1

t−k . The set of covariates Xt can encode any exogenous
covariates for the model. The multiplicative nature of this model
implies that they are separable for inference. So, the parameters
for the vertex model and the edge model conditional on vertex
can be interpreted separately.

2.4. Brief Discussion of Model Assumptions and
Parameterization

DNR(V) generally assumes that much of the graph dependence
can be captured in the past and generally follows the logic of
VAR type process. DNR(V) with current time points will be
the classic psuedo-likelihood estimator which has been shown
to have issues in estimation of the parameter and standard
errors (Hunter, Krivitsky, and Schweinberger 2012). Recently,
Cranmer and Desmarais (2010) and others have employed
the psuedo-likelihood estimator with a bootstrap to improve
parameter and standard error estimation; however, Almquist
and Butts (2013) demonstrated that full TERGM estimated with
the bootstrap estimator with standard specifications generally

4 A. MALLIK AND Z. W. ALMQUIST

does not outperform the DNR(V) model based on predictive
validity checks. Currently, model specification is determined
through social science theory and predictive model assessment
(see, e.g., Almquist and Butts 2014b). In this work we specify the
model with common statistics chosen from the social science
literature which are comparable across the different statistical
models so as to allow for comparability.

In the literature, Almquist and Butts (2014b) considered a set
of lagged statistics for both the edge set (s) and vertex set (w).
The authors focused on inertia (the lag term), lagged embed-
dedness (network clustering effects like triangles), popularity
(lagged degree effects), and exogenous covariates such as gender
in both the vertex and edge sets. Specific statistics are typified
by the theory or problem at hand. For example in Almquist,
Spiro, and Butts (2017), the authors considered multiple lags,
cluster (embeddedness), and popularity (degree) edge statistics.
In this work will focus a similar set of core network metrics
which also have the feature of being implementable across the
different dynamic network models.

3. Simulation/Prediction From DNR

Model specification is often done through expert judgment
and/or theory (Schwarz 1978) along with formal statistical
methods (e.g., likelihood ratio test, BIC, etc.). If we assume
a known model specification and an empirical dataset we
can simulate or predict from this model. In practice the
parameter values are typically obtained from empirical network
data, which can be estimated through either MLE (Almquist
and Butts 2014b), Bayesian (Almquist and Butts 2014a),
or penalized maximum likelihood methods (for a general
discussion penalized methods see Tibshirani [1996] and Hans
[2009]). Depending on the complexity of the model and the
lag term, the number of coefficients to be estimated can be
quite large, hence it is often a good idea to employ some feature
selection methods for fitting the model. In this work, we employ
Lasso regression (Friedman, Hastie, and Tibshirani 2010) to
both infer the parameters and perform model selection on our
training dataset and use the algorithm discussed in this section
to predict the held out network panel data. For the current
algorithm, we prespecify the length of the lag term. We use a
collection of consecutive network panels approximately of the
length of the maximum lag to predict the unknown network.
This collection of networks will be referred to as a window and
the algorithm shifts the window forward as we make future
predictions. We have explored this space through simulation
and found that while larger windows improve prediction a bit,
the gains do not warrant the loss of useable data. In cases where
one wants to simulate from a known generative procedure
where prediction of a real-world network is not the goal one
may employ a static ERGM to inform the initial time-points.
The initial window is selected by the researcher. In instances
when we have an input sequence of networks larger than
the size of the window we calculate the change statistics of
each window by shifting the window through the sequence of
networks. The “change statistics” (Hunter et al. 2008) or “change
scores” (Snijders et al. 2006) underlies the core estimation
algorithm for general ERGM estimation. Hunter, Krivitsky,

and Schweinberger (2012) derives the change score via the
odds ratio of the conditional graph for each dyad such that
Oddsθ (Yij = 1|Y − (i, j) = y − (i, j)) = exp{θT�ijs(y)}, where
(i, j) is the i, jth edge. (It is also noted that this formulation
allows for a “local” interpretation of ERGMs.) We then calculate
the mean of these window of change statistics as our estimate
of the (average) change statistic matrix (this results in what
is effectively a moving average of the change score statistics).
This matrix is used as predictor in our simulation/prediction
algorithm.

3.1. Estimation of Sufficient Statistics for
Prediction/Forecasting

Given a set of input parameters θ , we would like to be able
to forecast the future networks. For this, we would be using
the likelihood given in Equation (2) and we need to estimate
the sufficient statistics s(Yt−1

t−k). The least number of networks
needed to estimate this sufficient statistics is at time points
(t−1), . . . , (t−k), henceforth will be referred to as time window
of length k. Hence, a simple way of estimating these would be to
use the network statistics calculated based on Y(t−k), . . . , Y(t−1).
However, we have found this estimate is not a stable one. This is
expected as network statistics calculated based on one instance
of the realization of underlying probabilities is subjected to
noise in that realization. As this quantity is quite essential for
predicting the future states of the network, a poor estimate
would result in poor quality simulations. We have demonstrated
this in simulation studies later in Section 6.

Under the assumption that the model is sufficiently explain-
ing the state of the network, we assume the set of sufficient
statistics in a window of time points to be stable. In some cases
this may be a strong assumption and in other cases a weaker
assumption. For example, it is typical to assume stable mean
degree in static and dynamic networks (Butts and Almquist
2015) which would show up as a stable effect in our model.
In other cases this smoothing (given an appropriately chosen
window) may thought of as an approximation to true temporal
effect. Recent work by Lee, Li, and Wilson (2017) attempts to
loosen the assumption of homogeneity on the parameter space
and lets evolve over time. Such an alternative formulation could
be very useful when networks are rapidly evolving or simply
out of equilibrium. Under these assumptions, we propose the
following estimates for the network statistics.

ŝ(Yt−1
t−k , Xt) = 1

(t − k)

t∑

τ=k+1
s(Yτ−1

τ−k , Xτ). (4)

We then plug in this estimator in the likelihood in Equation (2)
to produce the future states of the networks. Using this smooth-
ing window we are able to obtain future predictions/simulations
from our model which have better properties than pure
DNR/DNRV. We summarize this algorithm as follows:

The researcher chooses the initial sequence of networks of
size l, and our maximum lag size is k, we start simulating the
(k+1)th network from the first l networks. Also, we assume that
the parameters supplied are obtained from the same sequence
of networks of length l. We then use the likelihood specified in

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 5

Table 1. Simulation results from various scenarios, with initial network size of (10, 20, 50, 100).

Network size 10 Network size 20 Network size 50 Network size 100

Parameter Initial Mean SD Initial Mean SD Initial Mean SD Initial Mean SD

DNC11 −6.28 −5.05 0.54 −5.21 −4.39 0.53 −5.21 −4.39 0.53 −5.11 −3.13 0.37
DNC01 −6.20 −5.04 0.53 −4.87 −4.33 0.52 −4.87 −4.33 0.52 −4.36 −3.03 0.30
DNC10 −6.26 −5.07 0.54 −4.77 −4.28 0.51 −4.85 −4.41 0.48 −4.45 −3.16 0.31
DNC00 −6.31 −5.09 0.55 −4.77 −4.28 0.51 −4.77 −4.28 0.51 −3.95 −2.91 0.30
TriadCensus(Yt−1) −0.03 −0.01 0.01 0.02 0.04 0.01 0.02 0.04 0.01 0.04 0.08 0.01
tdcs2.1 −0.02 −0.01 0.00 0.02 0.02 0.01 0.02 0.02 0.01 0.04 0.05 0.01
tdcs3.2 0.02 −0.00 0.01 0.07 0.04 0.01 0.07 0.04 0.01 0.08 0.09 0.01
tdcs2.2 0.02 −0.00 0.00 0.04 0.03 0.01 0.04 0.03 0.01 0.04 0.05 0.01
Yt−1 3.51 3.75 0.20 3.25 4.98 0.31 3.25 4.98 0.31 3.63 5.46 0.28
Y2 6.90 4.28 0.87 8.13 5.14 0.43 8.13 5.14 0.43 8.19 5.45 0.39

Algorithm 1: Algorithm for simulating networks in static
vertex case.

Input : (G1, . . . , GT), θ , K, (X1, . . . , XT)

Output: GT+1, . . . , GT+L
for step l = 1 to L do

Estimate network statistics ŝ(Yt+l−1
t+l−k , Xt) using

Equation (4);
Generate Yt+l from likelihood from Equation (2);
Construct network Gt+l = (Vt+l, Et+l), using
adjacency matrix Yt+l.;

end

Equation (2) to estimate the coefficients in the model. As men-
tioned in Section 3, selecting the generative features of a com-
plex model is a quite hard problem (Tibshirani 1996), especially
for dynamic network models, where the number of coefficients
can be quite large depending on the set of sufficient statistics
specified. To solve this problem, here we employ L1 penalized
likelihood methods for model selection. For constructing the
predictor matrices for vertex and edge models, we use a moving
window method and stack the matrices of network statistics
together as the window moves forward. We use the notation
(w(.))t∈T to denote the stacking operation on the matrices for
the time index t ∈ T. We then use these stacked matrices in the
likelihood equation (3) to estimate the coefficients (θ , ψ). For
completeness we specify the algorithm for parameter estimation
in Algorithm 2.

w̃(Vt , Gt−1
t−k, Xt) = (

w(Vτ , Gτ−1
τ−k, Xτ)

)t
τ=k+1,Vτ ∈V , (5)

s̃(Yt−1
t−k , Xt) = (

s(Yτ−1
τ−k , Xτ)

)t
τ=k+1. (6)

Algorithm 2: Algorithm for model selection and parameter
estimation for Variable vertex models.

Input : (G1, . . . , GT), X1, . . . , XT
Output: θ , ψ
Construct w̃(Vt , Gt−1

t−k, Xt) using Equation (5);
Match corresponding vertices;
Construct s̃(Yt−1

t−k , Xt) using Equation (6);
Solve for (θ , ψ) L1 penalized logistic regression using the
likelihood given in Equation (3);

It is to be noted that the smoothing estimator proposed in
Equation (4) is just one of the possible smoothing estimators.

To justify our use of mean as a smoothing estimator we com-
pared the drift in estimates under several alternative smoothing
estimators including median, minimum and maximum values
of the network statistics. We have also compared with the esti-
mate from maximum a posteriori probability by fitting a kernel
density estimator to each element of the estimated network
statistics. We have called this estimate as “Mode” as this is
implementing similar idea as definition of mode.

In Figure 3, we show the plots of the parameters from the 100
iteration of the simulation engine. As we can see the parameter
values decay differently based on which smoothing method was
used. It is clear that using the mean as smoothing estimator pro-
duces the least drift in parameters. The means of the estimated
parameters of the simulated networks are reported next to the
input parameters in Table 1. Full details will be discussed in
Section 6.

3.2. Bayesian Extension

Following similar development as Almquist and Butts (2014a),
the likelihood equation in Equation (3) also allows us to do
Bayesian inference in the usual way. We are interested in the pos-
terior of (θ , ψ) given Y1, . . . , Yt . The posterior can be written as

P(ψ , θ |Gt
1, s, w, X) ∝P(ψ , θ |s, w, X)

×
t∏

t=1
P(Gt|Gt−1

t−k, ψ , θ , w, s, Xt).
(7)

For simplification, we would assume the prior on edges and
vertex are independent conditional on X. So, this allows the
following

P(ψ , θ |Gt
1, s, w, X)

∝ P(ψ |w, X) × P(θ |S, X)

×
t∏

t=1
P(Gt|Gt−1

t−k, ψ , θ , w, s, Xt)

= P(ψ |w, X)
exp(ψTw(vt , Gt−1

t−k, Xt))
∑

v′∈V exp(ψTw(v′
t , Gt−1

t−k, Xt))

× P(θ |S, X)
exp(θTs(yt , vt , Yt−1

t−k , Xt))
∑

y′∈Yvt
exp(θTs(yt , vt , Gt−1

t−k, Xt))
.

(8)

So, the decomposition in Equation (8) allows us to specify the
priors of the vertex and the edge model separately and use the
joint likelihood from Equation (3) for calculating the posterior.

6 A. MALLIK AND Z. W. ALMQUIST

(a) (b)

(c) (d)

Figure 2. Bayesian prediction under model misspecification. (a) The network at
time point 50, (b) at 51, (c) prediction with flat prior, and (d) prediction with data
dependent prior. These plots indicate that using a data dependent prior seems to
improve simulation accuracy under model misspecification.

Besides making posterior inference possible, by specifying a
prior it, also, helps us to better estimate the parameters where
we have some information about them. In Figure 2, we compare
the predicted networks with two kinds of priors. In this example,
we have used a intercept only model with no lag terms and no
other graph statistics. It can be logically argued that this is not
a well suited model for this dataset. We have used the first 50
time points of the blog data for training the model. We show
the next step prediction of the algorithm with a flat prior, which
clearly shows that the predicted network is not close to the true
network; however, the use of a prior computed from the previous
data points vastly improves the results.

4. Simulation in Dynamic Vertex Case

In the case of dynamic (variable) vertices, we are using estimated
vertex regression parameters from the observed networks. The
number of parameters is fixed by the model and maximum
considered lag. As in the parameter estimation case, the missing
vertex statistics corresponding to the vertices were imputed with
zeros. The matrices of vertex statistics will be used to construct
the predictors for the vertices. We use a window based average
as in fixed edge case to produce smoothed estimate of the
vertex statistics. The coefficients estimated from the parameter
estimation process are used to produce the predictor vector for
the vertices. At each time point, the vertices are simulated as a
Bernoulli trial with the corresponding probabilities of presence
for each vertex.

For simulating the edges conditioned on the vertices we need
to first simulate the vertex set then edge set to obtain the matrix
of change statistics used for parameter estimation. As, we did not
use all possible edges in the regression for parameter estimation,
we would not have change statistics corresponding to some
edges with possibly missing vertices in some time points in the

0.0

2.5

5.0

7.5

0 25 50 75 100
Time

Ed
ge

C
oe

ffi
ci

en
t SmoothingMethod

Mean
Mode
Median
Min
Max
NoSmoothing

Estimated Coefficient under Various Smoothing Methods

Figure 3. Comparison of simulation drift of estimates using various smoothing
methods. We compare smoothing using (mean, median, mode, min, max) of the
window of network statistics. It is clear that smoothing using mean results in
most stable set of parameters in the simulated networks. Also, using Min/Max as
smoothing strategy did not seem to improve the problem with degeneracy of the
coefficients.

training set. So, we impute the missing edges with zero and use
mean smoothing to construct a stable estimator of the change
statistics corresponding to all possible edges. They are used
to get the edge probabilities using the estimated parameters.
The edges are simulated from a Bernoulli trial with the edge
probabilities. We keep any attributes associated with the vertices
to be present in the simulated networks as well. It is assumed
that the vertex attributes are not evolving with time. The set
of generated edges are conditioned on the simulated vertex set.
This method of generating edges conditioned on the vertices
worked assuming the pattern of absence of the vertices are
relatively uniform across all the time points.

For simulation in the dynamic vertex case, we need stable
estimates of the network statistics for the same reasons as men-
tioned in Section 3.1. As we use the likelihood from Equation
(3), we need to estimate the vertex statistics w(.) and edge
statistics s(.). We follow the same strategy as the static vertex
case to get a stable estimate of the vertex statistics. We propose
the following estimate

ŵ(Vt , Gt−1
t−k, Xt) = 1

(t − k)

t∑

τ=k+1,vτ ∈V
w(Vτ , Gτ−1

τ−k, Xτ). (9)

Here, we use the moving average on the vertex statistics to
construct the estimate of statistic at time t. The networks in
previous time points will be of different order, hence use the
set of all vertices V = ∪T

t=1Vt as the reference set of vertices.
The absent vertex statistics are replaced by zero to compute the
moving average equation (9). For a stable estimate of the edge
statistics S(.), we use the same estimate in static vertex case in
Equation (4). Of course to calculate that estimate, we need to
complete the previous networks with the bigger vertex set V .

The algorithm summarizing both the case for vertex and edge
simulation is presented.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 7

Table 2. Comparison of network simulation algorithms for three datasets.

Blog data Davis data Hospital data

Smooth STERGM SAOM Smooth STERGM Smooth STERGM

Misclassification 0.96 0.89 0.96 0.95 0.93 0.99 0.98
Precision 0.98 0.98 0.98 0.98 0.96 1.00 0.99
Recall 0.77 0.02 0.73 0.18 0.09 1.00 1.00
�Triangles 62.32 314.76 61.56 0.00 0.33 32.95 32.90
�ClusterCoef 0.07 0.46 0.03 0 0.05 0 0
�ExpDeg 0.58 7.02 0.90 1.12 1.05 0.60 1.38

NOTES: NAs represent network statistics which were not calculable under a given model. Smooth represents our smoothing algorithm for the DNR/TERG model. �Triangles
denote the absolute difference of the number of triangles with the truth. Similarly for Cluster coefficient and Expected degree.

Algorithm 3: Algorithm for simulating networks in the
dynamic vertex case.

Input : (G1, . . . , GT), θ , ψ , K, (X1, . . . , XT)

Output: GT+1, . . . , GT+L
for step l = 1 to L do

Estimate vertex statistics ŵ(Vt , Gt−1
t−k, Xt) using

Equation (9);
Generate vertex set Vt+l using likelihood Equation (3) ;
Estimate network statistics ŝ(Yt+l−1

t+l−k , Xt) using
Equation (4);
Generate Yt+l from edge likelihood conditional on Vt+l
;
Construct network Gt+l = (Vt+l, Et+l), using
adjacency matrix Yt+l.;

end

5. Software Implementation

We implemented all software in R (R Core Team 2016). We use
combination of custom code and software from the statnet
(Handcock et al. 2003) software-suite for computing the change
score statistics and the underlying simulation engine. For the
estimation and model selection, we employed glmnet (Fried-
man, Hastie, and Tibshirani 2010) function, and wrote custom
code posterior inference on the simulated networks. The asso-
ciated R package for computation is available through Github
at https://github.com/SSDALab/dnr or via CRAN (Mallik and
Almquist 2018). All network measures compared in Table 2
were computed using the igraph package (Csardi and Nepusz
2006).

6. Simulation Study

To demonstrate the usefulness of our smoothing algorithm we
focus on two key features: (i) we compare the stability of our
algorithm with traditional methods, and (ii) how our algorithm
functions in comparison to the two main temporal network
competitors in the literature. To do this we employ three classic
datasets in the social network literature (described in Section
6.1). To compare the forecasting ability of our algorithm with
two existing methods in the literature, we take the standard
machine learning approach of splitting the data in half for the
training set and the holdout set. We then run all comparing
methods to forecast the rest of the series. It is to be noted
that for certain datasets, predicting far ahead in time can be

challenging as the predictions usually converge to a limiting
case. We experienced this in all the algorithms in our study, and
the problem is largely one of model selection, that is, none of the
models perform well when the feature set is poorly chosen.

The next several subsections lay out the real world data under
consideration. The model features we consider for prediction
within each dynamic network model, all focus on a limited set
of features which are largely comparable across model types.
Further, we restrict ourselves to a rather limited feature set to
keep the discussion relatively parsimonious and understand-
able. Model prediction in all cases can be improved by consider-
ing a larger range of parameters—however many of these mod-
els have limited scalability and cannot perform either estimation
or simulation on large number of features or time points. For this
reason and general call to parsimony we focus on only a small
set of lagged network statistics.

6.1. Description of the Datasets

We focus on three publicly available datasets for our comparison
study. Each is discussed below.

6.1.1. Blog Citation Network
The Blog Citation Network is a temporal inter- and intra-group
blog citation network collected by Butts and Cross (2009) and
analyzed with DNR in Almquist and Butts (2013). This dynamic
network consists of relations (hyperlinks) between all blogs cre-
dentialed by the U.S. Democratic National Committee (DNC)
or Republican National Committee (RNC) for their respective
2004 conventions. Each of these conventions is paramount for
selecting their individual presidential nomination for president
of the U.S. The set of actors consists of 47 nodes with 34 DNC
and 14 RNC credentialed blogs and 1 credentialed in both. This
dataset consists of 484 time points covering 7/22/04 (shortly
before the DNC convention) to 11/19/04 (shortly after the Pres-
idential election). The data were collected in 6 hr increments
consisting of the URLs linking the main page of one blot to
any page within another blog. Here, we will consider various
subsamples of the data. We refer to this dataset as the blog data.

6.1.2. Davis’s Cocktail Party Data
The Davis Cocktail Party Data set is a classic social network orig-
inally collected and analyzed by Davis, Gardner, and Gardner
(2009). The dataset covers social interaction between 18 women
over a period of nine months in 14 informal events over the
aforementioned period. The data records which women met

https://github.com/SSDALab/dnr

8 A. MALLIK AND Z. W. ALMQUIST

for which events. For our purpose, we have collapsed the data
into monthly levels, having one network for each month. In our
tests, we have used 6 months for training the models and used
3 remaining months for prediction and comparison. We refer to
this dataset as the cocktail party.

6.1.3. Hospital Data
The Hospital Data is a relatively new dynamic social network
originally collected and analyzed by Vanhems et al. (2013).
It contains the network of contacts between the patients, and
Health Care Workers (HCW) in a hospital ward in Lyon, France.
The vertices are labeled with their role within the hospital,
that is, Nurse, Patient, Doctor or Staff. The data were collected
12/6/2010 at 1:00 pm to 12/10/2010 at 2:00 pm at 20 sec intervals
via RFID chips. We collapsed the time axis into hourly level to
reduce the resolution of the data for our use. We have used first
50 time points of data for training and used next 20 time points
for testing. We refer to this dataset as the hospital data.

6.1.4. Beach Data
The Beach Data is a classic network dataset, involving a dynam-
ically changing network of interpersonal communications
among the visitors of a Beach in Southern California. These
data are observed over a one-month period producing 31
observations. There were 95 members being observed and in an
average 15 people were present in one day with the maximum
presence being 37. The proportion of edges in an average
network was about 30%. This dataset is considered in detail by
Almquist and Butts (2014b) describing their model of dynamic
logistic regression with vertex dynamics (DNRV). We will refer
to this dataset as the beach data.

6.2. Alternative Models

While there are a number of potential formulations for dynamic
network models for both estimation and simulation, we focus
on the two which are in common use and implemented in
software packages, both of which are have been implemented
in R, available to larger social network field. First, we consider
STERGM and SAOM, and note that both these models rely on
similar underlying framework to the DNR model and can be
constructed within a similar parameter space for ready com-
parison. Further, we want to point out that both STERGM and
SAOM rely on the current time points as well as the past time
points which means they will have more information for both
inference and prediction than the DNR model.

6.2.1. Separable TERGM
The separable TERGM was introduced by Krivitsky and Hand-
cock (2014), and has been implemented in R as part of the
statnet suite of software. STERGM is based around the posit-
ing of two models for dynamic networks: one for tie formation
and a second for tie dissolution. This is done through composing
an ERGM style formulation for both the formation and dissolu-
tion process. This formulation further relies on assuming that a
researcher has observed two components, (i) a cross-sectional
network, and (ii) a mean relational duration. This model is fit

via MCMC-MLE methods (see, Krivitsky and Handcock 2016,
for details).

6.2.2. Stochastic Actor Oriented Models
The stochastic AOM was originally developed by Snijders
(1996), and published in software as SIENA (Snijders et al.
2007). It was later made available in R throughrsiena (Ripley,
Boitmanis, and Snijders 2013). This work has been developed
substantially by Snijders (2001, 2002, 2005, 2011), Snijders and
Van Duijn (1997), Snijders et al. (2006), and Mercken et al.
(2010). The underlying assumptions of the stochastic AOM is
that a dynamic network arises as a cross-sectional samples from
a latent continuous time Markov process in which an actor’s
possible ties and behavior constitute the state space—this latent
process is then simulated via a Markov chain Monte Carlo
algorithm. (For computational details see Ripley, Boitmanis,
and Snijders 2013). This framework was largely developed
to de-couple questions of influence versus selection (e.g., the
relationship between smoking and network structure [Lakon et
al. 2015]).

6.3. Model Features for Simulation Study

Because the underlying framework for obtaining the sufficient
statistics for the lagged network panel data is derived from the
ERGM formulation developed for statnet (Handcock et al.
2003) we use similar model term discussions. However, our
model is described by the maximum lag period and the param-
eters for each lagged time period (including the present time for
the STERGM and Siena models). Structurally, the model can be
decomposed into five components.

• Fixed effects: terms that are fixed across time. Examples
include the intercept (edge or density), degree or sender
effects. The change statistics for these terms will be denoted
by Iδ .

• Group: The categorical predictors for each edge (these rep-
resent homophily terms and stand in for the standard edge
or density term). The change statistics for these terms will be
denoted by Gδ .

• Model terms: The model for time t network. These terms are
used to specify the type of model that a static ERGM (this
is used for SAOM and STERGM), for a detail descriptions
of the terms possible here, we refer to the statnet docu-
mentation (Handcock et al. 2008). The change statistics for
these terms will be denoted by s(Yδ). Here s(.) : G �→ R

q is
the sufficient statistics for the network in the classic ERGM
model.

• Lagged model terms: The model terms corresponding to past
networks. These models are same as the current models,
however their presence is controlled by a binary matrix,
called lag matrix. This allows for finer control on the model
specification. The lag matrix M ∈ {0, 1}L×q, where L and q
are the maximum lag and the number of network statistics in
the model.

• Lagged networks: The networks from previous time point
up to a finite lag. These terms will be denoted by Yt−j for a
network of lag j at time t. The lag terms can also be selected

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 9

and this is achieved by a binary lag vector of size L, with 1
in the elements indicating the presence of the corresponding
lag term.

Combining all the terms mentioned, we can write the model as
follows

logit[P(YL+t|(YL, . . . , YL+t−1))]

=
nI∑

i=1
β0iIδi +

nq∑

i=1
β1iGδi +

q∑

i=1
β2is(Y(L+t)δi)

+
q∑

i=1

L∑

j=1
β3iMij(Y(L+t−j)δi) +

L∑

j=1
β4jLj(YL+t−j).

(10)

6.4. Simulation Design

We conduct simulation in four scenarios. These scenarios differ
by the size of the starting network fed into the engine. We
use initial network size of (100, 20, 15, 10). The length of the
predicted networks used in these four cases is 100. We replicated
this experiment (50, 100, 100, 100) times to produce the stan-
dard deviation of the average estimated parameters in each case.
We calculate the averages using the coefficients extracted using
the given model, from the first prediction, which essentially is
same as the input networks. Hence, the first estimated coefficient
is same as the input coefficients. We then report the mean of
the time series of the coefficient series. We calculate standard
deviation among all these means in different replications. We
have devised 13 different models to fit while extracting the
coefficients. We report the result from one of the cases here in
Table 1. We compare all the results in the supplementary file.

7. Comparison of Smoothing Versus No Smoothing
on Drift

We fit a simple model of Net ∼ Edges + Lag(1) to the blog
dataset with first 50 time points as the starting network. We
forecast the model for next 100 time points and estimate the
parameters from the forecasted series. In the version of the
nonsmooth prediction, we do not use the smoothed estimate
of the change statistics, we only plug in the change statistics
from the last step for that iteration. For the “mean” estimator, we
use the smoothing estimator defined in Equation (4). For other
estimators, we use element wise operation to get the median,
min and max of the estimated network statistics. In Figure 3, we
compare the time series of the estimated coefficient for the edge
parameter of the predicted networks using different smoothing
estimators. The figure justifies our use of mean of the network
statistics as smoothing operator on the predictor matrix to slow
down the decay of the parameters, reducing the degeneracy
problem of network simulation.

8. Comparison With Related Methods

To compare the quality of the predictions among the algo-
rithms we use several metrics common in the literature. The
misclassification rate and precision recall metrics are calculated

from the adjacency matrix of the predicted networks. We also
report the number of triangles in the graphs and the clustering
coefficient using the igraph library. Degree distribution of each
vertex is also of importance, so we report the expected degree
distribution for each graph.

Each dataset has been split into a training and testing set. The
size of the training data depends on the dataset and the testing
set has always been immediately following the training split. For
Blog citation dataset, we have used the first 50 days as training
data, and the next 10 days as the testing set. For Davis’s cocktail
dataset, we have used first 6 months as training data to predict
for next 3 months. For hospital data, we have used the first 50
time points as training set and the next 20 time points as the
testing set. To keep the comparisons among different simulation
algorithms, we needed to keep the model comparable. Hence, we
chose simplest possible model for each dataset that has common
parameters in each of the methods. The common model for
all datasets used edges and triad terms as sufficient statistics.
For example, for the Blog citation data, we have chosen a single
intercept only model with edges for all methods. For the Davis
data, we have chosen the model with edges and triad terms.

In Table 2, we compare the results using the above metrics
for three simulation algorithms. In some cases the metric was
not calculable, as some of the networks were possibly degenerate
or the metric was not defined in those cases. We can see that
the smooth ERGM algorithm performs competitively for the
Blog data with SOAM (RSiena). In this case we used 50 time
points to train the models, and the STERGM was the worst
performer. In the other two cases, we could not train Siena as
it ran into singularity issues while estimating the parameters.
Therefore, we only report the results for Smooth TERGM/DNR
and STERGM for those cases. The smooth algorithm is per-
forming relatively better than STERGM, especially when the
training network had a small size. In Figure 4, we compare the
true network at timepoint 51 with the simulated network using
smoothing algorithm.

The CPU time for each of the methods depended on the
choice of the model used. All the computation in this document
has been run in a computer with dual Intel Xeon E5-2670
processor each having 16 threads, and with 32GB of RAM. In
models of comparative complexity, Siena took longest time for
parameter estimation and simulations, taking almost twice as
much time as DNR smooth algorithm. STERGM was slightly
faster than smoothed ERGM method for parameter estimation.
For simulation, STERGM was also slightly faster than DNR
smooth algorithm. However, we do note that CPU time compar-
ison would depend on the parameters chosen for each specific
model and the size of the input networks. In our simulation
study, we also kept running parameter estimation, so the CPU
times are also affected by the estimation procedure.

9. Performance on Beach Data

We consider the beach data as an exemplar of the dynamic
vertex case. We follow the DNRV framework for estimation,
and are thus able to estimate the parameters as a joint logistic
process. The set of statistics for the vertex case we included
are the degree of each vertex; several measures of centrality

10 A. MALLIK AND Z. W. ALMQUIST

Figure 4. The comparison of the true network and the predicted networks for Blog
data at first prediction time point. The method seems to produce networks relatively
consistent with truth, we provide detailed accuracy comparison in the text.

(e.g., eigen centrality, between centrality, information centrality,
and closeness centrality); we also included a clustering term, in
this case the count of cycles. In our final model, we kept only
the significant features in each lag level only. We considered
maximum of lag 3. Another important feature for the vertex only
model was the group membership of the people. Persons who
were regular at the beach, had much higher chances of showing
up at the next days.

For the conditional edge model, the important features were
the lagged networks from previous time points, edge counts
and the categorical nodal attribute variable on if the person was
regular or not.

For selecting variables for the vertex model, we have sepa-
rately modeled them as the vertex model is on the top of our
model hierarchy (the full model can be viewed in Table 8).
The selected variables are presented in Tables 3 and 7. The
coefficient for the lag terms are all negative indicating possibly
lower turnaround for consecutive days in the beach. All the coef-
ficients for the lag terms are significant up to lag three. Interest-
ingly, the coefficient for the indicator of week day and weekend
effect is also negative. All the coefficients for the vertex param-
eters are positive. For variable selection for the edge model, we
had to use conditional model. The only significant terms are the
lag terms and the edge count. The signs for the lag terms in the
edge model is mostly different from the vertex model.

In Table 4, we fit the model for beach data using 30 days of
data and report the results on the 31st day. We have repeated the
process for 30 times to compute the standard deviations.

We are also interested in evaluating the performance of the
models across multiple prediction horizons. So, instead of using
one step prediction we also simulated a sequence of networks
from the prior networks. In this simulation, we have used the
training data incrementally. This means, we take the first 22
days for training, then predict day 23, and in the next iter-
ation, we take first 23 days for training and predict day 24
and so on. So, for each training dataset, we predict the rest
of the observed future networks and make comparisons. For
this experiment, we have used days 23–31 for prediction of

Table 3. Parameters for vertex model for Beach data.

Estimate SE z value Pr(>|z|)
lag1 −1.6955 0.3374 −5.02 0.0000
lag2 −3.2098 0.5982 −5.37 0.0000
lag3 −2.7903 0.4785 −5.83 0.0000
Day −0.7995 0.0914 −8.75 0.0000
regularLag1 1.4481 0.3401 4.26 0.0000
regularLag2 2.2312 0.6027 3.70 0.0002
regularLag3 1.7980 0.4793 3.75 0.0002
EigenCentralityLag1 1.0703 0.2910 3.68 0.0002
ClosenessCentralityLag1. 2.3730 0.7405 3.20 0.0014
EigenCentralityLag2. 1.0499 0.3190 3.29 0.0010
EigenCentralityLag3. 0.9734 0.3223 3.02 0.0025

Table 4. Comparison of network metrics between smooth and nonsmooth algo-
rithm for simulating network for one step prediction (time point 31).

Smooth NonSmooth True

NVertices 40.16 44.40 34.00
(4.60) (3.99)

Nedges 70.66 386.82 79.00
(20.94) (75.13)

nTriangles 21.48 959.52 91.00
(13.24) (305.55)

ClustCoef 0.14 0.41 0.59
(0.04) (0.02)

ExpDeg 7.94 35.54 10.29
(1.69) (3.93)

the networks. We present the results of this comparison in
Table 5. It is apparent that for the sequential simulation case
the results are better than one step prediction. Large standard
deviation for this case compared to one step case is resulting
from the wide variation between days. The day effect was highly
significant in our vertex model and was used in the simulation
model to account for the variation among the weekdays and
weekends.

For testing the performance of long range prediction, we
forecast next 50 time points of the beach data using both the
smooth and nonsmooth version of the algorithm. In the nons-
mooth version, instead of using the average predictor matrix, we
only use the final value of the predictor matrix. We then compute
the network statistics from the simulated networks and compare
with the observed network statistics from the beach data. We
present the results in Table 6. In most metrics, the smooth
version of simulations is much closer to the past metrics. We also
observe that the nonsmooth version of the algorithm produces
a much denser network, with number of edges far exceeding
the past number of edges. This problem is less prominent in
the smooth version of algorithm. The SD of the metrics from
the smooth networks are also less as this produces a stabler
results.

10. Discussion

Here we have introduced a novel technique for improving net-
work simulation and prediction for DNR(V) models and finally
we have compared these results against the current state of the
art in statistical models for dynamic network data. In addition,
we have, as far as the authors are aware, been the first to use
penalized likelihood methods for model selection in DNR(V)

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 11

Table 5. Comparison of metrics from simulation of sequence of networks using
incremental training data.

Triangles ClusterCoef ExpectedDegree

Simulated 85.38 0.71 35.24
SD 43.89 0.30 19.47
True 161.38 2.57 29.07

Table 6. Comparison between smooth and nonsmooth version of dynamic vertex
algorithm using average of the testing data.

Smooth Beach NonSmooth

Number of vertices 44.86 15.67 44.88
(6.08) (7.99) (3.73)

Number of edges 93.92 29.13 396.76
(31.27) (27.35) (72.71)

Number of triangles 35.62 35.27 1017.44
(25.86) (47.29) (319.00)

Cluster coefficient 0.15 0.65 0.41
(0.04) (0.15) (0.02)

Expected degree 9.23 7.23 36.11
(1.94) (3.48) (3.68)

Table 7. Parameters for conditional edge model for Beach data.

Estimate SE z value Pr(>|z|)
Edges −3.3624 0.0397 −84.77 0.0000
Lag1 −0.1140 0.2098 −0.54 0.5870
Lag2 1.1424 0.1721 6.64 0.0000
Lag3 5.1041 0.1101 46.35 0.0000

Table 8. Parameters used for one step prediction.

Estimate SE z value Pr(>|z|)
lag1 −1.7012 0.3423 −4.97 0.0000
lag2 −3.1539 0.5976 −5.28 0.0000
lag3 −2.8204 0.4802 −5.87 0.0000
Day −0.8550 0.1005 −8.51 0.0000
attrib1 1.3694 0.3451 3.97 0.0001
attrib2 2.1787 0.6028 3.61 0.0003
attrib3 1.7883 0.4802 3.72 0.0002
Vstat4Lag1. 1.2435 0.3013 4.13 0.0000
Vstat7Lag1. 2.4526 0.7467 3.28 0.0010
Vstat4Lag2. 0.9250 0.3271 2.83 0.0047
Vstat4Lag3. 1.0612 0.3263 3.25 0.0011

edges −0.5421 0.5456 −0.99 0.3205
edgecov.regular11 0.0001 0.0003 0.37 0.7087
edgecov.regular00 −0.0006 0.0004 −1.47 0.1418
edgecov.regular10 0.0000 0.0003 0.01 0.9960
logCurrNetSize −0.6399 0.1524 −4.20 0.0000
dayEffect 0.5746 0.0658 8.74 0.0000
lag2 4.6833 0.0866 54.08 0.0000

framework in contrast with typical AIC/BIC methods employed
currently in the field. Given that quality of feature selection
in ERGMs and TERGMs is based on in-sample prediction of
macro-level graph statistics (typically those not in the feature
set), it suffices to show good predictive validity for demonstrat-
ing the usefulness of this technique for model selection. The
appeal of this formulation for model selection is that it is more
readily scalable as penalization performs model selection in a
single model run, and thus does not require one to attempt to a
full factorial design (or subsample) of possible model param-
eters which could be quite large (e.g., lag statistics k, graph
statistics l, and exogenous variables v). As Tibshirani (1996)
advised in seminal work one can apply the penalized methods

to obtain parsimonious model by dropping the features that
have weights approximately zero and refining the model with
either standard likelihood based or Bayesian methods to obtain
unbiased estimates of the parameters.

We find that DNR(V) performs favorably in comparison to
STERGM and SAOM such that when SAOM and STERGM are
performing at their best DNR(V) does comparable and when
they are at their worst DNR(V) performs better on average.
Computation time is always a very important aspect of dynamic
network modeling and DNR(V) compares well to both models,
though is a bit slower to STERGM (though we suspect this is
due to its weaker integration with ergm package in R and graph
statistics chosen).

This article extends the DNRV model introduced by
Almquist and Butts (2014a) by improving its ability to simulate
and predict in comparison to simple DNRV originally intro-
duced. We believe this method will set the basic bar for which
future dynamic vertex models will have to clear in the area of
simulation and prediction.

As a proposal for future work, it should also be possible to
extend this method for weighted graphs. Although this would
require new hierarchy based on Equation (3), as the weights
would need to be generated from a positive valued distribution
conditional on the vertex and edge distributions. However, the
general approach for using smoothing based on window of
sufficient statistics can also be used in this case. It would be
interesting to extend this study for weighted graphs as it would
open up many possibilities for application of network simulation
in real world situations.

Finally, this method adds greatly to the dynamic network
literature and allows for the direct simulation and prediction of
dynamic networks from DNR(V) models. Our results demon-
strate that our method improves the prediction/simulation of
multiple time steps from a DNR(V) process. This will allow in
the future the ability to perform detailed sensitivity tests to mea-
surement process underlying dynamic network data collection
and for simulation based experiments centered around dynamic
network data (e.g., collaboration during a disaster [Butts 2008]
or communication patterns over time).

Supplementary Materials

The supplementary material provides the R scripts that have been used to
generate the figures and tables of this paper. This includes all libraries and
any other recursive dependency for the packages and all necessary data.

Funding

This work was supported in part by an ARO YIP Award # W911NF-14-1-
0577.

References

Ahmed, A., and Xing, E. P. (2009), “Recovering Time-Varying Networks
of Dependencies in Social and Biological Studies,” Proceedings of the
National Academy of Sciences, 106, 11878–11883. [1]

Almquist, Z. W., and Butts, C. T. (2013), “Dynamic Network Logistic
Regression: A Logistic Choice Analysis of Inter- and Intra-group Blog

12 A. MALLIK AND Z. W. ALMQUIST

Citation Dynamics in the 2004 US Presidential Election,” Political Anal-
ysis, 21, 430–448. [1,3,7]

(2014a), “Bayesian Analysis of Dynamic Network Regression With
Joint Edge/Vertex Dynamics,” in Bayesian Inference in the Social and
Natural Sciences, eds. I. Jeliazkov and X.-S. Yang, New York: Wiley.
[1,4,5,11]

(2014b), “Logistic Network Regression for Scalable Analysis of
Networks With Joint Edge/Vertex Dynamics,” Sociological Methodology,
44, 1–33. [1,2,3,4,8]

(2017), “Dynamic Network Analysis With Missing Data: Theory
and Methods,” Statistica Sinica, 28, 1245–1264. [1,3]

Almquist, Z. W., Spiro, E. S., and Butts, C. T. (2017), “Shifting Atten-
tion: Modeling Follower Relationship Dynamics Among US Emergency
Management-Related Organizations During a Colorado Wildfire,” in
Social Network Analysis of Disaster Response, Recovery, and Adaptation,
Philadelphia, PA: Elsevier, pp. 93–112. [4]

Butts, C. T. (2008), “A Relational Event Framework for Social Action,”
Sociological Methodology, 38, 155–200. [1,11]

Butts, C. T., and Almquist, Z. W. (2015), “A Flexible Parameterization for
Baseline Mean Degree in Multiple-Network ERGMs,” The Journal of
Mathematical Sociology, 39, 163–167. [4]

Butts, C. T., and Cross, B. R. (2009), “Change and External Events in
Computer-Mediated Citation Networks: English Language Weblogs and
the 2004 U.S. Electoral Cycle,” The Journal of Social Structure, 10, 1–29.
[7]

Casteigts, A., Flocchini, P., Quattrociocchi, W., and Santoro, N. (2011),
“Time-Varying Graphs and Dynamic Networks,” in Ad-hoc, Mobile, and
Wireless Networks, Berlin, Heidelberg: Springer, pp. 346–359. [1]

Centola, D. (2010), “The Spread of Behavior in an Online Social Network
Experiment,” Science, 329, 1194–1197. [1]

Cranmer, S. J., and Desmarais, B. A. (2010), “Inferential Network Analysis
With Exponential Random Graph Models,” Political Analysis, 19, 66–86.
[1,3]

Csardi, G., and Nepusz, T. (2006), “The igraph Software Package for Com-
plex Network Research,” InterJournal, Complex Systems, 1695, 1–9. [7]

Davis, A., Gardner, B. B., and Gardner, M. R. (2009), Deep South: A Social
Anthropological Study of Caste and Class, Columbia, SC: University of
South Carolina Press. [7]

Desmarais, B. A., and Cranmer, S. J. (2010), “Consistent Confidence Inter-
vals for Maximum Pseudolikelihood Estimators,” in Proceedings of the
Neural Information Processing Systems 2010 Workshop on Computational
Social Science and the Wisdom of Crowds. [1]

Farmer, J. D., Kauffman, S. A., Packard, N. H., and Perelson, A. S. (1987),
“Adaptive Dynamic Networks as Models for the Immune System and
Autocatalytic Sets,” Annals of the New York Academy of Sciences, 504,
118–131. [1]

Foulds, J. R., DuBois, C., Asuncion, A. U., Butts, C. T., and Smyth, P. (2011),
“A Dynamic Relational Infinite Feature Model for Longitudinal Social
Networks,” Journal of Machine Learning Research—Proceedings Track,
15, 287–295. [1]

Friedman, J., Hastie, T., and Tibshirani, R. (2010), “Regularization Paths for
Generalized Linear Models via Coordinate Descent,” Journal of Statisti-
cal Software, 33, 1–22. [4,7]

Geyer, C. J. (1991), “Markov Chain Monte Carlo Maximum Likelihood,”
Computing Science and Statistics: Proceedings of the 23rd Symposium
on the Interface, pp. 156–163. [3]

Goetz, M., Leskovec, J., McGlohon, M., and Faloutsos, C. (2009), “Modeling
Blog Dynamics,” in ICWSM. [1]

Handcock, M. S. (2003), “Statistical Models for Social Networks: Inference
and Degeneracy,” in Dynamic Social Network Modeling and Analysis,
eds. R. Breiger, K. M. Carley, and P. Pattison, Washington, DC: National
Academies Press, pp. 229–240. [3]

Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., and Morris,
M. (2003), statnet: Software Tools for the Statistical Modeling of Network
Data, Seattle, WA. [7,8]

(2008), “statnet: Software Tools for the Representation, Visualiza-
tion, Analysis and Simulation of Network Data,” Journal of Statistical
Software, 24, 1–11. [8]

Hanneke, S., Fu, W., and Xing, E. P. (2010), “Discrete Temporal Models of
Social Networks,” Electronic Journal of Statistics, 4, 585–605. [1,2]

Hans, C. (2009), “Bayesian Lasso Regression,” Biometrika, 96, 835–845. [4]
Helbing, D. (2012), “Agent-Based Modeling,” in Social Self-Organization,

Berlin: Springer, pp. 25–70. [1]
Holland, P. W., and Leinhardt, S. (1981), “An Exponential Family of Proba-

bility Distributions for Directed Graphs,” Journal of the American Statis-
tical Association, 76, 33–50. [3]

Hunter, D., Handcock, M., Butts, C., Goodreau, S., and Morris, M. (2008),
“ergm: A Package to Fit, Simulate and Diagnose Exponential-Family
Models for Networks,” Journal of Statistical Software, 24, 1–29. [3,4]

Hunter, D. R., Krivitsky, P. N., and Schweinberger, M. (2012), “Com-
putational Statistical Methods for Social Network Models,” Journal of
Computational and Graphical Statistics, 21, 856–882. [3,4]

Kolar, M., Song, L., Ahmed, A., and Xing, E. P. (2010), “Estimating Time-
Varying Networks,” The Annals of Applied Statistics, 4, 94–123. [1]

Krivitsky, P. N. (2012), “Modeling of Dynamic Networks Based on Egocen-
tric Data With Durational Information,” Technical Report Series 12-01,
The Pennsylvania State University, University Park, PA. [1]

Krivitsky, P. N., and Handcock, M. S. (2014), “A Separable Model for
Dynamic Networks,” Journal of the Royal Statistical Society, Series B, 76,
29–46. [2,8]

(2016), tergm: Fit, Simulate and Diagnose Models for Network Evo-
lution Based on Exponential-Family Random Graph Models, R Package
Version 3.4.0, The Statnet Project, available at http://www.statnet.org. [8]

Lakon, C. M., Wang, C., Butts, C. T., Jose, R., Timberlake, D. S., and Hipp,
J. R. (2015), “A Dynamic Model of Adolescent Friendship Networks,
Parental Influences, and Smoking,” Journal of Youth and Adolescence, 44,
1767–1786. [8]

Lee, J., Li, G., and Wilson, J. D. (2017), “Varying-Coefficient Models for
Dynamic Networks,” arXiv no. 1702.03632. [4]

Leifeld, P., Cranmer, S. J., and Desmarais, B. A. (2015), “Temporal Expo-
nential Random Graph Models With btergm: Estimation and Bootstrap
Confidence Intervals,” Journal of Statistical Software, 83, 1–36. [1]

Leskovec, J. (2008), Dynamics of Large Networks, Ann Arbor, MI: ProQuest.
[1]

Liben-Nowell, D., and Kleinberg, J. (2007), “The Link-Prediction Problem
for Social Networks,” Journal of the Association for Information Science
and Technology, 58, 1019–1031. [1]

Mallik, A., and Almquist, Z. (2018), dnr: Simulate Dynamic Networks Using
Exponential Random Graph Models (ERGM) Family, R Package Version
0.3.2. [7]

McFarland, D. A., Moody, J., Diehl, D., Smith, J. A., and Thomas, R. J.
(2014), “Network Ecology and Adolescent Social Structure,” American
Sociological Review, 79, 1088–1121. [1]

Mercken, L., Snijders, T., Steglich, C., Vartiainen, E., and de Vries, H. (2010),
“Dynamics of Adolescent Friendship Networks and Smoking Behavior,
Social Networks,” Social Networks, 32, 72–81. [8]

Morris, M. (1993), “Epidemiology and Social Networks: Modeling Struc-
tured Diffusion,” Sociological Methods & Research, 22, 99–126. [1]

Prodan, R., and Nae, V. (2009), “Prediction-Based Real-Time Resource Pro-
visioning for Massively Multiplayer Online Games,” Future Generation
Computer Systems, 25, 785–793. [1]

R Core Team (2016), R: A Language and Environment for Statistical Com-
puting, Vienna, Austria: R Foundation for Statistical Computing. [7]

Rahmandad, H., and Sterman, J. D. (2012), “Reporting Guidelines
for Simulation-Based Research in Social Sciences,” System Dynamics
Review, 28, 396–411. [1]

Ripley, R., Boitmanis, K., and Snijders, T. (2013), RSiena: Siena—Simulation
Investigation for Empirical Network Analysis. R package, version 1.2-3.
[8]

Robins, G., and Pattison, P. (2001), “Random Graph Models for Temporal
Processes in Social Networks,” Journal of Mathematical Sociology, 25, 5–
41. [1]

Schwarz, G. (1978), “Estimating the Dimension of a Model,” The Annals of
Statistics, 6, 461–464. [4]

Schweinberger, M., and Handcock, M. S. (2015), “Local Dependence in
Random Graph Models: Characterization, Properties and Statistical
Inference,” Journal of the Royal Statistical Society, Series B, 77, 647–676.
[2,3]

http://www.statnet.org

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 13

Snijders, T. A. (1996), “Stochastic Actor-Oriented Models for Network
Change,” Journal of Mathematical Sociology, 21, 149–172. [1,2,8]

(2001), “The Statistical Evaluation of Social Network Dynamics,”
in Sociological Methodology, eds. M. Sobel and M. B. Boston, London:
Basil Blackwell, pp. 361–395. [8]

(2002), “Markov Chain Monte Carlo Estimation of Exponential
Random Graph Models,” Journal of Social Structure, 3, 1–40. [8]

(2005), “Models for Longitudinal Network Data” (Chapter 11),
in Models and Methods in Social Network Analysis, eds. P. Carring-
ton, J. Scott, and S. Wasserman, New York: Cambridge University
Press. [1,8]

(2011), Multilevel Analysis, Berlin, Heidelberg: Springer. [8]
Snijders, T. A. B., Pattison, P. E., Robins, G. L., and Handcock, M. S.

(2006), “New Specifications for Exponential Random Graph Models,”
Sociological Methodology, 36, 99–153. [4,8]

Snijders, T. A., Steglich, C. E., Schweinberger, M., and Huisman, M.
(2007), Manual for SIENA Version 3.1, University of Groningen:
ICS/Department of Sociology; University of Oxford: Department of
Statistics. [8]

Snijders, T. A., and Van Duijn, M. (1997), “Simulation for Statistical Infer-
ence in Dynamic Network Models,” in Simulating Social Phenomena,
eds. R. Conte, R. Hegselmann, and P. Terna, Berlin: Springer, pp. 493–
512. [8]

Strauss, D., and Ikeda, M. (1990), “Psuedolikelihood Estimation for
Social Networks,” Journal of the American Statistical Association, 85,
204–212. [3]

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,”
Journal of the Royal Statistical Society, Series B, 58, 267–288. [4,5,11]

van Duijn, M. A. J., Gile, K., and Handcock, M. S. (2009), “Comparison of
Maximum Pseudo Likelihood and Maximum Likelihood Estimation of
Exponential Family Random Graph Models,” Social Networks, 31, 52–62.
[2,3]

Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C.,
Kim, B.-A., Comte, B., and Voirin, N. (2013), “Correction: Estimating
Potential Infection Transmission Routes in Hospital Wards Using Wear-
able Proximity Sensors,” PLoS One, 8, e73970. [8]

Zimmermann, M. G., Eguìluz, V. M., and San Miguel, M. (2004), “Coevo-
lution of Dynamical States and Interactions in Dynamic Networks,”
Physical Review E, 69, 65–102. [1]

	Abstract
	1. Introduction
	2. Dynamic Network Analysis
	2.1. Temporal Exponential-Family Random Graph Models
	2.2. Dynamic Network Regression
	2.3. Dynamic Network Regression With Vertex Dynamics
	2.4. Brief Discussion of Model Assumptions and Parameterization

	3. Simulation/Prediction From DNR
	3.1. Estimation of Sufficient Statistics for Prediction/Forecasting
	3.2. Bayesian Extension

	4. Simulation in Dynamic Vertex Case
	5. Software Implementation
	6. Simulation Study
	6.1. Description of the Datasets
	6.1.1. Blog Citation Network
	6.1.2. Davis's Cocktail Party Data
	6.1.3. Hospital Data
	6.1.4. Beach Data

	6.2. Alternative Models
	6.2.1. Separable TERGM
	6.2.2. Stochastic Actor Oriented Models

	6.3. Model Features for Simulation Study
	6.4. Simulation Design

	7. Comparison of Smoothing Versus No Smoothing on Drift
	8. Comparison With Related Methods
	9. Performance on Beach Data
	10. Discussion
	Supplementary Materials
	Funding
	References

