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Abstract

We here consider the problem of modeling network evolutidth yoint edge and vertex dynamics.
It is natural to expect that the accuracy of vertex predicstrongly affect the ability to predict
dynamic network evolution accurately. A latent graphicald®l is here employed to model vertex
evolution. This model family can incorporate dependenoesittex co-presence, of the form found
in many social settings (e.g., subgroup structure, sekegtiring). Recent algorithms for learning
latent tree graphical models and their extensions can loéesffiy scaled for large graphs. Here, we
introduce a novel latent graphical model based approadhetpiioblem of vertex set prediction in
dynamic social networks, combining it with a parametric elddr covariate effects and a logistic
model for edge prediction given the vertex predictions. \pphathis approach to both synthetic
data and a classic social network data set involving intenas among windsurfers on a Southern
California beach. Experiments conducted show a signifimaptovement in prediction accuracy
of the vertex and edge set evolution (about 45% for conditieertex participation accuracy and
164% for overall edge prediction accuracy) over the existipnamic network regression approach
for modeling vertex co-presence.

Keywords: Social networks, dynamic networks, graphical modelsplkatariables, conditional random field.

1 Introduction

Over the last several decades there has been an increasebtimh modeling and prediction of temporally evolving
networks. This is especially relevant in the context of abeetworks. Examples include forming new organizational
alliances, mass convergence of organizations in disasteréormation of inter-firm networks within new industrjes
and interpersonal networks under strong external pertiorig Traditionally, network evolution has been studiethw

a fixed vertex set [e.g., 1, 2, 3, 4, 5]. This is unrealistic imny social and engineering processes e.g., addition and
deletion of servers; entry and exit of students in a clagaramline social networks such as twitter friend/follower
networks. In this paper, we consider co-evolution of vedar edge sets in dynamic networks. An important con-
sideration for any model is scalability, especially in tiigh-dimensionabr data-poorregime. In other words, the
number of samples may be far less than the parameters of ttiel nifove attempt to model all possible interactions
between the vertices and edges. Recently, AlImquist and Bijtintroduced a family of simple network models that
incorporates logistic models for vertex/edge dynamicsglum referred to aBynamic Network RegressipDNR).
However, the pure logistic model, while scalable, has Behiability to capture dependencies in vertex co-presence.
Further, [6, 7] demonstrate the importance of obtainingatt®urate vertex set predictions, noting that in many cases
vertices are associated with covariates that strongly atrh@ edge structure. For instance, if one is modeling dynam



ics of organizational collaboration during the hurricaretiha disaster, predicting whether a prominent orgaiunat
such as FEMA appears on a given day will greatly impact thevoidt structure. Graphical models use undirected
graphs to represent the conditional dependency strucBjiia fa family of multivariate distributions. Recent work
on latent tree learning [9, 10, 11] and their extension tonlieg loopy graphical models with latent variables [12] —
have been proposed. These algorithms use conditionaléndiepce tests based on so-called “information distances”
between pairs of variables to discover the latent variaibléise model [13]. These approaches are scalable and pos-
sess consistency guarantees for learning the graph seucBuich developments in latent graphical models suggest
their use as a mechanism for modeling dependence amongrteg get; these models can easily represent types of
dependence expected in typical settings (e.g., subgrougtste, selective pairing), and can be efficiently scated f
very large graphs.

Summary of contributions Here, we propose a novel framework which combines a paranmtdel for the co-
variate effects with a latent graphical model (on to a caadél random field frameworkdRF) [14]) as an approach

to predict vertex evolution. Our approach first discovessdbpendency structure with latent variables for vertex co-
presence using the algorithms proposed in [9, 12]. Then wanpetrize the edge and node potentials of the pairwise
model represented by the discovered structure (with obgergvariates). The model parameters are estimated using
Expectation Maximization (EM) based on loopy propagatilgoathm (LoopyBP) [15]. We consider various homo-
geneity assumptions to prevent over-fitting. We furtheldesgthe benefits of using Gaussian prior on parameters [16]
to address over-fitting. Experiments conducted on syrtldetiasets and real world data (a classic social network data
set involving interactions among windsurfers on a Caliitmeach [6, 17]) show impressive performance in terms of
statistical fit measured by AlCc score, and in predictioruaacy of vertex and edge sets. Specifically, we observe
about 45% improvement for vertex participation accuraay H4% for edge prediction accuracy over the pure logis-
tic approach for modeling vertex co-presence. At the same,tthe approaches considered in this paper are scalable
and fast to run on large datasets.

Related Work Temporal models for social network data tend to focus oreeplanel data (e.g., hourly, daily snap-
shots) or event data (e.g., sequences of tie formatiomidissn events). Here we focus on models for network panel
data [for an introduction to event data models, see 18]. &by, in the social network and statistical literaturesrén

are three main families of models for panel data: the aciented models, which assume an underlying continuous-
time model of network dynamics, where each latent evenesgmts a single actor altering his or her outgoing links
to optimize a function based on sufficient statistics [fotaile see, 1, 2, 19, 20]; latent variable approaches, such as
dynamic latent feature models [e.g., 21] and dynamic latpate models [e.g., 22]; and ttemporal exponential-
family random graph model§ERGM,; see, 3, 4, 5, 6, 7, 23]. Here, we focus on DNR, a subfaafithe TERGM
approach and the only model family which currently incogies endogenous vertex dynamics. The TERG model
was extended to handle vertex dynamics by making a sepgratdeneterization between the vertex set and edge set
[6]. This was achieved through assumptions; i) given théexezovariates, vertices are conditionally independant, a

i) given the vertex set and edge covariates, edges aretoamally independent. In our work, we relax conditional
independence assumptions made in DNR which restricts thexverocess, by allowing dependence between vertex
appearances via a latent graphical model.

CRF models have been studied extensively in areas such as Inangaage processing [24], image modeling [25],
classification [16], and in dynamiCRF frameworks [26]. These models use the observed (a.k.a)inptiibles (in

our setting covariates) to predict the unobserved statestpiut variables (in our setting a vertex presence/ab3ence
The structure of these models varies from linear chains, [2dgs [16, 27], to grids [25]. Few works address the
issue of structure learning via greedy methods [28], copregramming [29] and local learning approaches based on
conditional mutual information [27]CRF models considering latent variables assume the existerttéaation are
known along with corresponding covariates [16]. Our workslaot make such strong assumptions; we test for evi-
dence of their existence and incorporate them into thetsir@icisingCLGrouping andLocal CLGrouping algorithms.
This enables us to discover the natural latent graph streickurther, we do not restrict the choices of covariates for
latent variables, which gives an additional flexibility s dataset specific choices.

2 Statistical Models for Network Dynamics

Social networks are often represented agaph (i.e., G = (V, E), with V being avertex seand E being a set of
pairs or ordered pairs of vertices). This representationbeaextended to model dynamic data with a time index, i.e.
Gy = (V4, Ey), with G, reflecting the state of the graph at time



TERGM TERGM models typically begin with a conditional independerassumption. Given adjacency matrix

Y;, then we can make the assumption thiats independent of1, ..., Y; > givenY;_; [5]; this can be generalized
further for arbitrary lags (e.9Y;—1,...,Y:—r = Q:_x). Under this assumption, we can write down the standard
TERG model:

exp (07s(ys, Qi—r, X))
>y ey exp (07 s(y;, Qer, X))

for y; belonging to the suppord;. s here is a vector of real-valued sufficient statistics, walhgmeter vectof. Notice
that the denominator of (1) is intractable in the generatc&se Appendix A for known issues with general TERGMs.

Pr(Y; =y | Qi—x, X) = 1)

TERGM with Vertex Dynamics The TERG model in (1) is further extended to handle vertexadyics by making
a separable parameterization between the vertex set ard@&délence, TERG model with vertex dynamics could be
given as:

Pr(Gy=g: | Gi1,- -+, Goop, X) = Pr(Vi = v | Zp 3, X) X Pr(Ye = yi | Vi, Zp g, X)
exp (¢Tw(vt, Zt_k,X)) 8 exp (GTu(yt, Vt,Zt_k,X))

v evexp (WTw(vy, Zi, X)) 2y exp (0Tuly;, Vi, Zer, X))

for observations in the support, whefe_, = (Vi—1,Yi—1), -+, (Viek, Yick)-

)

Dynamic Network Regression [6] modeledPr(V; = v | Z;_p, X) andPr(Y; = v, | Vi, Zi—x, X) as separable
logistic processes. Under the necessary conditional ertdgnce, homogeneity, and temporal Markov assumptions
one can derive the likelihood function for DNR, where theteetikelihood is given by

Pr(V; | Zi—i, X) = [[ B (I(vi € V3) [logit™ (" w(i, Zi—x, X))) (3)
i=1
and the edge likelihood by
Pr(Yy | Vi, Zen, X) =[] B (Yay [logit™ (07 u(i, j, Vs, Zi—1, X)) ) , (4)
(i,§)EVex V4

where B is understood to be the Bernoulli pnifjs the indicator functionX is a covariate sety andw are suffi-
cient statistics for the edge and vertex models (respdg}iveé and« are the respective edge and vertex parameter
vectors, andz; is defined as before. Here, we are proposing to relax thesetiess in the vertex process, allowing
dependence between vertex appearances via a latent graplodel.

3 Latent Graphical Models

Graphical models A binary graphical modebn aGaep = Waep, £dep) is a family of multivariate distributions
whose conditional dependence relations are expressed xgdauindirected grapéia., [8]. Each vertex in the graph
i € Waep IS associated with a random varialite taking value in{0,1}. The edge setf,,, captures the set of
conditional independence relations among the randombilaganV,.,. We say that a set of random variabs
with probability mass function (pmfpr is Markovon the graptGye,, if

Pr(vi|variy) = Pr(vilvp,,\i) (5)

holds for all nodes € W4, Wwhere N (i) are the neighbors of nodein graphGg.,. The Hammersley-Clifford

theorem [8] states that, under the positivity conditioregiboyPr(V) > 0 for all V; € {0, 1}Waerl, a distribution
Pr satisfies the Markov property according to a grajl, iff it factorizes according to the cliques Gf.,. For
instance, the distribution of a class of graphical modelengtthe maximal clique size is 2 factorizes as

PI‘(V) = exp ( Z Qﬁi,jUﬂ)j —+ Z ¢ivi — A(G)) s (6)

e€&dep 1€Wdep

where¢, := {¢; ;} and¢,, := {¢;} are respectively known as edge and the node poterfliais, ¢, U ¢,, and A(0)
is known as thdog-partition function which normalizes the probability distribution.



Latent Graphical Models: A latent graphical model is a class gfaphical modelsn which a subset of nodes is
latent or hidden. We denote the hidden node$fyy, C Wje, and the observed nodes By, C Weep.

Learning Latent Graphical Models: In general, learning latent graphical models consists oftagks. The first
task is to discover the presence of hidden variables carreipg to nodes{qe, C Waep and learn the unknown
graph structur€s.,, givenV i.i.d. samples from observed variables corresponding teals.,. Second task is is

to estimate the model paramet@rgiven the discovered structuéCp and N i.i.d samples from observed variables
at nodes/4.p,. Among the available approaches for latent tree learnimghwid on algorithms based on a measure of
statistical distance (a.k.a information distance),

—~N
d;j = —log]| det(PrW‘/_j),| @)

WherePr‘IZ,Vj, is the empirical joint statistics of nodés;j using NV i.i.d samplesd is an additive tree-metric [13]
satisfying the Markov property, and it forms the basis oflal® structure learning algorithms such R6 and
CLGrouping in [9], and LocalCLGrouping (loopy graphs) [12] with provable guarantees. In our work, will be
usingRG, CLGrouping andLocalCLGrouping for learning latent graph structure.

4 Conditional Random Field on Latent Graphical Models

A conditional random fieldQRF) based approach [14] provides a modeling framework forl kedméablesV; according
to an undirected graphical mod@le, = Wiaep, Edep) CONditioned on observed covariate d&a In our context,
observed data will correspond to the covariates, and lalr@iMes will denote people in the dynamic network.

Definition 1 Let Gqep = (Waep, dep), bE @ dependence graph on a binary graphical model. ThEnV) is a
conditional random field, (RF) if, when conditioned oiX, the random variable¥; obey the Markov property with
respect t0Gacp; i.e. Pr(ViX, Wy, \i) = Pr(Vi|X, N (i)), where{Wqe, \ i} is the set of all nodes in the graph
except, and A/ (¢) is the neighbors of.

Using the pairwise exponential form of the Hammersly-@liff theorem, the distribution defined above could be given
as;

Pr(VIX)=exp [ 3 6y(X,00wiv; + 3 4i(X,0)v, — A0) | | ®

ijGSdep 1€EWdep

whereg,; and¢, denote the potential functions of edfje;j) € Eq4ep and node € Wy, respectively is the set

of model parameters. Given, covariafsand , with functions¢;;, ¢; we can compute the corresponding edge
and node potentials of the model. These functions could bserhdepending on the modeling requirements. For
simplicity, lets assume that;; and¢; are linear functions of covariateX,, i.e.

i = co +cC1x1; + ooy + o+ CKL K, s 9

wherecy, is the coefficient okth covariate K, is the total number of covariates used for the parametoaaéindz, ;
is thek th covariate of th vertex, and likewise

@i = €o + e1x1,5 + e2Toij + ... + K Tk, ij, (10)

whereey, is the coefficient okth covariate K. is the total number of covariates used for the parametoaaéindz, ;;
is thekth covariate of the edgg, j).

The absence of prior information and interpretation makeschoice of covariates for latent variables challenging. A
natural choice in a dynamic setting would be to use a set akdghzovariates such as seasonality.

We consider a set of homogeneity assumptions to limit thebmurof free parameters, in order to avoid over-fitting in
high-dimensionabr data-poorsettings. Benefits of using a Gaussian prior [16] on paraméteexplored during the
experiments.



Homogeneity assumptions: We can consider one of the following assumptions;

Al Edge and node coefficients are homogeneous throughoahthe graph, Or

A2 Edge and node coefficierft, ¢) within a connected component of the graph are homogeneoils thie
independent nodes in the forest have a separate set of hapmgenode coefficients Or

A3 Edge and node coefficients, c) are homogeneous except the constant terms therein.

Among the set of assumptions above, (Al) represents theggsb level of homogeneity, while (A3) provides flexibil-
ity to allow for individual variation on the average of edgelanode potentials. (A2) allows for heterogeneity across
different disconnected components of a forest while maiirig homogeneity within each component. The model
under assumption (A1) or (A2) could be given as:

Pr(V|X; 0) = exp( Z 'z + Z elwijviv; — A(O)). (11)

1€Wdep ijE€Edep

Structure Learning Given N observations oX andV, we need to discover the structure of the graphical model.
Structure learning algorithms in [9] and [12] propose aatise measure of the form defined in (7) to learn the
structure usingV i.i.d observations. In conditional random field models dediper definition 1, observation dnis
independent given the observation on covari&esHence, it necessary to use a distance measure which takes th
conditional independence into account to satisfy the Magkoperty on the graph learned fGRF. We propose a
distance measure conditioned on covariates;

K,
[dijlx] :== Zwk,ijdk,ija (12)
k=1

wherewy, ;; are empirical probabilities of covariate paitXy, ;, X, ;), such thatZ,‘Z{:”1 wg,i; = 1, K;; is the total
number of observed covariate pairs, ahd; := — log |Pr(V;, V;|(Xk,i, Xk,;))|. This conditional distance measure
could then be used iLGrouping andLocal CLGrouping algorithms [9, 12] to learn latent graph structure from data
Learning loopy graph usingocal CLGrouping requires a distance threshotg; € (7min, rmax) Where,

Tmin = M  dij, "max = max d;j, (13)
(1,J)EV XV (i,§)EV XV

as input to learn graphs with varying levels of density.

Forests Structures learnt usinGLGrouping and LocalCLGrouping algorithms are connected graphs; even though
there are marginally independent nodes, noisy data résuits1-zero distance measures. The presence in the seuctur
of such nodes, and nodes with very weak conditional depemelerposes a problem: a small advantage in statistical
fit comes at a cost in terms of more parameters (and hencditiireg-risk) and complexity. In order to address this,
we remove weak edges from the structure learnt uSinGrouping andLocal CLGrouping, thus forming a forest. The
threshold, defined in (13), is used for trimming weak edges, it gives alitamhal degree of freedom to systematically
find an adequate structure which reduces over-fitting whitesiasing prediction performance.

Prediction The dynamic network model attempts to predict the stateb@fverticesV” given the covariates and
model parameters in a maximum likelihood fashion. It is gmego estimate the most likely states of the vertices
resulting in a MAP estimate under uniform priors. Howeverpur work we simulate instances by drawing samples
fromPr(V|Xy; 0), giving us a more complete sense of predictive uncertaifieyuse Gibbs sampling to draw samples
from this model to predict several likely instances. The elgrameter@ and observed covariaté§ corresponding

to prediction instanceare used to compute the node and edge potentials using (91@nd

5 Experiments

We conduct extensive experiments on synthetic and reabivaaa. We use a penalized likelihood score, the Akaike
Information Criterion with corrections)Cc) for finite sample size, to measure goodness of statisticdPfedictive
accuracy is evaluated using the estimate of predictionracgu These model selection criteria are used to compare
the performances of DNR vertex prediction and for predictbsocial network structure more generally.



Synthetic Data We use a randomly generated tree structure to build a lataphgal model with 55 nodes (i.e.
[Waep| = 55), where we parametrize the node and edge potentials withriedes of length$e;| = 10, |¢;;| = 9

for nodes and edges respectively. Among these covariatemaluded indicator variables to introduce seasonality.
Model parameter@ are arbitrarily generated from uniform distributions aadhples are drawn from the model using
a Gibbs sampler. This data set has observed varigbles 50 and a sample siz& = 200 with a sparsity 0f).19.

Beach Data As a comparison case we use the same data and model as in [8]ddth involves a dynamically
evolving network of interpersonal communication amongyiitilals congregating on a beach in Southern California
over a one-month observation period [17]. This network waltected daily (aggregated over a morning and an
afternoon observation period) for 31 days (August 28, 188Beptember 27, 1986)Individuals were tracked with a
unique ID, and were divided by Freeman et al. ifremulars” (n = 54) —frequent attendees who were well-integrated
into the social life of the beach community — atidegulars” (n = 41) on ethnographic grounds. THegulars”
were further broken into two groupgroup 1(n = 22) andgroup 2(n = 21), with 11 individuals not classified as
belonging to either group 1 or group 2. The union of these(38tsonsists of 95 individuals. On any given day during
the observation period, the number of windsurfers appgarinthe beach ranged from 3 to 37, with the number of
communication ties per day ranging from 0 to 95.

Experimental setup For each simulated data set, a set of different structueegearnt using the information dis-
tances defined in (7) and (12). Given the estimated infoomatistance, a thresholg, defined in (13) is chosen to
form forests, wherey, € (rmin, "max); @nd resulting forests are expected to have independemsnates, loopy
sub-graphs as components . Then EM algorithm based on Lddpyl Gradient Ascent method is used to find the
maximum likelihood estimate of the coefficients for node adde parametrization. For models incorporating a prior
on parameters, a Gaussian prior with > 1 is used. The set of thresholds (defined in13), considered for beach
data is in the intervak, € [0, 23], for models using structure leant from unconditioned infation distance defined
in (7). For structures using conditioned distance defingd2), ry, € [0, 9]. Experiments on synthetic dataset learn a
single tree instead of forest, since the underlying stmedsia latent tree.

Model Selection The corrected Akaike Information criterion (AlCc) is used model selection.
2p(p +1)
N-p-1’
wherep is the number of parameters in the mod€ljs the number of samples in the dataggts the log-likelihood
of the data se® is the set of model parameters, and the time index.

AlCc:=2p— 2L+ L(V|X;0) = X log(Pr(V;]| X+ 0)), (14)

Prediction Scores We assess prediction accuracy by comparing the observees/dr vertex presence at each time
point with the corresponding predicted state. We estinfeebrrect number of predictions for those who appear and
who do not appear. In addition, we also evaluate the cortgotber of edges predicted using DNR edge model which
uses the predicted vertex set from our models;

51 o
PredPresent := Z Z Vi |V” )m, PredAbsent := Z Z Vit OW” O)m (15)

t=1 m=1 t=1 m=1

VertPredAccuracy := Z Z Vie = Vi t) , EdgePredAccuracy := Z Z ”t—”t), (16)

t=1m=1 t=1m=1
where N is the number of predicting instances or samplesis the number of samples drawn for likely vertex set
presence on a given daxedPresent is the conditional prediction accuracy given an individsairesentPredAbsent
is the conditional accuracy given an individual is not pres€ertPredAccuracy is the overall accuracy on how well
we predict given the individual is absent or preséfnigePredAccuracy is the overall accuracy of predicting edges
(conversation among the individuals present at beadh ), € V; is the corresponding verteX;;; € E; is the
corresponding edge in the dynamic network, aigithe corresponding time index (or sample point in test set)

Outcomes A summary of experimental outcomes for synthetic data ismgin Table 1. The outcomes for synthetic
data given in Table 1 correspondingrtp = ruax, fOrms a tree. A selected set of outcomes for beach dataés giv
Table 2, these outcomes correspond to a set of selectetidiates,,.

lunfortunately, one day (September 21st) is missing due to a race oregedifbeach, which precluded data collection. Thus,
complete data is available for 30 days during the observation period.



N =20 N =380 N =160

Model | CP% | CA% | VP% | AlCc | CP% | CA% | VP% | AlCc | CP% | CA% | VP % | AlCc
UC-H 36.8 | 856 | 76.3 | 8346 | 36.7 | 8556 | 76.2 | 6717 | 39.6 | 854 | 76.5 | 4962

UC-NH | 30.6 | 89.6 | 78.4 | 19492| 385 | 86.85| 77.6 | 9424 | 42.0 | 87.1 | 78.3 | 5282
C-H 356 | 8.6 | 761 | 7311 | 36.22| 85.1 | 75.8 | 6448 | 359 | 85.2 | 75.7 | 4878
C-NH 38.0 | 87.0 | 77.7 | 11605| 41.78| 86.5 | 78.0 | 7559 | 41.8 | 87.0 | 78.3 | 5042

DNR-V | 36.1 | 824 | 73.6 | 7941 | 3584 | 816 | 729 | 7063 | 35.7 | 81.7 | 72.8 | 5340

Table 1: Prediction performance of different models coragavith baseline, DNR-Vertex model in terfigedPresent
(CP) in (15),PredAbsent (CA) in (15), VertPredAccuracy (VP) in (16),andAlCc score (14) usind200 — N) test
samples of the synthetic data with varying number of trgjnsamplesV, for models with homogeneity(H) and
non-homogeniety(NH) assumption, graph structures(trsiglg conditioned(C) in (12) and unconditioned(UC) in (7)
information distances in Synthetic data with sparsity0.19. Tree models beat the DNR-V baseline as training set
grows.

No. Model | r op AlCc CPW) | CA%) | VP (%) | EP 0)
1 UC-NH | 0.9 | na | 2000.08| 43.91 | 88.40 80.86 11.99
3 UC-H | 09| na | 1928.10] 41.59 | 88.02 80.15 9.79
4 UC-H 1 na | 1935.62| 41.97 | 88.34 80.48 10.18
5 C-NH 9 na | 2207.52| 45.19 | 85.52 78.68 11.17
7 UC-NH | 1.1 | na 1995.3 | 39.03 | 91.10 82.27 11.30
8 UC-NH | 1.1 | 1.6 | 2013.4 | 45.21 | 89.13 81.68 13.26
10 UC-H | 1.1] 1.95] 1950.8 | 41.64 | 88.13 80.25 10.27
DNR-V na na na | 2037.80| 31.16 86 76.75 5.03

Table 2: Comparison of performance in termsAd€c (14) score and prediction score for correct vertex preaticti
(VP) in (16), correct conditional prediction of people agtbk (CP) in (15), people not at beach (CA) in (15), and
conversation between people (EP) in (16) for models with ¢geneity (H) and non-homogeniety (NH) assumption,
graph structures (tree) using conditioned (C) (12) and nditioned (UC) (7) information distances. Models corre-
spond to threshold;, values in Beach data (resulting in latent graphs) and stdrikviations,, for Gaussian prior on
parameters. Dynamic Network Regression-vertex (DNR-\$ehae is substantially outpredicted by all tree models
in getting the labels correct.

Graph Structure For Beach data, a number of different structures resultad the threshold choices made above.
Structures learnt using distance in (7) produced a divessefsforests with multiple tree components while using
distance in (12) produced forests with a single tree andpeddent nodes. This difference indicates that covariates
in Beach data capture significant dependencies, resuttiagnieak structure when conditioned on (figures 4 and 5. ).
Further, these structures show that vertices classifiétegalars” have more clusters among themselves compared
to “Irregulars” . “Irregulars” , while having small clusters among themselves, show ciomdit dependency ofreg-
ulars”. This could be attributed to the sparsity of attendance seé&inregulars” , while “regulars” show up more
regularly.

Synthetic Data The outcomes for the synthetic data experiments are showatbile 1. The baseline DNR-V model
performs better for very small sizes (e.ty. = 20). However, as the sample size increases, more complex model
show better performance. It should be noted that wNer. [Vq4ep|, our models perform equally or slightly worse
than the DNR-V model. In addition, we note that latent stretmodels with homogeneous assumptions perform
as well as DNR-V baseline (besting it, as do the inhomogen@oadels, when fit to a larger training set). Hence,
this shows our homogeneity assumptions do in fact reducefitting, as predicted. We emphasize that the scores in
Table 1 are obtained using separate set of data unseen bytte (out of sample) and out perform DNR-V model in
vertex prediction accuracyertPredAccuracy in (16) for all sample sizes. Thus, it is clear that our modeljaes a
substantial improvement of predictive performance vepsue logistic regression for larger data sets, while priogjd
essentially similar performance for homogeneous modelsarsmall data regime.

Beach Data: Homogeneous Models Among the models shown in Table 2, homogeneous models usungflge
learnt from unconditioned distance)(perform well in terms of AlICc score; however the predictimerformance is



low compared to respective non-homogeneous counterpastsould be noted that these prediction scores given for
Beach data are obtained using the training set, due to smalber of samples. However, the outcome given for
synthetic data in Table 1 shows that homogeneous modelsiding the DNR-V model) perform better than non-
homogeneous models with small number of samples. In Tath®m®ogeneous models with, = 0.9, and1 have
betterAlCc scores than non-homogeneous model with= 0.9 while performing equally well in terms of prediction
(VertPredAccuracy). In general, number of tree/loopy componentgin< ., increases as we reduce the threshold,
rn. Hence, homogeneity assumptions in some cases enable nd toHbmogeneous model which performs equally
well as a hon-homogeneous model with fewer free paramédtagsres 2a and 2b show variation\édrtPredAccuracy

of individuals for DNR-V model and a homogeneous model with= 0.9 respectively, our model shows a significant
improvement over DNR-V model. In addition, figures 1a andHdwmsvariation in aggregates of predicted vertices for
the same models; our model performs equally well and in soistamce better than DNR-V model.

Beach Data: Non-Homogeneous ModelsFrom Table 2, non-homogeneous models exhibit better paebce in
terms of prediction accuracy; however they perform poanlyerms ofAlCc score. The larger number of free pa-
rameters compared to homogeneous models lead to theApboscore due to over-fitting. A similar trend could be
seen in Table 1V < |Vq¢p| leads to over-fitting resulting in poor prediction performa of correct labels on unseen
data. However, as the sample si¥egets closer to the number of node4.,|, the performance increases, eventually
out-performing the other models. However, as results frasadd data in Table 2 show, models formed according to
homogeneity assumptions enable us to find non-homogeneads mehich performs closer to a homogeneous model
with a small compromise in predictive performance. Thisrapph would prove fruitful in thénigh-dimensional
regime.

Beach Data: Edge Prediction Vertex set predicted is used in DNR-Edge model (4) to prettiietedge set (i.e.
E;). These outcomes are given in Table 2, and figure 3 shows tfeiga in percent of correctly predicted edges. A
significant performance improvement is observed in ternigigéPredAccuracy (16) in table 2. A peak performance
of 13.26% is shown by model (8) which is non-homogeneous using untiondi information distance (7) with a prior
on parameters, comparedi®3% performance of DNR-V model.

In summary, the above experimental results on the Syntlagiic Beach data demonstrate models resulting from
the proposed scalable dynamic vertex set prediction fraewith conditional random fields, defined on latent
graphical models and with a systematic approach on formangsts along with specified homogeneity assumptions.
This work resulted in significantly improved performanceppedicting vertex co-presences and edge dynamics in the
experimental cases.
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(a) DNR Vertex Model. (b) Non-Homogeneous Model.

Figure 1: Variation on the number of predicted vertices (hedicted number of individuals at beach) from Dynamic
Network Regression-vertex model as a baseline model and:Moith table 3, a homogeneous model corresponding
to threshold, = 0.9, using unconditioned information distance.

No. | Model | rm | o, | AICc | CP (%) | CA(%) | VP (%) | EP (%)
i UC-NH [ 0.9 na | 2000.08] 43.91 | 88.40 | 80.86 | 11.99
2 UC-H | 0.8 na | 1931.08| 41.40 | 88.05 | 80.14 | 9.79
3 UC-H |09 na | 1928.10| 41.59 | 88.02 | 80.15 | 9.79
Z UC-H | 1 | na | 1935.62| 41.97 | 88.34 | 80.48 | 10.18
5 CNH | 9 | na | 220752 45.19 | 8552 | 78.68 | 11.17
6 UC-NH | 25 | na | 1687.4 | 38.04 | 89.09 | 80.44 | 9.52
7 UC-NH [ 11| na | 19953 | 39.03 | 91.10 | 82.27 | 11.30
8 UC-NH | 1.1 | 1.6 | 2013.4 | 4521 | 89.13 | 81.68 | 13.26
9 UC-NH | 0.8 1.7 | 20025 | 42.86 | 88.64 | 80.88 | 10.84
10 UC-H | 1.1] 1.95| 1950.8 | 41.64 | 88.13 | 80.25 | 10.27
11 CH | 9 [ 195 20134 | 31.79 | 86.14 | 76.92 | 548
12 CH [65]| 1.95| 2039.6 | 32.70 | 86.26 | 77.18 | 5.66
13 CH [55]|1.95| 1987.7 | 3357 | 86.14 | 77.22 | 6.31

14 C-NH [ 55] 195 21825 | 41.33 | 88.31 80.31 10.35
DNR-V na na na | 2037.80| 31.16 86 76.75 5.03

Table 3: Comparison performance in termsAdEc (14) score and prediction score for correct vertex preatic{VP)

in (16), correct conditional prediction of people at be&ip) in (15), people not at beach (CA) in (15), and conver-
sation between people (EP) in (16) for models with homodgfi¢) and non-homogeniety(NH) assumption, graph
structures(tree) using conditioned(C) in (12) and undidoied(UC) in (7) information distances. Models corregpon
to threshold, values in Beach data (resulting in Late latent nodes) artiatal deviatiory, for Gaussian prior on
parameters. Dynamic Network Regression-vertex (DNR-\$ebae is substantially outpredicted by all tree models
in getting the labels correct.
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Figure 2: Vertex prediction accuracy in terms of conditiopeediction score of Dynamic Network Regression-
vertex(DNR-V) model and Model 3 in table 3, a homogeneousehaith graph structure corresponding to threshold
rsn = 0.9 using unconditioned information distance
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Figure 3: Correctly predicted edges for beach data (i.edipied conversation between individuals at beach on a
given day)in % using EdgePredAccuracy in (16)) using the vertex sets predicted by Model 8 (in tablea3non-
homogeneous model assuming a Gaussian prior (wjth= 1.6) on parameter® with structure corresponding to
rsn = 1.1 learnt using unconditioned information distance in (7)vbaseline, Dynamic Network Regression Vertex
model.
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A Known Issues with General TERGMs

The general TERGM framework, like the corresponding cisesstional frameworkgxponential random graph models
or ERGMSs) can parametrize an extremely broad class of modeisll of which are statistically or computationally
tractable. Indeed, poorly chosen ERGMs are known to hawessef instability, sensitivity, degeneracy, and scala-
bility, which are often intractable problems for many apations of interest [for a current review, see 30]. Further
[5, 23] have shown that the general TERGM case includes niadglies with similar issues of instability, sensitivity,
degeneracy, and scalability, but also that under certaiditions the temporal structure stabilizes these modeis; t
work naturally leads to the assumptions underlying dynamievork regression.
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