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Abstract

We here consider the problem of modeling network evolution with joint edge and vertex dynamics.
It is natural to expect that the accuracy of vertex prediction strongly affect the ability to predict
dynamic network evolution accurately. A latent graphical model is here employed to model vertex
evolution. This model family can incorporate dependence invertex co-presence, of the form found
in many social settings (e.g., subgroup structure, selective pairing). Recent algorithms for learning
latent tree graphical models and their extensions can be efficiently scaled for large graphs. Here, we
introduce a novel latent graphical model based approach to the problem of vertex set prediction in
dynamic social networks, combining it with a parametric model for covariate effects and a logistic
model for edge prediction given the vertex predictions. We apply this approach to both synthetic
data and a classic social network data set involving interactions among windsurfers on a Southern
California beach. Experiments conducted show a significantimprovement in prediction accuracy
of the vertex and edge set evolution (about 45% for conditional vertex participation accuracy and
164% for overall edge prediction accuracy) over the existing dynamic network regression approach
for modeling vertex co-presence.

Keywords: Social networks, dynamic networks, graphical models, latent variables, conditional random field.

1 Introduction

Over the last several decades there has been an increased interest in modeling and prediction of temporally evolving
networks. This is especially relevant in the context of social networks. Examples include forming new organizational
alliances, mass convergence of organizations in disasters, the formation of inter-firm networks within new industries,
and interpersonal networks under strong external perturbations. Traditionally, network evolution has been studied with
a fixed vertex set [e.g., 1, 2, 3, 4, 5]. This is unrealistic in many social and engineering processes e.g., addition and
deletion of servers; entry and exit of students in a classroom; online social networks such as twitter friend/follower
networks. In this paper, we consider co-evolution of vertexand edge sets in dynamic networks. An important con-
sideration for any model is scalability, especially in thehigh-dimensionalor data-poorregime. In other words, the
number of samples may be far less than the parameters of the model, if we attempt to model all possible interactions
between the vertices and edges. Recently, Almquist and Butts [6] introduced a family of simple network models that
incorporates logistic models for vertex/edge dynamics (here on referred to asDynamic Network Regression; DNR).
However, the pure logistic model, while scalable, has limited ability to capture dependencies in vertex co-presence.
Further, [6, 7] demonstrate the importance of obtaining theaccurate vertex set predictions, noting that in many cases
vertices are associated with covariates that strongly impact the edge structure. For instance, if one is modeling dynam-
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ics of organizational collaboration during the hurricane Katrina disaster, predicting whether a prominent organization
such as FEMA appears on a given day will greatly impact the network structure. Graphical models use undirected
graphs to represent the conditional dependency structure [8] in a family of multivariate distributions. Recent work
on latent tree learning [9, 10, 11] and their extension to learning loopy graphical models with latent variables [12] –
have been proposed. These algorithms use conditional independence tests based on so-called “information distances”
between pairs of variables to discover the latent variablesin the model [13]. These approaches are scalable and pos-
sess consistency guarantees for learning the graph structure. Such developments in latent graphical models suggest
their use as a mechanism for modeling dependence among the vertex set; these models can easily represent types of
dependence expected in typical settings (e.g., subgroup structure, selective pairing), and can be efficiently scaled for
very large graphs.

Summary of contributions Here, we propose a novel framework which combines a parametric model for the co-
variate effects with a latent graphical model (on to a conditional random field framework (CRF) [14]) as an approach
to predict vertex evolution. Our approach first discovers the dependency structure with latent variables for vertex co-
presence using the algorithms proposed in [9, 12]. Then we parametrize the edge and node potentials of the pairwise
model represented by the discovered structure (with observed covariates). The model parameters are estimated using
Expectation Maximization (EM) based on loopy propagation algorithm (LoopyBP) [15]. We consider various homo-
geneity assumptions to prevent over-fitting. We further explore the benefits of using Gaussian prior on parameters [16]
to address over-fitting. Experiments conducted on synthetic datasets and real world data (a classic social network data
set involving interactions among windsurfers on a California beach [6, 17]) show impressive performance in terms of
statistical fit measured by AICc score, and in prediction accuracy of vertex and edge sets. Specifically, we observe
about 45% improvement for vertex participation accuracy and 164% for edge prediction accuracy over the pure logis-
tic approach for modeling vertex co-presence. At the same time, the approaches considered in this paper are scalable
and fast to run on large datasets.

Related Work Temporal models for social network data tend to focus on either panel data (e.g., hourly, daily snap-
shots) or event data (e.g., sequences of tie formation/dissolution events). Here we focus on models for network panel
data [for an introduction to event data models, see 18]. Currently, in the social network and statistical literatures there
are three main families of models for panel data: the actor oriented models, which assume an underlying continuous-
time model of network dynamics, where each latent event represents a single actor altering his or her outgoing links
to optimize a function based on sufficient statistics [for details see, 1, 2, 19, 20]; latent variable approaches, such as
dynamic latent feature models [e.g., 21] and dynamic latentspace models [e.g., 22]; and thetemporal exponential-
family random graph models[TERGM; see, 3, 4, 5, 6, 7, 23]. Here, we focus on DNR, a subfamily of the TERGM
approach and the only model family which currently incorporates endogenous vertex dynamics. The TERG model
was extended to handle vertex dynamics by making a separableparameterization between the vertex set and edge set
[6]. This was achieved through assumptions; i) given the vertex covariates, vertices are conditionally independent, and
ii) given the vertex set and edge covariates, edges are conditionally independent. In our work, we relax conditional
independence assumptions made in DNR which restricts the vertex process, by allowing dependence between vertex
appearances via a latent graphical model.

CRF models have been studied extensively in areas such as natural language processing [24], image modeling [25],
classification [16], and in dynamicCRF frameworks [26]. These models use the observed (a.k.a input) variables (in
our setting covariates) to predict the unobserved states ofoutput variables (in our setting a vertex presence/absence).
The structure of these models varies from linear chains [24], trees [16, 27], to grids [25]. Few works address the
issue of structure learning via greedy methods [28], convexprogramming [29] and local learning approaches based on
conditional mutual information [27].CRF models considering latent variables assume the existence and location are
known along with corresponding covariates [16]. Our work does not make such strong assumptions; we test for evi-
dence of their existence and incorporate them into the structure usingCLGrouping andLocalCLGrouping algorithms.
This enables us to discover the natural latent graph structure. Further, we do not restrict the choices of covariates for
latent variables, which gives an additional flexibility towards dataset specific choices.

2 Statistical Models for Network Dynamics

Social networks are often represented as agraph (i.e.,G = (V,E), with V being avertex setandE being a set of
pairs or ordered pairs of vertices). This representation can be extended to model dynamic data with a time index, i.e.
Gt = (Vt, Et), withGt reflecting the state of the graph at timet.
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TERGM TERGM models typically begin with a conditional independence assumption. Given adjacency matrix
Yt, then we can make the assumption thatYt is independent ofY1, . . . , Yt−2 givenYt−1 [5]; this can be generalized
further for arbitrary lags (e.g.,Yt−1, . . . , Yt−k = Qt−k). Under this assumption, we can write down the standard
TERG model:

Pr(Yt = yt |Qt−k, X) =
exp

(
θT s(yt, Qt−k, X)

)
∑

y
′∈Y exp

(
θT s(y

′

t, Qt−k, X)
) , (1)

for yt belonging to the support,Y. s here is a vector of real-valued sufficient statistics, with parameter vectorθ. Notice
that the denominator of (1) is intractable in the general case. See Appendix A for known issues with general TERGMs.

TERGM with Vertex Dynamics The TERG model in (1) is further extended to handle vertex dynamics by making
a separable parameterization between the vertex set and edge [6]. Hence, TERG model with vertex dynamics could be
given as:

Pr(Gt = gt |Gt−1, · · · , Gt−k, X) = Pr(Vt = vt | Zt−k, X)× Pr(Yt = yt | Vt, Zt−k, X)

=
exp

(
ψTw(vt, Zt−k, X)

)
∑

v
′∈V exp

(
ψTw(v

′

t, Zt−k, X)
) ×

exp
(
θTu(yt, Vt, Zt−k, X)

)
∑

y
′∈Y exp

(
θTu(y

′

t, Vt, Zt−k, X)
) , (2)

for observations in the support, whereZt−k = (Vt−1, Yt−1), · · · , (Vt−k, Yt−k).

Dynamic Network Regression [6] modeledPr(Vt = vt | Zt−k, X) andPr(Yt = yt | Vt, Zt−k, X) as separable
logistic processes. Under the necessary conditional independence, homogeneity, and temporal Markov assumptions
one can derive the likelihood function for DNR, where the vertex likelihood is given by

Pr(Vt | Zt−k, X) =

n∏

i=1

B
(
I(vi ∈ Vt)

∣∣logit−1
(
ψTw(i, Zi−k, X)

))
(3)

and the edge likelihood by

Pr(Yt | Vt, Zt−k, X) =

n∏

(i,j)∈Vt×Vt

B
(
Ytij

∣∣logit−1
(
θTu(i, j, Vt, Zi−k, X)

))
, (4)

whereB is understood to be the Bernoulli pmf,I is the indicator function,X is a covariate set,u andw are suffi-
cient statistics for the edge and vertex models (respectively), θ andψ are the respective edge and vertex parameter
vectors, andZi is defined as before. Here, we are proposing to relax these restrictions in the vertex process, allowing
dependence between vertex appearances via a latent graphical model.

3 Latent Graphical Models

Graphical models A binary graphical modelon aGdep = (Wdep, Edep) is a family of multivariate distributions
whose conditional dependence relations are expressed by a fixed undirected graphGdep [8]. Each vertex in the graph
i ∈ Wdep is associated with a random variableVi taking value in{0, 1}. The edge set,Edep, captures the set of
conditional independence relations among the random variables inWdep. We say that a set of random variablesV

with probability mass function (pmf)Pr is Markovon the graphGdep if

Pr(vi|vN (i)) = Pr(vi|vWdep\i) (5)

holds for all nodesi ∈ Wdep, whereN (i) are the neighbors of nodei in graphGdep. The Hammersley-Clifford
theorem [8] states that, under the positivity condition given byPr(V) > 0 for all VU ∈ {0, 1}|Wdep|, a distribution
Pr satisfies the Markov property according to a graphGdep iff it factorizes according to the cliques ofGdep. For
instance, the distribution of a class of graphical models where the maximal clique size is 2 factorizes as

Pr(V) = exp


 ∑

e∈Edep

φi,jvivj +
∑

i∈Wdep

φivi −A(θ)


 , (6)

whereφe := {φi,j} andφn := {φi} are respectively known as edge and the node potentials,θ := φe ∪φn andA(θ)
is known as thelog-partition function, which normalizes the probability distribution.
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Latent Graphical Models: A latent graphical model is a class ofgraphical modelsin which a subset of nodes is
latent or hidden. We denote the hidden nodes byHdep ⊂ Wdep and the observed nodes byVdep ⊂ Wdep.

Learning Latent Graphical Models: In general, learning latent graphical models consists of two tasks. The first
task is to discover the presence of hidden variables corresponding to nodesHdep ⊂ Wdep and learn the unknown
graph structureGdep, givenN i.i.d. samples from observed variables corresponding to nodesVdep. Second task is is
to estimate the model parametersθ̂ given the discovered structurêGdep andN i.i.d samples from observed variables
at nodesVdep. Among the available approaches for latent tree learning, we build on algorithms based on a measure of
statistical distance (a.k.a information distance),

dij =: − log | det(P̂r
N

Vi,Vj
), | (7)

whereP̂r
N

Vi,Vj
, is the empirical joint statistics of nodesi, j usingN i.i.d samples,d is an additive tree-metric [13]

satisfying the Markov property, and it forms the basis of scalable structure learning algorithms such asRG and
CLGrouping in [9], andLocalCLGrouping (loopy graphs) [12] with provable guarantees. In our work, we will be
usingRG, CLGrouping andLocalCLGrouping for learning latent graph structure.

4 Conditional Random Field on Latent Graphical Models

A conditional random field (CRF) based approach [14] provides a modeling framework for label variablesVt according
to an undirected graphical modelGdep = (Wdep, Edep) conditioned on observed covariate dataX. In our context,
observed data will correspond to the covariates, and label variables will denote people in the dynamic network.

Definition 1 Let Gdep = (Wdep, Edep), be a dependence graph on a binary graphical model. Then, (X,V) is a
conditional random field, (CRF) if, when conditioned onX, the random variablesVi obey the Markov property with
respect toGdep; i.e. Pr(Vi|X, VWdep\i) = Pr(Vi|X,N (i)), where{Wdep \ i} is the set of all nodes in the graph
excepti, andN (i) is the neighbors ofi.

Using the pairwise exponential form of the Hammersly-Clifford theorem, the distribution defined above could be given
as;

Pr(V |X) = exp


 ∑

ij∈Edep

φij(X,θ)vivj +
∑

i∈Wdep

φi(X,θ)vi −A(θ)


 , (8)

whereφij andφi denote the potential functions of edge(i, j) ∈ Edep and nodei ∈ Wdep respectively,θ is the set
of model parameters. Given, covariatesX andθ , with functionsφij , φi we can compute the corresponding edge
and node potentials of the model. These functions could be chosen depending on the modeling requirements. For
simplicity, lets assume thatφij andφi are linear functions of covariates,X, i.e.

φi = c0 + c1x1,i + c2x2,i + ...+ cKn
xKn,i, (9)

whereck is the coefficient ofkth covariate,Kn is the total number of covariates used for the parametrization, andxk,i
is thek th covariate ofi th vertex, and likewise

φij = e0 + e1x1,ij + e2x2,ij + ...+ eKe
xKe,ij , (10)

whereek is the coefficient ofkth covariate,Ke is the total number of covariates used for the parametrization, andxk,ij
is thekth covariate of the edge(i, j).

The absence of prior information and interpretation makes the choice of covariates for latent variables challenging. A
natural choice in a dynamic setting would be to use a set of shared covariates such as seasonality.

We consider a set of homogeneity assumptions to limit the number of free parameters, in order to avoid over-fitting in
high-dimensionalor data-poorsettings. Benefits of using a Gaussian prior [16] on parameters is explored during the
experiments.
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Homogeneity assumptions: We can consider one of the following assumptions;

A1 Edge and node coefficients are homogeneous throughout theentire graph, Or

A2 Edge and node coefficient(e, c) within a connected component of the graph are homogeneous while the
independent nodes in the forest have a separate set of homogeneous node coefficientsc, Or

A3 Edge and node coefficients(e, c) are homogeneous except the constant terms therein.

Among the set of assumptions above, (A1) represents the strongest level of homogeneity, while (A3) provides flexibil-
ity to allow for individual variation on the average of edge and node potentials. (A2) allows for heterogeneity across
different disconnected components of a forest while maintaining homogeneity within each component. The model
under assumption (A1) or (A2) could be given as:

Pr(V |X;θ) = exp(
∑

i∈Wdep

cTxivj +
∑

ij∈Edep

eTxijvivj −A(θ)). (11)

Structure Learning GivenN observations onX andV , we need to discover the structure of the graphical model.
Structure learning algorithms in [9] and [12] propose a distance measure of the form defined in (7) to learn the
structure usingN i.i.d observations. In conditional random field models defined per definition 1, observation onV is
independent given the observation on covariatesX. Hence, it necessary to use a distance measure which takes this
conditional independence into account to satisfy the Markov property on the graph learned forCRF. We propose a
distance measure conditioned on covariates;

[dij |x] :=

Kij∑

k=1

wk,ijdk,ij , (12)

wherewk,ij are empirical probabilities of covariate pairs(Xk,i, Xk,j), such that
∑Kij

k=1 wk,ij = 1, Kij is the total

number of observed covariate pairs, anddk,ij := − log |P̂r(Vi, Vj |(Xk,i, Xk,j))|. This conditional distance measure
could then be used inCLGrouping andLocalCLGrouping algorithms [9, 12] to learn latent graph structure from data.
Learning loopy graph usingLocalCLGrouping requires a distance threshold;rth ∈ (rmin, rmax) where,

rmin := min
(i,j)∈V×V

dij , rmax := max
(i,j)∈V×V

dij , (13)

as input to learn graphs with varying levels of density.

Forests Structures learnt usingCLGrouping andLocalCLGrouping algorithms are connected graphs; even though
there are marginally independent nodes, noisy data resultsin non-zero distance measures. The presence in the structure
of such nodes, and nodes with very weak conditional dependencies, poses a problem: a small advantage in statistical
fit comes at a cost in terms of more parameters (and hence over-fitting risk) and complexity. In order to address this,
we remove weak edges from the structure learnt usingCLGrouping andLocalCLGrouping, thus forming a forest. The
thresholdrth defined in (13), is used for trimming weak edges, it gives an additional degree of freedom to systematically
find an adequate structure which reduces over-fitting while increasing prediction performance.

Prediction The dynamic network model attempts to predict the states of the verticesV given the covariates and
model parameters in a maximum likelihood fashion. It is possible to estimate the most likely states of the vertices
resulting in a MAP estimate under uniform priors. However, in our work we simulate instances by drawing samples
fromPr(V |Xt;θ), giving us a more complete sense of predictive uncertainty.We use Gibbs sampling to draw samples
from this model to predict several likely instances. The model parametersθ and observed covariatesXt corresponding
to prediction instancet are used to compute the node and edge potentials using (9) and(10).

5 Experiments

We conduct extensive experiments on synthetic and real world data. We use a penalized likelihood score, the Akaike
Information Criterion with corrections (AICc) for finite sample size, to measure goodness of statistical fit. Predictive
accuracy is evaluated using the estimate of prediction accuracy. These model selection criteria are used to compare
the performances of DNR vertex prediction and for prediction of social network structure more generally.
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Synthetic Data We use a randomly generated tree structure to build a latent graphical model with 55 nodes (i.e.
|Wdep| = 55), where we parametrize the node and edge potentials with covariates of lengths|φi| = 10, |φij | = 9
for nodes and edges respectively. Among these covariates, we included indicator variables to introduce seasonality.
Model parametersθ are arbitrarily generated from uniform distributions and samples are drawn from the model using
a Gibbs sampler. This data set has observed variables|V | = 50 and a sample sizeN = 200 with a sparsity of0.19.

Beach Data As a comparison case we use the same data and model as in [6]. This data involves a dynamically
evolving network of interpersonal communication among individuals congregating on a beach in Southern California
over a one-month observation period [17]. This network was collected daily (aggregated over a morning and an
afternoon observation period) for 31 days (August 28, 1986 to September 27, 1986).1 Individuals were tracked with a
unique ID, and were divided by Freeman et al. into“regulars” (n = 54) – frequent attendees who were well-integrated
into the social life of the beach community – and“Irregulars” (n = 41) on ethnographic grounds. The“regulars”
were further broken into two groups,group 1(n = 22) andgroup 2(n = 21), with 11 individuals not classified as
belonging to either group 1 or group 2. The union of these sets(V ) consists of 95 individuals. On any given day during
the observation period, the number of windsurfers appearing on the beach ranged from 3 to 37, with the number of
communication ties per day ranging from 0 to 95.

Experimental setup For each simulated data set, a set of different structures are learnt using the information dis-
tances defined in (7) and (12). Given the estimated information distance, a thresholdrth defined in (13) is chosen to
form forests, whererth ∈ (rmin, rmax); and resulting forests are expected to have independent nodes, trees, loopy
sub-graphs as components . Then EM algorithm based on LoopyBP and Gradient Ascent method is used to find the
maximum likelihood estimate of the coefficients for node andedge parametrization. For models incorporating a prior
on parameters, a Gaussian prior withσp > 1 is used. The set of thresholdsrth (defined in13), considered for beach
data is in the interval,rth ∈ [0, 23], for models using structure leant from unconditioned information distance defined
in (7). For structures using conditioned distance defined in(12), rth ∈ [0, 9]. Experiments on synthetic dataset learn a
single tree instead of forest, since the underlying structure is a latent tree.

Model Selection The corrected Akaike Information criterion (AICc) is used for model selection.

AICc := 2p− 2L+
2p(p+ 1)

N − p− 1
, L(V |X;θ) = Σt log(Pr(Vt|Xt;θ)), (14)

wherep is the number of parameters in the model,N is the number of samples in the dataset,L is the log-likelihood
of the data set,θ is the set of model parameters, andt is the time index.

Prediction Scores We assess prediction accuracy by comparing the observed values for vertex presence at each time
point with the corresponding predicted state. We estimate the correct number of predictions for those who appear and
who do not appear. In addition, we also evaluate the correct number of edges predicted using DNR edge model which
uses the predicted vertex set from our models;

PredPresent :=

N∑

t=1

M∑

m=1

I(V̂i,t = 1|Vi,t = 1)m
MN

, PredAbsent :=

N∑

t=1

M∑

m=1

I(V̂i,t = 0|Vi,t = 0)m
MN

(15)

VertPredAccuracy :=
N∑

t=1

M∑

m=1

I(V̂i,t = Vi,t)m
MN

, EdgePredAccuracy :=
N∑

t=1

M∑

m=1

I(Ŷij,t = Yij,t)m
MN

, (16)

whereN is the number of predicting instances or samples,M is the number of samples drawn for likely vertex set
presence on a given day,PredPresent is the conditional prediction accuracy given an individualis present,PredAbsent
is the conditional accuracy given an individual is not present, VertPredAccuracy is the overall accuracy on how well
we predict given the individual is absent or present,EdgePredAccuracy is the overall accuracy of predicting edges
(conversation among the individuals present at beach ),Vi,t ∈ Vt is the corresponding vertex,Yij,t ∈ Et is the
corresponding edge in the dynamic network, andt is the corresponding time index (or sample point in test set).

Outcomes A summary of experimental outcomes for synthetic data is given in Table 1. The outcomes for synthetic
data given in Table 1 corresponding torth = rmax, forms a tree. A selected set of outcomes for beach data is given in
Table 2, these outcomes correspond to a set of selected thresholdsrth.

1Unfortunately, one day (September 21st) is missing due to a race on a different beach, which precluded data collection. Thus,
complete data is available for 30 days during the observation period.
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N = 20 N = 80 N = 160
Model CP% CA % VP% AICc CP% CA % VP % AICc CP% CA % VP % AICc

UC-H 36.8 85.6 76.3 8346 36.7 85.56 76.2 6717 39.6 85.4 76.5 4962
UC-NH 30.6 89.6 78.4 19492 38.5 86.85 77.6 9424 42.0 87.1 78.3 5282

C-H 35.6 85.6 76.1 7311 36.22 85.1 75.8 6448 35.9 85.2 75.7 4878
C-NH 38.0 87.0 77.7 11605 41.78 86.5 78.0 7559 41.8 87.0 78.3 5042

DNR-V 36.1 82.4 73.6 7941 35.84 81.6 72.9 7063 35.7 81.7 72.8 5340

Table 1: Prediction performance of different models compared with baseline, DNR-Vertex model in termsPredPresent
(CP) in (15),PredAbsent (CA) in (15), VertPredAccuracy (VP) in (16),andAICc score (14) using(200 − N) test
samples of the synthetic data with varying number of training samplesN , for models with homogeneity(H) and
non-homogeniety(NH) assumption, graph structures(tree)using conditioned(C) in (12) and unconditioned(UC) in (7)
information distances in Synthetic data with sparsity= 0.19. Tree models beat the DNR-V baseline as training set
grows.

No. Model rth σp AICc CP (%) CA(%) VP (%) EP (%)
1 UC-NH 0.9 na 2000.08 43.91 88.40 80.86 11.99
3 UC-H 0.9 na 1928.10 41.59 88.02 80.15 9.79
4 UC-H 1 na 1935.62 41.97 88.34 80.48 10.18
5 C-NH 9 na 2207.52 45.19 85.52 78.68 11.17
7 UC-NH 1.1 na 1995.3 39.03 91.10 82.27 11.30
8 UC-NH 1.1 1.6 2013.4 45.21 89.13 81.68 13.26
10 UC-H 1.1 1.95 1950.8 41.64 88.13 80.25 10.27

DNR-V na na na 2037.80 31.16 86 76.75 5.03

Table 2: Comparison of performance in terms ofAICc (14) score and prediction score for correct vertex prediction
(VP) in (16), correct conditional prediction of people at beach (CP) in (15), people not at beach (CA) in (15), and
conversation between people (EP) in (16) for models with homogeneity (H) and non-homogeniety (NH) assumption,
graph structures (tree) using conditioned (C) (12) and unconditioned (UC) (7) information distances. Models corre-
spond to thresholdrth values in Beach data (resulting in latent graphs) and standard deviationσp for Gaussian prior on
parameters. Dynamic Network Regression-vertex (DNR-V) baseline is substantially outpredicted by all tree models
in getting the labels correct.

Graph Structure For Beach data, a number of different structures resulted from the threshold choices made above.
Structures learnt using distance in (7) produced a diverse set of forests with multiple tree components while using
distance in (12) produced forests with a single tree and independent nodes. This difference indicates that covariates
in Beach data capture significant dependencies, resulting in a weak structure when conditioned on (figures 4 and 5. ).
Further, these structures show that vertices classified as“regulars” have more clusters among themselves compared
to “Irregulars” . “Irregulars” , while having small clusters among themselves, show conditional dependency on“reg-
ulars” . This could be attributed to the sparsity of attendance seenin “Irregulars” , while “regulars” show up more
regularly.

Synthetic Data The outcomes for the synthetic data experiments are shown inTable 1. The baseline DNR-V model
performs better for very small sizes (e.g.N = 20). However, as the sample size increases, more complex models
show better performance. It should be noted that whenN < |Vdep|, our models perform equally or slightly worse
than the DNR-V model. In addition, we note that latent structure models with homogeneous assumptions perform
as well as DNR-V baseline (besting it, as do the inhomogeneous models, when fit to a larger training set). Hence,
this shows our homogeneity assumptions do in fact reduce over-fitting, as predicted. We emphasize that the scores in
Table 1 are obtained using separate set of data unseen by the model (out of sample) and out perform DNR-V model in
vertex prediction accuracyVertPredAccuracy in (16) for all sample sizes. Thus, it is clear that our model provides a
substantial improvement of predictive performance versuspure logistic regression for larger data sets, while providing
essentially similar performance for homogeneous models inthe small data regime.

Beach Data: Homogeneous Models Among the models shown in Table 2, homogeneous models using structure
learnt from unconditioned distance (7) perform well in terms of AICc score; however the predictionperformance is
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low compared to respective non-homogeneous counterparts.It should be noted that these prediction scores given for
Beach data are obtained using the training set, due to small number of samples. However, the outcome given for
synthetic data in Table 1 shows that homogeneous models (including the DNR-V model) perform better than non-
homogeneous models with small number of samples. In Table 2,homogeneous models withrth = 0.9, and1 have
betterAICc scores than non-homogeneous model withrth = 0.9 while performing equally well in terms of prediction
(VertPredAccuracy). In general, number of tree/loopy components inrth < rmax increases as we reduce the threshold,
rth. Hence, homogeneity assumptions in some cases enable us to find a homogeneous model which performs equally
well as a non-homogeneous model with fewer free parameters.Figures 2a and 2b show variation ofVertPredAccuracy
of individuals for DNR-V model and a homogeneous model withrth = 0.9 respectively, our model shows a significant
improvement over DNR-V model. In addition, figures 1a and 1b show variation in aggregates of predicted vertices for
the same models; our model performs equally well and in some instance better than DNR-V model.

Beach Data: Non-Homogeneous ModelsFrom Table 2, non-homogeneous models exhibit better performance in
terms of prediction accuracy; however they perform poorly in terms ofAICc score. The larger number of free pa-
rameters compared to homogeneous models lead to the poorAICc score due to over-fitting. A similar trend could be
seen in Table 1,N < |Vdep| leads to over-fitting resulting in poor prediction performance of correct labels on unseen
data. However, as the sample sizeN gets closer to the number of nodes|Vdep|, the performance increases, eventually
out-performing the other models. However, as results from Beach data in Table 2 show, models formed according to
homogeneity assumptions enable us to find non-homogeneous model which performs closer to a homogeneous model
with a small compromise in predictive performance. This approach would prove fruitful in thehigh-dimensional
regime.

Beach Data: Edge Prediction Vertex set predicted is used in DNR-Edge model (4) to predictthe edge set (i.e.
Et). These outcomes are given in Table 2, and figure 3 shows the variation in percent of correctly predicted edges. A
significant performance improvement is observed in terms ofEdgePredAccuracy (16) in table 2. A peak performance
of 13.26% is shown by model (8) which is non-homogeneous using unconditional information distance (7) with a prior
on parameters, compared to5.03% performance of DNR-V model.

In summary, the above experimental results on the Syntheticand Beach data demonstrate models resulting from
the proposed scalable dynamic vertex set prediction framework with conditional random fields, defined on latent
graphical models and with a systematic approach on forming forests along with specified homogeneity assumptions.
This work resulted in significantly improved performance onpredicting vertex co-presences and edge dynamics in the
experimental cases.
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(a) DNR Vertex Model.
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(b) Non-Homogeneous Model.

Figure 1: Variation on the number of predicted vertices (i.e. predicted number of individuals at beach) from Dynamic
Network Regression-vertex model as a baseline model and Model 3 in table 3, a homogeneous model corresponding
to thresholdrth = 0.9, using unconditioned information distance.

No. Model rth σp AICc CP (%) CA(%) VP (%) EP (%)
1 UC-NH 0.9 na 2000.08 43.91 88.40 80.86 11.99
2 UC-H 0.8 na 1931.08 41.40 88.05 80.14 9.79
3 UC-H 0.9 na 1928.10 41.59 88.02 80.15 9.79
4 UC-H 1 na 1935.62 41.97 88.34 80.48 10.18
5 C-NH 9 na 2207.52 45.19 85.52 78.68 11.17
6 UC-NH 25 na 1687.4 38.04 89.09 80.44 9.52
7 UC-NH 1.1 na 1995.3 39.03 91.10 82.27 11.30
8 UC-NH 1.1 1.6 2013.4 45.21 89.13 81.68 13.26
9 UC-NH 0.8 1.7 2002.5 42.86 88.64 80.88 10.84
10 UC-H 1.1 1.95 1950.8 41.64 88.13 80.25 10.27
11 C-H 9 1.95 2013.4 31.79 86.14 76.92 5.48
12 C-H 6.5 1.95 2039.6 32.70 86.26 77.18 5.66
13 C-H 5.5 1.95 1987.7 33.57 86.14 77.22 6.31
14 C-NH 5.5 1.95 2182.5 41.33 88.31 80.31 10.35

DNR-V na na na 2037.80 31.16 86 76.75 5.03

Table 3: Comparison performance in terms ofAICc (14) score and prediction score for correct vertex prediction (VP)
in (16), correct conditional prediction of people at beach(CP) in (15), people not at beach (CA) in (15), and conver-
sation between people (EP) in (16) for models with homogeneity(H) and non-homogeniety(NH) assumption, graph
structures(tree) using conditioned(C) in (12) and unconditioned(UC) in (7) information distances. Models correspond
to thresholdrth values in Beach data (resulting in Late latent nodes) and standard deviationσp for Gaussian prior on
parameters. Dynamic Network Regression-vertex (DNR-V) baseline is substantially outpredicted by all tree models
in getting the labels correct.
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(a) DNR Vertex Model.
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(b) Non-Homogeneous Model.

Figure 2: Vertex prediction accuracy in terms of conditional prediction score of Dynamic Network Regression-
vertex(DNR-V) model and Model 3 in table 3, a homogeneous model with graph structure corresponding to threshold
rth = 0.9 using unconditioned information distance
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Figure 3: Correctly predicted edges for beach data (i.e. predicted conversation between individuals at beach on a
given day)in (% usingEdgePredAccuracy in (16)) using the vertex sets predicted by Model 8 (in table 3), a non-
homogeneous model assuming a Gaussian prior (withσp = 1.6) on parametersθ with structure corresponding to
rth = 1.1 learnt using unconditioned information distance in (7) with baseline, Dynamic Network Regression Vertex
model.
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Figure 4: Latent tree graph structure corresponding torth = 25 learnt using unconditioned information distance in (7)
for beach data.
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Figure 5: Latent tree graph structure corresponding torth = 9 learnt using conditioned information distance in (12)
for beach data.

A Known Issues with General TERGMs

The general TERGM framework, like the corresponding cross-sectional framework (exponential random graph models
or ERGMs) can parametrize an extremely broad class of models, not all of which are statistically or computationally
tractable. Indeed, poorly chosen ERGMs are known to have issues of instability, sensitivity, degeneracy, and scala-
bility, which are often intractable problems for many applications of interest [for a current review, see 30]. Further
[5, 23] have shown that the general TERGM case includes modelfamilies with similar issues of instability, sensitivity,
degeneracy, and scalability, but also that under certain conditions the temporal structure stabilizes these models; this
work naturally leads to the assumptions underlying dynamicnetwork regression.
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