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The  systematic  errors  that  are  induced  by  a combination  of  human  memory  limitations  and  common
survey  design  and  implementation  have  long  been  studied  in  the  context  of egocentric  networks.  Despite
this, little  if any  work  exists  in the  area  of random  error  analysis  on  these  same  networks;  this  paper  offers
etwork error
acebook

a perspective  on the  effects  of random  errors  on  egonet  analysis,  as  well  as  the effects  of using  egonet
measures  as  independent  predictors  in linear  models.  We  explore  the  effects  of  false-positive  and  false-
negative  error  in egocentric  networks  on  both  standard  network  measures  and  on linear  models  through
simulation  analysis  on  a ground  truth  egocentric  network  sample  based  on  facebook-friendships.  Results
show  that  5–20%  error rates,  which  are  consistent  with  error  rates  known  to occur  in ego  network  data,
can cause  serious  misestimation  of  network  properties  and  regression  parameters.
. Introduction

The specter of error appears within all measurements of the nat-
ral world, including the physical world (heat, geology, etc.), and
he social world (friends, coworkers, etc.); however, the issue of
rror is never more present than in the research of social networks
Butts, 2003). In the elicitation of social network information, one
an induce error in both the edges used to represent social ties and
n the vertices that represent individual people or organizations.
ne of the most common forms of elicitation for local networks is

hat of the so-called egocentric network or egonet.  An egonet is pro-
uced when a researcher acquires the neighborhood of a focal actor
y characterizing the alters of an ego. A typical extension of this
ethod is one which attains all the relations between ego’s alters.
Research on error in the context of egocentric networks

as placed a great deal of emphasis on the systematic mis-
easurements induced by the interaction between aspects of

uman memory and the design and instrumentation of sur-
eys (Marsden, 2002, 2003, 1990; Vehovar et al., 2008; Burt,
984; Brewer, 2000; Brewer and Garrett, 2001). Several stud-

es have demonstrated that a substantial amount of systematic
rror, induced in the collection of egocentric data, occurs as a
esult of a variety of cognitive mechanisms (e.g., forgetting) and
uggest that there is no systematic method for predicting the sever-
ty of these errors in any given context (Brewer, 2000). Brewer

nd colleagues have demonstrated a number of different cogni-
ive mechanisms which inhibit and/or bias both the elicitation of
lters and alter–alter ties, and explore how this affects a variety of
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network measures such as degree, density, and centrality (Brewer
and Webster, 1999; Brewer, 2000).

Paradoxically, given these results, there has been little, if any,
work characterizing the effects of simple random error on egocen-
tric networks or on the effects of random error on standard Graph
Level Indices (GLI) such as mean degree, triad census, centraliza-
tion (Anderson et al., 1999), or Node Level Indices (NLI) including
degree or other centrality measures (Wasserman and Faust, 1994).
A similar paucity exists in studies of the effect of this error on the
parameterization of linear models.

A number of disciplines and subfields employ egocentric mea-
sures as predictors within a linear model framework. Examples
from the migration and urbanization literature include the use
of ego’s degree and the ratio of group ties within an egonet (one
group’s ties compared with another’s). For example, one might use
the number of ties within a city and outside a city to predict mea-
sures of immigration and segregation (Guarnizo and Haller, 2002;
Brown, 2006; Aguilera and Massey, 2003; Fischer, 1982). In the epi-
demiological literature the use of egonet density and the egonet
degree of different relations (e.g., friendship, kinship, etc.) can be
used to predict such things as drug use (Schroeder et al., 2001).
And, in the field of criminology, researchers have used egonet
mean degree – the sum of egonet degree divided by the num-
ber of egos sampled (e.g., spatially stratified sampling schemes)
and egonet mean degree for different relations (e.g., number delin-
quent friends) – to predict different crime metrics (Sampson, 1988;
Warner and Rountree, 1997; Browning et al., 2004).

To provide a typology for the effect of random error on egocen-

tric networks this work employs the standard statistical/medical
terminology of false positive and false negative to characterize this
random error. In the context of egocentric networks, this notion of
false positive and false negative is broken down into two distinct

dx.doi.org/10.1016/j.socnet.2012.03.002
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:almquist@uci.edu
dx.doi.org/10.1016/j.socnet.2012.03.002
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Fig. 1. Six examples of egocentric networks in the facebook sample selected by ra

ategories: errors in the alters reported (i.e., errors in the vertex
et) and errors in the relation or tie between alters (i.e., errors in
he edge set).

To inform this discussion of error, we employ the modern tech-
ique of simulation analysis to inject different levels of error into

 sample of “perfectly” measured egocentric networks. The ego-
entric sample comes from a Metropolis-Hastings Random Walk
MHRW) sample of facebook1 (Gjoka et al., 2010) that is shown to
e uniform asymptotically (Gjoka et al., 2010). For this analysis it is
ot necessary that the sample be uniform, only that egocentric net-
orks are measured precisely. Because these egocentric networks
erive from an online source, which is collected through automated
lgorithms, it is argued that these egonets represent a so-called
ground truth” of the public facebook friendship egocentric networks.
y providing an example of a true population sample for which
ocial ties are known exactly, the facebook data serves as a useful
ase for examining the potential impact of measurement error on
mpirically encountered social networks. While no one case can be
epresentative of all real-world networks, the use of empirical data
rovides a source of realistic heterogeneity that can be lacking in
implified, simulated networks.

To further demonstrate potential effects of random errors on

gocentric networks we have chosen to analyze a series of standard
ocial network metrics and to carefully dissect a common use case
f egocentric data. Specifically, we consider Latkin et al.’s (1995)

1 www.facebook.com.
ly choosing an egocentric network within 0.15 quantiles based on graph density.

research on needle sharing where the author uses logistic regres-
sion on the binary (yes/no) outcome of needle sharing on several
egocentric network metrics.

This paper is laid out in the following manner: (1) back-
ground and necessary mathematical notation, (2) error structure,
(3) methodology, (4) results, (5) limitations and other considera-
tions, and (6) a discussion of the results and implications.

2. Background and notation

This section will first give a brief overview of the literature on
error in the area of egocentric networks, and will include some
of the larger literature of error on social networks. Following the
review of the literature, this work will cover the basic details of
egocentric networks and graph theoretic notation employed in this
paper.

2.1. Literature review

The collection of social network data, especially egocentric net-
work data, is fraught with potential for both random and systematic
error. There is a long history of worrying about error in the social
network literature (see, Bernard et al., 1984; Butts, 2003; Freeman
et al., 1987). In the context of egocentric networks, research has

tended to focus on the different effects of alter elicitation such as
free recall, card sort, and roster (Brewer et al., 2005). There has
been extended study of the effects on recall of friendship egonets,
where it was  found that individuals “forgot” as much as 20% of their

http://www.facebook.com
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Fig. 2. False negative vertex error versus false negative edge error, with ed

riends (and even 3% of their best friends) (Brewer and Webster,
999). There exists extensive research into the bias and error cre-
ted by the survey instrument itself—such as interviewer, recency,
nd order effects (Marsden, 2003; Marin, 2004).

Generally speaking, it has been shown that the issue of mem-
ry and the form of elicitation of networks can have considerable
nfluence on the size and composition of an egocentric network
cquired by a researcher (Brewer, 2000). Along with friendship,

areful attention has been paid to such effects in the context of
ntravenous drug users and individuals involved in high-risk sexual
ctivity and their impact on the ability to acquire accurate egocen-
ric networks in such cases (Brewer and Garrett, 2001; Marsden
se positive set to 0.05, for parameters density, multiplexity, drug and sex.

et al., 2006). There exist attempts to characterize systematic bias
caused by these various elicitation schemes (Feld and Carter, 2002).

Recently, work has sought to characterize general principles of
the effects of random error on network structure (e.g., Butts, 2003;
Borgatti et al., 2006). Butts (2003) found that (i) individuals are
more likely to make false negative than false positive errors in their
reports of alter–alter ties and (ii) these types of errors can have
significant impact on network structure.
Borgatti et al. (2006) found that centrality measures on ran-
dom networks were rather robust to random error; however, it is
not so obvious that this will be true in the context of non-random
networks such as egocentric networks.
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Fig. 3. False positive vertex error versus false negative edge error, with ed

.2. Egocentric networks

Egocentric networks are generally composed of a focal actor
ego) and a set of component actors (alters) who are connected
o ego through some predefined relation (e.g., friendship) (see

asserman and Faust, 1994). This form of data is most often elicited
n survey context (e.g., GSS, AddHealth, Personal Networks in Town

nd City; Burt, 1984; Moody, 2002; Fischer, 1982; Marsden, 1990).
gonets may  also be sampled from online populations due to either
ata limitations (e.g., the amount of memory required to hold the
hole network is simply impractical) or to enforced limitation to
se positive set to 0.05, for density, multiplexity, drug and sex parameters.

access of the data (e.g., facebook, friendster, twitter; Gjoka et al.,
2010).

When speaking about an egocentric network the two  most
important levels are (1) a star egocentric network and (2) the
first-order egocentric network (Wasserman and Faust, 1994; Butts,
2008). A star egonet is composed of only ego and his or her alters,
and is therefore always a star, topologically speaking (Butts, 2008,

p. 18). A first-order egonet is composed of ego and his or her alters
and the connections between the alters (e.g., ego is friends with Bill
and Jill, and Jill is also friends with Bill). In this paper, an egocentric
network (unless specified) will always refer to a first-order egonet.
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ig. 4. Left is average absolute error and right is MSE  (with edge false positive fixed

his definition may  be expanded until the entire graph is covered
e.g., second-order, third-order, etc.).

.3. Graph notation

The prevailing practice in the field of social networks is to rep-
esent relational structures in a combination of mathematical and
tatistical notation. In this paper it is necessary to define a series
f basic concepts, the first of which is a graph that is comprised
f an edge set (E) and vertex set (V), i.e., G = (V, E), where V rep-
esents a set of actors and E represents a set of relations (e.g.,
riendship, kinship, neighbors, coworkers, etc.). It is often useful
o be able to write a graph in its matrix algebra representation,

lso known as an adjacency matrix.  An adjacency matrix is a n by

 matrix, where n is the size of the vertex set, composed of 1s and
s (diagonal usually nulled out, i.e., no self-ties). A graph may  be
ither directed or undirected.  An undirected graph is by definition

ig. 5. Left is average absolute error and right is MSE  (with edge false positive fixed to 0.0
5). False negative vertex error versus false negative edge error in network size.

symmetric (i.e., if A is friends with B then B is friends with A), while
a directed graph may  be non-symmetric (i.e., if A is friends with
B, then B does not have to be friends with A). Undirected rela-
tions are representative of relations such as coworkers, friends, or
kin, whereas directed networks might be composed of relations
like communication, dominance acts, or gift-giving. Finally, | · | is
the cardinality operator and when applied to an adjacency matrix
provides the size of the network or the number or vertices in the
network.

In the context of egocentric networks it is necessary to define
the concept of a subgraph. A graph H is said to be a subgraph
of G if H ⊂ G. It is worth pointing out that under this definition
an egocentric network is always a subgraph of the complete net-

work. The important take-away from this is that each subgraph
can itself be represented as a graph and hence every egocen-
tric network, while being a piece of a larger graph, is itself a
graph.

5). False negative vertex error versus false negative edge error in network density.
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Table 1
Descriptive statistics of the 330 subsample of egocentric networks in the facebook
37+thousand sample of egocentric networks.

Mean Median SD

Size 93.99 38.50 148.45
Density 0.37 0.24 0.30
Deg  cent 0.78 0.86 0.23
Triad 0 2913239.73 11636.00 25415499.80
Triad 1 476567.00 4395.00 1872516.45
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Table 3
Mean and SD of alter subgroups in Latkin et al. (1995).

Mean SD

No needle sharing (121)
Drug 4.39 2.22
Sex 1.45 1.44

Intimate interaction 2.71 1.98
Physical assistance 3.40 1.95
Material assistance 3.15 1.81
Positive feedback 4.25 2.43
Health information 2.30 1.97
Social participation 4.02 2.54

Needle sharing (209)
Drug 5.40 3.28
Sex  1.54 1.73

Intimate interaction 3.08 1.83
Physical assistance 3.48 1.97
Material assistance 3.00 1.87

bilistic notation similar to that of the edge error case, noting that
Triad 2 79016.47 1509.00 283261.99
Triad 3 32341.83 442.00 151420.37

. Error structure

A number of different ways exist to conceptualize the notion of
rror. One way to approach this problem is to propose that there
s the observed data (in this case Go = (Vo, Eo), which is a measure-

ent of the true data (Gt = (Vt, Et)). Thus we can define a notion of
alse positive and false negative in the context of egocentric networks
borrowing from the statistics and medical literature language on
rrors). There are two core types of false positives and false neg-
tives in the context of egonets. The first type is of the edge, e.g.,
hen an edge is falsely included or falsely excluded and the sec-

nd type is of the vertex,  e.g., when a vertex is falsely included or
alsely excluded. Both of these errors occur naturally in most egonet
licitation schemes. For example, Brewer and Webster (1999) show
hat an individual can forget as much as 20% of their friends.

.1. Edge error

Edge error in egocentric networks occurs when a tie between
lter i and alter j is either mislabeled as present (false positive)
r mislabeled as not present (false negative). One distinctive fea-
ure of an egocentric network – which would not be present in a

ore general discussion of network error, such as that seen in Butts
2003) – is that ego is definitionally connected to every alter. This
s represented notationally by conditioning on ego.

Before defining false positive and false negative in the context
f egocentric networks, a little bit of notation will need to be intro-
uced. Ego will be indexed at i = 1, without loss of generality, so that
k
1 · is the set of edges from ego to all alters j = 2, . . .,  |Gk|, where k = o
r t.
The probability of a false positive or false negative in the context
f egocentric networks may  be very naturally written in probabilis-
ic notation where the probability of the observed alter–alter tie

able 2
ultiple logistic regression for sharing needles in previous 6 months at follow-up

nterview for 330 injection drug users in the SAFE study, Baltimore, MD, 1991–1992.

Variables B SE B Signif. Odds ratio

Network size
Drug 0.11 0.06 0.04 1.12
Sex  −0.04 0.09 0.68 0.96
Intimate interaction 0.08 0.09 0.38 1.08
Physical assistance −0.07 0.08 0.43 0.94
Material assistance −0.15 0.08 0.06 0.86
Positive feedback −0.05 0.07 0.48 0.95
Health information 0.02 0.08 0.79 1.02
Social participation 0.06 0.06 0.31 1.07

Network characteristics
Network density 1.05 0.43 0.02 2.85
Multiplexity 0.11 0.09 0.21 1.11

Individual characteristics
Gender 0.12 0.31 0.69 1.13
Education −0.02 0.25 0.94 0.98
Age  0.00 0.02 0.92 1.00

able 3 from Latkin et al. (1995).
Positive feedback 4.50 2.89
Health information 2.58 1.99
Social participation 4.82 3.05

(i to j; i, j /= 1) is misclassified as 1 or 0 depending on what the
“true” edge value is:

False positive : Pr(eo
ij = 1|et

ij = 0, et
1 · ) = ˛e (1)

False negative : Pr(eo
ij = 0|et

ij = 1, et
1 · ) = ˇe (2)

where the false positive rate for any given alter–alter edge is ˛e and
the false negative rate for any given alter–alter edge is ˇe.

3.2. Vertex error

Similarly to the case of edge error, the error in the vertex set may
be broken down into false positives (i.e., incorrectly, including an
alter), and false negatives (i.e., incorrectly, excluding an alter). This
statement contains a number of non-trivial assumptions which are
derived from more general assumptions on egocentric networks
and graphs. Removing a vertex has the effect of removing all ties
that are connected to that vertex, which means that removing a
vertex also affects the edge structure of an egocentric network. The
inclusion or exclusion of alter vi may  again be written into proba-
in this case the inclusion or exclusion of a vertex includes whether
all pairwise alteri to all other alters is possible (this is suppressed
in the following notation). Again, without loss of generality, ego is

Table 4
Simulated logistic regression table based on Table 3 in Latkin et al. (1995).

Variable B SE B Signif. Odds ratio

Intercept −0.03 0.72 0.96 0.97
Network size

Drug 0.10 0.03 0.00 1.11
Sex  −0.15 0.06 0.01 0.86
Intimate interaction 0.06 0.04 0.17 1.06
Physical assistance −0.06 0.04 0.08 0.94
Material assistance −0.19 0.05 0.00 0.82
Positive feedback −0.09 0.04 0.02 0.91
Health information 0.08 0.04 0.05 1.09
Social participation 0.10 0.04 0.01 1.10

Network characteristics
Network density 1.17 0.52 0.02 3.22
Multiplexity 0.02 0.08 0.80 1.02

Individual characteristics
Gender 0.19 0.36 0.60 1.21
Education −0.01 0.04 0.90 0.99
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ig. 6. Left is average absolute error and right is MSE  (with edge false positive fixed

ndex at i = 1.

alse positive : Pr(vi ∈ Vo|vi /∈ Vt, v1 ∈ Vt) = ˛v (3)

alse negative : Pr(vi /∈ Vo|vi ∈ Vt, v1 ∈ Vt) = ˇv (4)

here the false positive rate for any the false inclusion of an alter i
s ˛v and the false negative rate for the false exclusion of an alter i
s ˇv (where i = 2, . . .).

. Methodology

In this paper we employ simulation to induce different rates of
rror on both the vertex set and edge set of the facebook egonet

ample, hereafter referred to as the “facebook sample.” First, there
ill be a discussion of the data followed by a description of the

lgorithms used to induce random error and, finally, a discussion of
he simulation techniques employed to test the effects of random

Fig. 7. Left is average absolute error and right is MSE (with edge false positive fixed to
5). False negative vertex error versus false negative edge error in dyad and isolates.

error on egocentric networks and the effects of this error on the
parameters of general linear models.

4.1. Data: facebook friends egonets

4.1.1. Facebook
Facebook.com, in 2004, where it was initially introduced at Har-

vard University. At that time, facebook.com was  primarily used to
share information about personal interests and activities. Shortly
after its introduction to Harvard University, facebook spread to
other Ivy League Schools and subsequently to hundreds of institu-
tions around the United States. Currently, facebook membership is
open to the general public. Facebook allows users to create a profile

where they may  choose to share a variety of personal characteristics
(e.g., sex, relationship status, school, work, etc.) and general inter-
est information such as favorite artists or political views. Another
core aspect of facebook is that it allows for the joining together of

 0.05). False negative vertex error versus false negative edge error in two  stars.
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Fig. 8. Left is average absolute error and right is MSE  (with edge false positive fi

eople from different regions (e.g., New York City or Oregon),
chools (e.g., High School, University), or places of work (e.g.,
icrosoft) into groups. And, most importantly, there is a social

etwork component to facebook made public by the declaration
f “friends.” Facebook friendship is a mutual tie where both parties
ust agree that they are facebook friends,  and that friendship is
ade public providing they choose not to hide their information

y changing the default settings on their facebook profile.

.1.2. Facebook sample
The data used for this study is a sample of full egocentric net-

orks (egonets) as derived from the Metropolis Hastings Random
alk sample of facebook friends (Gjoka et al., 2010). This sam-

le includes around 37+thousand full egonets (and second-order
eighbors). The relation of facebook friendship is publicly dis-
layed, i.e., the facebook user has not modified their default privacy
etting in such so as to hide their “friends.” In this paper we employ

 subsample of 330 egocentric networks uniformly sampled from
he full sample of egonets.2 In this sample, the average degree of ego
s 94 with an average egonet density of 0.37 (for more details see
able 1). In Fig. 1, one may  visualize the diversity of these egocentric
etworks.

.2. Simulation analysis

While there are a number of ways to explore the nature of ran-
om error on egocentric networks, one very natural approach is to
mploy simulation. We  treat the facebook sample as “ground truth”
nd induce various levels of false positive and false negative error
nto the edge and vertex set of the egocentric networks. To induce
rror on the edges is quite natural, we induce a Bernoulli change in
he “true” network at a specified rate (˛e, ˇe).
To induce error in the vertex set is straight forward in the false
egative case (vertex deletion), but slightly more complicated in
he false positive case (vertex addition). Deletion may  be done by

2 The case study and simulation analysis of GLIs are performed on a 330 sub-
ample for computational reasons. The 37+thousand egonets range from 1 to 4563
aking the multiple computations of various network statistics need for this paper

rohibitively expensive. However, because we employ a uniform random sample of
 uniform random sample this subsample of 330 will be sufficiently representative.
o 0.05). False negative vertex error versus false negative edge error in triangles.

removing a vertex (and all edges connected to the removed vertex)
at a given rate (ˇv).

As a result of the “open boundary problem,” (where should the
missing vertex come from, and, more importantly whom should
the new vertex connect to) vertex addition is more complicated.
Instead of tackling this open boundary problem head on, we choose
to add one vertex at a time up to n false positive vertices where we
estimate the likelihood of these new vertices being connected to
any given node (including the other added vertices) as Bernoulli
process at a given density ı.3

4.3. Computation

All computation is implemented in the R Statistical Program-
ming Environment (R Development Core Team, 2010).

5. Case study: the effects of random errors in parameter
estimation of dependent variables

As social network analysis and relational analysis has grown
in popularity within the social science community the practice of
employing different GLIs and NLIs from egocentric network data
as independent variables in linear models has grown in popular-
ity, e.g., degree regressed on the outcome of segregation or egonet
density on the binary outcome of needle sharing (yes/no).

5.1. Personal network characteristics and their influence on
needle-sharing

Latkin et al.’s (1995) research is a particularly salient exam-
ple of the use of egocentric network measures. These researchers
performed logistic regression on the binary (yes/no) outcome of
needle sharing on several egocentric based GLIs. Latkin et al.’s

(1995) paper was  published in the Journal Social Networks, “Per-
sonal Network Characteristics as Antecedents to Needle-sharing
and Shooting Gallery Attendance.” Latkin et al. (1995) researched

3 The ı selected in this analysis represents the (homogenous) probability of any
two  alters being tied together as estimated from the data, and is (we argue) the most
reasonable proxy for selecting if two alters should be connected given an absence
of  observed data for false positive alter–alter ties.
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ig. 9. Left is average absolute error and right is MSE  (with edge false positive fixed

he impact of local network characteristics on the likelihood of
eedle-sharing within a sample of 330 individuals participating

n an HIV-prevention study. Latkin et al. (1995) discovered that
eedle-sharing is influenced by both ecological and resource fac-
ors, specifically that there is potential for network-based strategies
o reduce needle-sharing among injecting drug users.

This research employed three different network measures:
ensity (egocentric network density), multiplexity (number of indi-
iduals in ego’s network who share 2 or more attributes), and
ubgraph degree.  Latkin et al. (1995) measured eight subnetworks
n each of their respondent’s egocentric network: two “negative”
etworks (Drug and Sex), and six “positive” networks (Intimate

nteraction, Physical assistance, Material assistance, Positive feed-
ack, Health information, and Social participation). Latkin et al.
1995) employ logistic regression to predict sharing needles in pre-
ious six months at follow-up interval for 330 injection drug users
n the SAFE study, Baltimore, MD,  1991–1992 (see Table 2).

.2. Simulating a network of needle-sharing

To emulate the aforementioned case study we employ the
ethod of simulation to generate subgraph groups, and the binary

utcome variable (0 or 1). In the original study there are 209 indi-
iduals who shared needles out of the sample of 330. We  select
he 209 out of 330 egocentric networks to be “needle sharers” by a
eighted sampling routine to provide similar weighting results to

hose in Table 2.4

To simulate the subgroups we employ draws from a Poisson
istribution to provide the number of ego’s alters to be in a given
ubgroup and then uniformly sample individuals from the set

f alters to be labeled as part of said subgroup.5 Our utilization
f a Poisson distribution allows us to stay within the spirit of
his research, which is concentrating on the effects of random

4 We employ the following weighting scheme to select the needle sharing indi-
iduals ((  ̨ · ln (d) · ı)/c), where  ̨ is tuning constant, d is the degree of the egonet, ı
s  the density of the egonet and c is a normalizing constant. To acquire Table 4 we
se an  ̨ = 0.3.
5 In many social contexts we expect these different groups to be tightly clustered

e.g., my  friends tend to be friends), so this should be a more conservative test as
lters are simply placed into their grouping by random assignment.
5). False positive vertex error versus false negative edge error in network size.

processes on egocentric networks. The Poisson distribution used
differs between the “needle users” and non-needle users as it does
in the original study. We  use a standardized mean times the egonet
size for each group because (1) the two  groups differed and (2) the
egocentric networks in the facebook sample are on average larger
than those in the study by Latkin et al. (1995).  The covariates Gender
and Education are also simulated from Poisson distributions.6

STEP 1 Generate subgroups from truncated Poisson distribu-
tion.We start by performing a single draw from a Poisson
distribution with mean (ni · dgi/˛), where ni is the size of
the egonet i, dgi is the degree of group g and egonet i, and

 ̨ is a tuning parameter7. We  redraw from the Poisson
distribution if the draw is larger than ni. The means used
for this analysis may  be found in Table 3.

STEP 2 Random assignment for groups.We then assign group
labels based on the Poisson draws from STEP 1 through
a simple random assignment procedure.

STEP 3 Perform logistic regression; Table 4.

5.3. Inducing error on the network’s of needle-sharing

We begin by inducing error on the egocentric networks in the
way described in Section 4.2 and then recomputing the logis-
tic regression model on the flawed network. A slight addition to
the false positive vertex algorithm is implemented to handle the
assignment of groups in the “addition” vertices being added to the
network. This is handled through a simple binary random variable
with the probability of being included in a group chosen by the per-
centage of ingroup members divided by the total number of alters
in a given egocentric network.

5.4. The effects of random
errors in egocentric networks as predictors in linear models
In this paper we  report the findings of false positive and false
negative errors on egocentric networks as predictors of an outcome

6 Age is left out because it had a zero effect in the original logistic regression.
7

 ̨ = 10 for this analysis, because that is the average degree of ego.
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ig. 10. Left is average absolute error and right is MSE  (with edge false positive fixe

f interest (i.e., needle sharing) through a simulation analysis as
iscussed in the earlier section. We  focus on three egonet measures:
ensity, multiplexity, and two subgroup measures: sex and drug.
hen interpreting the effects of the random error on the logistic

egression parameters we have chosen to exam the “z-score” or
ormalized effect of the parameter minus the true value divided
y the observed standard deviation for the parameter of interest
Figs. 2(a)–3(d) ). In the false negative reporting in the vertex set
nd edge set we begin to see large effects in the density parameter
t around 20% error and in the subgroups as early as 5 or 10% error.
otice that since we are looking at z-scores this has implications for
irectionality of the effect and the effect’s significance level (Fig. 2
a)–(d)).
For false positive reporting (Fig. 3(a)–(d)) in the vertex set and
alse negative reporting in the edge set we begin to see serious
hanges to the parameter value (and the resulting p-value) at
s few as one or two individuals. Notice also that the landscape

ig. 11. Left is average absolute error and right is MSE (with edge false positive fixed to 0.
.05). False positive vertex error versus false negative edge error in network density.

is quite non-linear so that the effect goes in and out of “safe
space.”

6. Errors in standard network measures

Again we  report the false positive and false negative effects
on outcomes of interest, in this case standard network summary
measures. To reduce the number of combinations, we fix the edge
false positive rate to 0.05 (since Butts, 2003, showed that false pos-
itive rates are typically very low) and the average mean square
error and average absolute error for false negative vertex error
versus false negative edge error (Figs. 4–8 and we also look at the
false positive vertex error versus false negative edge error, adding

0–10 vertices (Figs. 9–13). This study examines random error in
five different network measures: size, density, and the undirected
triad census – minus the null triads because egocentric networks
are connected by definition – (Dyad and Isolates, Two  Stars, and

05). False positive vertex error versus false negative edge error in dyad and isolates.



Z.W. Almquist / Social Networks 34 (2012) 493– 505 503

F d to 0

T
m
c
a
e
f
e

6

c
i

6

d

F

ig. 12. Left is average absolute error and right is MSE  (with edge false positive fixe

riangles; Wasserman and Faust, 1994). All five are classic network
easures (see for details Wasserman and Faust, 1994). Each plot is

omposed of two components, a mean square error (MSE) and aver-
ge absolute error (AAE). Notice that in Figs. 4–13 the two  different
rror measures result in largely the same finding, with a tendency
or AAE to be more robust to the percent of error induced on the
gocentric network.

.1. Results of simulated errors in standard network measures

The results section will again be broken down into distinct
lasses that of false negatives in the vertex set and false positives
n the vertex set because of the issues discussed in Section 4.2.
.1.1. False negatives in vertex reporting
False negatives in vertex reporting effects on size (or egocentric

egree) and edges is rather straightforward and affects the egonet’s

ig. 13. Left is average absolute error and right is MSE  (with edge false positive fixed to 0
.05). False positive vertex error versus false negative edge error in two  stars.

size/egonet degree in linear fashion as expected (Fig. 4). Density
effects are large and may  become quickly non-trivial (even a shift
of 5% in the density can radically change the nature of a graph or
egonet). If we  view the diagonal in Fig. 5 – which is the region
most egocentric network data is likely to be collected (i.e., both
error in the vertex set and edge set) – there is largely a linear trend,
however, it can be seen that at around 20% error metric like the
density of an egonet may  be heavily biased. This bias could affect the
interpretation of the egonets influence on outcomes such as needle
sharing (notice that 20% error is not unheard of, see Brewer and
Webster, 1999). Errors in the (standardized) triad census (Figs. 6–8)
are non-trivial. Again, 20% seems to be the start of the “serious”
amount of error in this network measure.
6.1.2. False positives in vertex reporting
False positives in vertex reporting effects on size (or egocen-

tric degree) and edges is rather straightforward and affects the

.05). False positive vertex error versus false negative edge error in triangles.
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gonet’s size/egonet degree in a linear fashion as expected (Fig. 9).
rror in the vertex reporting, where ego is adding one or more ver-
ices to their egonet, quickly become problematic for density as
ew as three additional alters may  move the difference in density
p as much 20% (Fig. 10). Errors in the (standardized) triad census
Figs. 11–13) are again non-trivial.

. Limitations and other considerations

This research is focused on a very particular form of error within
he analysis of egocentric networks, namely that of measurement
rror. While it is important to always take into consideration issues
f measurement and the error that ensues, it is also paramount to
ot give up on a method due to measurement issues and limita-
ions. Egocentric elicitation is a core network metric and a growing
ool within the survey literature to allow for local-level network
ata collection. The characterization of the error which might occur
ithin egocentric measurement is only one of many considerations

nd should not detract from the actual collection of the data. It
hould, however, inform and temper the conclusions and inter-
retation of significant findings based off of egocentric network
easures. However, it is worth pointing out at this juncture, not

ll error within network data collection is random it may  in fact be
ery systematic and clustered (e.g., not only does one forget one
riend, but they forget all friends associated with that individual,
.g., all work friends). This clustered error maybe very problem-
tic or much less of an issue depending on one’s interest and the
esearch goals. It is critical to mention that this paper and research
as very limited implications for systematic error or clustered error
hich might have very different characteristics or issues.

Other limitations include the data source, i.e., facebook. While
he egocentric networks attained from facebook are measured per-
ectly they may  differ in significant ways from many egocentric
etworks of interest. Facebook is an online friendship network
hich has limited maintenance issues, and thus the local networks
ay  become much larger (on average) than some face-to-face rela-

ionships. Another issue for the facebook friendships is that online
sers differ from the general population in some important ways,
hough these differences are rapidly disappearing.8

. Discussion and implications

Research on error in the context of egocentric networks
as placed a great deal of emphasis on the systematic mis-
easurements induced by the interaction between aspects of

uman memory and the design and instrumentation of surveys;
owever, little if any work has been done in the area of random error
n egocentric networks. This paper attempts to provide a starting
oint to understanding what simple errors might do to an ego-
entric network and what effects this might have on a researcher’s
nalysis of the egonets themselves and the resulting effects of using
gonet measures as independent predictors in linear models.

We began by describing the notation and terminology (false pos-
tives/false negatives), and then introduced a ground truth data set
a collection of uniformly sampled egocentric networks composed
f facebook friendships) that contain a rich and realistic baseline on
hich to perform our simulation analysis of random errors. Next,
e built on the work of Butts (2003) to hone in on the false negative
eporting of edge ties (rather than false positive of edge ties).
Our simulation analysis is built around a real-world public

ealth research paper published in the Journal of Social Networks

8 For current polling on the differences between online and offline indi-
iduals see the most recent reports put out by the PEW Research Center
http://www.pewresearch.org).
ks 34 (2012) 493– 505

(Latkin et al., 1995). This paper explored the effects of egocentric
networks on the binary outcome of needle sharing. This analysis
demonstrates that significant change in the network measures and
parameter estimates can occur at as little as 5% error and becomes
troubling at 20% (which as Brewer and Webster, 1999, demon-
strates this may  happen in many egonet samples). This error is
particularly striking when considering the fluctuations which can
occur in the weight values estimated by standard linear models,
especially when considering such standard measures as density or
subgroup degree—noting that this is likely to be more problematic
in the case where the subgroups are clustered as one might expect
in many social contexts.

In summary, we have examined the impact of random error on
egocentric networks through inducing error on a Facebook sam-
ple of egonets and exploring the effects of this error on standard
social network measures and their use as predictors in linear mod-
els. Here, we discovered that if there is as much as 20% error in
egonet reporting, as Brewer and Webster (1999) suggests is not
uncommon, then simple random error within egonets could be
an important issue to take into consideration when interpreting
results—this is especially true if there is even a minor amount of
false positive reporting in the vertex set. It becomes obvious, then,
that random error is potentially a problem for network researches
and deserves continued attention and research in the future growth
of survey methodology and network analysis.
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