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Abstract: Statistical methods for dynamic network analysis have advanced greatly

in the past decade. This article extends current estimation methods for dynamic

network logistic regression (DNR) models, a subfamily of the Temporal Exponential-

family Random Graph Models, to network panel data which contain missing data in

the edge and/or vertex sets. We begin by reviewing DNR inference in the complete

data case. We then provide a missing data framework for DNR families akin to

that of Little and Rubin (2002) or Gile and Handcock (2010a). We discuss several

methods for dealing with missing data, including multiple imputation (MI). We

consider the computational complexity of the MI methods in the DNR case and

propose a scalable, design-based approach that exploits the simplifying assumptions

of DNR. We dub this technique the “complete-case” method. Finally, we examine

the performance of this method via a simulation study of induced missingness in

two classic network data sets.
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1. Introduction

Interest in the collection and analysis of dynamic network data has increased

dramatically over the past decade (e.g., Snijders (2005); Almquist and Butts

(2014b); Krivitsky (2012); Hanneke, Fu and Xing (2010)). This growth stems

primarily from advances in computational resources and statistical theory (par-

ticularly developments in the simulation and analysis of relational data), with

additional impetus stemming from the rapid growth of Internet-based data collec-

tion (e.g., Leskovec (2011)). The scientific study of dynamic networks is pervasive

in the social sciences, arising in the context of problems such as the evolution of

friendship ties (e.g., Newcomb (1961)), communication and face-to-face interac-

tion over time (e.g., van de Rijt (2011)), the dynamics of disease transmission
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networks (e.g., sexual contact networks or needle sharing networks; Entwisle

et al. (2007)), emergent organizational networks during disaster response (e.g.,

Carley (1999)), and organizational collaboration dynamics (Powell, Koput and

Smith-Doerr (1996)). Beyond the social sciences, dynamic networks have been

explored in computer science (e.g., online networks, see Leskovec (2008)), physics

(e.g., coevolution of dynamical states and interactions, see Zimmermann, Egùıluz

and San Miguel (2004)) and engineering (e.g., human, cyber and physical traffic

engineering, see Wang et al. (2006)), among other fields.

Here we consider a network to be any system that can be represented as a

graph, where a graph is defined by two sets: a vertex set (V ), and a edge set

(E) consisting of ordered or unordered pairs from V (reflecting undirected and

directed relations, respectively). In a network context, edges pertain to relations

(e.g. friendship or chemical bonds) and vertices generally represent entities (e.g.

Mike or Microsoft). Modern data collection through sensors (e.g. cell phones),

surveys, and online social network systems (OSNs) have allowed for larger and

more detailed network data collection efforts, especially in the area of dynamic

networks; however, even with improved measurement tools there still exists the

persistent problem of missing data, either by design (e.g. sampled data) or out

of design (e.g. machine failure). Thus, the collection of large dynamic networks

often results in various types of missingness, which can complicate analysis (Hipp

et al. (2015)). Particular complexities arise with missing data in a dynamic

context because most plausible temporal network models (e.g., Hanneke, Fu and

Xing (2010); Cranmer and Desmarais (2011)) rely on conditioning on the past.

Conditioning on the past can yield missing data on both the dependent and

independent variables, and accounting for missingness raises both computational

and theoretical challenges.

Here, we consider the case of so-called network panel data, a series of network

snapshots over time. The framework we employ builds on the exponential-family

random graph models (ERGMs), positing that each network in the time series is

drawn from a discrete exponential family conditional on past draws and exoge-

nous covariates. This class of models is often referred to as temporal ERGMs

or TERGMs (Hanneke, Fu and Xing (2010)). Further, under certain conditions

(primarily, conditional independence of edge and/or vertex states in the present

given the past) these models have a conditional Bernoulli structure closely resem-

bling logistic regression; members of this class are referred to as dynamic network

logistic regression (DNR) models (Almquist and Butts (2014b)), and are of par-

ticular interest because of their simplicity, interpretability, and computational
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scalability. While generally employed for networks with fixed or exogenously

changing vertex sets, TERGM (and DNR) can be further extended to model

endogenous vertex dynamics (Almquist and Butts (2014b)).

To date, work on TERGMs has assumed complete network data (i.e., no

missing edges or vertices); however, given that each network cross-section con-

tains O(N2) edge variables, there is considerable opportunity for missingness to

occur. Here, we propose a general framework for conceptualizing missingness in

a network panel data context. In this we build on the work on cross-sectional

ERG inference with missing data introduced by Gile and Handcock (2010a) and

Koskinen, Robins and Pattison (2010), as well as the broader statistical literature

on missing data (for a review see e.g. Little and Rubin (2002)). Further, we dis-

cuss some specific implications of missing at random (MAR) data for DNR, and

provide a computationally scalable approach to parameter estimation for DNR

families with ignorably missing data. When N is large, complete enumeration

of an entire network often becomes infeasible, resulting in the omission of nodes

and/or edges either unintentionally or by design. With respect to the latter,

there are now numerous methods for acquiring probability samples of network

data; these include: uniform or weighted independence sampling of nodes (for

a detailed review see, Kolaczyk (2009)), respondent-driven sampling methods

(RDS) (for a review see Gile and Handcock (2010b)), and random-walk methods

(e.g., Gjoka et al. (2010)). While it is well known that discrete exponential-family

models for cross-sectional networks can be quite challenging to model, both theo-

retically (see e.g. Schweinberger and Handcock (2015)) and computationally (see

e.g., van Duijn, Gile and Handcock (2009)), it has been shown that in certain

contexts it may be easier to model dynamic networks conditioned on the past

(e.g., Desmarais and Cranmer (2012)). This effect appears to be largely due to

the ability to leverage past information to reduce the strong dependence that

cross-sectional designs with very little covariate information are forced to model

(a special case of the “strong covariate” effects shown by (Butts (2011), p. 332).

Dynamic networks – when available – not only allow more direct investigation

of social mechanisms, but can thus also be easier to work with (Almquist and

Butts (2014b)).

2. Dynamic Network Logistic Regression

A social or other network on vertex set V and edge set E is often represented

as a graph {G = (V,E)}, where the size of the graph is defined by the number of
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vertices (N = |V |). This framework can be extended to incorporate a temporal

dimension by indexing each set by time (i.e., Gt = (Vt, Et) is the state ofG at time

t). A dynamic graph may also be represented as a series of adjacency matrices,

. . . , Yt, . . . with Yt ∈ {0, 1}Nt×Nt , such that Yijt is an indicator for the presence of

an edge from vertex i to vertex j at time t, and the size of the network is the row

or column dimension of Yt (Nt). Lower case yijt will represent the observed edge

value. TERGMs are generally specified in a manner similar to VAR processes

via a kth order temporal Markov assumption. Specifically, let Yt be the state of

the network at time t, given vertex set Vt. We then assume that, for all times t,

Yt|Yt−1, . . . , Yt−k is independent of Yt−k−1, . . .. The general TERGM framework

(for full details see the Core Concepts Section in the online supplement), like

ERGMs, can parametrize an extremely broad class of models, not all of which

are statistically or computationally tractable. While well-specified ERGMs have

been successfully used to study a wide range of social phenomena, poorly chosen

ERGMs can have issues of instability, sensitivity, degeneracy, and scalability

(challenges that have spawned a literature in their own right; see e.g., Handcock

(2003); Butts (2011); Schweinberger and Handcock (2015)). Hanneke and Xing

(2007) and Hanneke, Fu and Xing (2010) have shown that the general TERGM

case includes model families with similar properties, but also that under certain

conditions the inclusion of temporal structure can improve model behavior; this

work naturally leads to the assumptions underlying dynamic network regression,

the most important of which is that edge variables are independent in the present

conditional on the past (and any covariates). Here we follow the approach of

Almquist and Butts (2014b), who modeled the vertex and edge set coevolution

as separable DNR processes with vertex (2.2) and edge (2.1) likelihoods:

Pr(Vt | Zt−1
t−k , Xt) =

n∏
i=1

B
[
I(vi ∈ Vt)

∣∣logit−1
{
ψTw(i, Zi−1

i−k , Xt)
}]
, (2.1)

Pr(Yt | Vt, Zt−1
t−k , Xt) =

∏
(i,j)∈Vt×Vt

B
[
Yijt

∣∣logit−1
{
θTu(i, j, Vt, Z

i−1
i−k , Xt)

}]
, (2.2)

where B is understood to be the Bernoulli pmf, I is the indicator function, Xt

is a covariate set (potentially including dynamic latent variables, see supplement

for discussion), Y t−1
t−k = Yt−1, . . . , Yt−k is the graph structure given the vertex set

from time t− k to t− 1, Zt = (Yt, Vt) is the joint vertex and edge set structure,

Zt−1
t−k = Zt−k, . . . , Zt−1 is the joint edge/vertex set structure from time t − k to

t−1, u and w are sufficient statistics for the edge and vertex models (respectively),

and θ and ψ are the respective edge and vertex parameter vectors. It can often
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be assumed that Vt is fixed, in which case the above reduces to a DNR family on

Y alone. As the form of Eq (2.1)-(2.2) suggests, inference for θ and ψ reduces

to logistic regression (hence the term “DNR”). Missing data introduces some

complications, however, as we discuss below.

2.1. Ignorable missingness and DNR

Rubin (1976) introduced a typology for typical forms of missingness in so-

cial science data, that has served as the basis for a widely used framework for

modeling missing data (Rubin (1976); Little and Rubin (2002)). This framework

allows for arbitrarily complicated forms of missingness if the mechanism of miss-

ingness is known; however, under typical situations the mechanism of missingness

is not known and is often assumed to be either Missing Completely at Random

(MCAR) or Missing at Random (MAR). These may be defined as follows. Let

R be an indicator function such that R = 1 if random variable Y is observed

and R = 0 if Y is missing. This naturally defines a model for the missing data

process, Pr(R = r|Y = y) = fR|Y (r|y, ξ) with parameters ξ ∈ Ξ governing the

missing data mechanism. With this notation we can define MCAR to be the case

when Pr(R = r|Y = y) = Pr(R = r), equivalently fR|Y (r|y, ξ) = fR(r, ξ), and

MAR to be the case when Pr(R = r | Y = y) = Pr(R = r | Yobs), equivalently

fR|Y (r|y, ξ) = fR|Yobs
(r|yobs, ξ). MAR is typically interpreted as implying that

knowledge about Ymis does not provide any additional information about R if

Yobs is already known. Of these assumptions, we generally prefer the weaker

MAR condition.

We begin by extending our notation to the missing data case (for more

details see the supplement). Following the development of Little and Rubin

(2002), we decompose the complete data into an observed part (Y o) and a missing

part (Y m). Under the adjacency matrix characterization of a graph the missing

data are definitionally the edge variables (i.e., ymij ) when not considering vertex

dynamics. Similarly, in the vertex dynamics case we take V o to be the set of

vertices whose presence or absence is observed, and V m the vertices that are

missing (not observed). Since an edge can only be present if its endpoints are

present, it further follows that vi ∈ V m implies that all yij , yji are missing for

all j. Focusing on the fixed-vertex case, it is convenient to express the likelihood

function for the model of (2.2) as

L(θ|Yt) =

T∏
t=k

Nt×Nt∏
i,j=1

fY {yijt|Y t−1
t−k , Xt, S(Y t−1

t−k )}, (2.3)
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where S is a function of sufficient statistics of the graph or graph sequence (e.g.

degree or the triad census), the Xt are exogenous covariates (possibly time vary-

ing) and T is the length of the dynamic data. We can then define the observed

data likelihood as the integral of the joint likelihood over the possible states of the

missing data (weighted by the probability of the specific pattern of observations

obtained, R). Under the assumption that R is ignorable, it follows that

L(θ, ξ|Y o
t , R) =

∫
fR|Yt

(R|Y o
t , y

m
t |ξ)fYt

(Y o
t , y

m
t |θ)dymt ∝ fR|Yt

(R|Y o
t , ξ)l(θ|Y o

t ),

(2.4)

where ξ is a vector of parameters related to the inclusion pattern. (Additional

discussion of the assumptions involved is contained in the Section on Missing at

Random in the online supplement.) Although this is in principle straightforward,

in practice it may be very difficult to compute (particularly when the number

of missing variables is large). We thus propose a simplified approach, based on

what we call the “complete-case likelihood,” which permits scalable inference at

the expense of some loss in statistical efficiency.

3. The Complete-Case Likelihood

We focus here on the common use case of DNR in which the vertex set is fixed,

leaving us with a model on the set of edge variables. Our development begins by

allocating these to three sets, based on observability: (1) Ot := {(x, y, t)|x, y, t ∈
{R = 1}}; (2) Ct := {(x, y, t)|(x, y, t), . . . , (x, y, t − k) ∈ {R = 1}}; and (3)

M c
t := {(x, y, t)|{(x, y, t), . . . , (x, y, t − k)} ∩ {R = 0} 6= ∅}. We take No

t = |Ot|
and N c

t = |Ct|. This, together with the DNR and ignorability assumptions,

allows us to write the likelihood of the observed data in terms of a collection of

edge variables within each time point;

L(θ|Y o
t ) =

T∏
t=k

∏
i,j∈Ot

fY {yoijt|Y t−1
t−k , Xt, S(Y t−1

t−k )}, (3.1)

bearing in mind that some values on which we are conditioning may not be

observed (an issue to which we return below). Notice that MAR and distinctness

guarantees that the maximizer of the observed-data likelihood is the MLE (i.e.,

θ̂ = arg max
θ∈Θ

L(θ, ξ|Y o
t , R) ⇐⇒ θ̂ = arg max

θ∈Θ
L(θ|Y o

t )). Little and Rubin (2002)

point out that MAR is typically regarded as the more important condition in

ignorability, in the sense that if the data are MAR but separability does not

hold, inference based on the ignorable likelihood is still valid from the frequentist
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perspective, but not fully efficient. Thus, the face value likelihood of yo contains

less information than the true observed data likelihood (of yo and R, jointly), but

can still lead to estimators with other good properties. An alternative strategy

is to transform this problem into one that is relatively easy and has comparable

asymptotics to the “non-missing” version of DNR. In particular, we can reframe

our problem as one arising from sampling theory. We began our consideration of

this problem from the perspective of a logistic regression on the complete data

with missingness; however, we can alternatively think of the observed data as a

random sample of dyads arising from a population. Specifically, we can view the

observed edge variables as a sample of n dyads from the set of all dyads, rather

than as a complete dyad set from which some members are missing. This allows

us to exploit the conditional independence of DNR and the MAR assumptions

to derive a likelihood from the observed data that is computationally facile and

has good asymptotic properties, at the cost of some loss of efficiency. Here,

we define this complete-case likelihood to be the likelihood of the data that is

observed in both Yt and Y t−1
t−k . Following from the DNR and MAR assumptions,

this likelihood can be written as

L{θ|Y o
t , (Y

t−1
t−k )o} =

T∏
t=k

∏
i,j∈Ct

fY {yoijt|(Y t−1
t−k )oij , Xt, Sij(Y

t−1
t−k )}. (3.2)

We take θ̂cc = arg maxθ∈Θ L{θ|Y o
t , (Y

t−1
t−k )o} to be an estimator of θ0, some of

whose asymptotic properties we prove below. As a convenience for this purpose,

we define No
t to be the cardinality of the set of observed edge variables and Nm

t

the cardinality of the set of missing edge variables.

We provide some observations and a theorem regarding this estimator. For

the moment, imagine that we can always observe the needed elements from the

past so that we can calculate Pr(yot |y<t). While this is clearly not realistic in

many settings of interest, the property itself will be informative for our later

development (where we will weaken this condition). In particular, to the extent

that we can approximate this condition, we will be able to closely approximate

the desired likelihood. Under this assumption, the complete-case likelihood triv-

ially converges to the full likelihood as Nt → ∞ such that Nm
t /Nt → 0. It

follows that θ̂cc approaches θ̂ as the fraction of missing data goes to zero with

θ̂ → N(θ0, [I(θ̂)]−1), where I(θ̂) is the expected (Fisher’s) information. These

observations hold under weak regularity conditions on f by noting that if Nm
t = 0

and No
t > 0, then yot = yy, and hence f(yot ) = f(yt) for all f, yt. We summarize

the key results as follows:
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Theorem 1. Let θ̂cc be the maximizer of the complete case likelihood for yo ∼
Y,R with finite parameter θ0, where Y is a DNR family of finite order k with fi-

nite, affinely independent statistics, and ignorable measurement process R. Then

(i) If θ̂ is the MLE of θ0 under the complete data, y and (
∑T

t=1 |M c
t |)/(

∑T
t=1N

c
t )

→ 0, θ̂cc → θ̂.

(ii) As (
∑T

t=1N
c
t ) → ∞, the sampling distribution of θ̂cc converges to N [θ0,

{I(θ0)}−1], and {I(θ̂cc)}1/2(θ̂cc − θ0)→ N(0, I).

Proof. We define the CC observation process, R′t, in terms of Rt (the time-

indexed missing data mechanism) as R′t = Rt ∩ Rt−kt−1 . We can then write down

our CC likelihood in terms of Y cc = {yoijt|yoij,t ∈ Y o
t and yoij,t−k ∈ (Y t−1

t−k )o} and

R′t:

L{θ, ξ|Y o
t , (Y

t−1
t−k )o} =

∏
ij∈Ct

T∏
t=k

Pr(Yijt|Y t−1
t−k , θ) Pr(R′t|Y t−1

t−k , ξ). (3.3)

By MAR, we may factor R′t from (3.3). MAR and separability of parameters

further imply that R′t|Y cc is constant with respect to θ. We can then write our

CC likelihood as

L{θ, ξ|Y o
t , (Y

t−1
t−k )o} ∝

∏
ij∈Ct

T∏
t=k

Pr(Yijt|Y t−1
t−k , θ) ∝ L{θ|Y

o
t , (Y

t−1
t−k )o}. (3.4)

By the definition of the DNR family, this likelihood is equivalent to that of a

logistic regression with fixed parameter θ and data degrees of freedom equal

to the size of the complete case set, and θ̂cc is equivalent to the MLE of θ in

the corresponding problem. It is then a standard result (e.g. McCullagh and

Nelder, 1999) that, for true, finite parameter θ0 and affinely independent statis-

tics, θ̂cc will converge to N{θ0, [I(θ0)]−1} in distribution as (
∑T

t=1N
c
t ) → ∞,

and {I(θ̂cc)}1/2(θ̂cc − θ0) → N(0, I). This establishes (ii). For (i), we ob-

serve that, under the assumed conditions, L{θ|Y o
t , (Y

t−1
t−k )o} → L{θ|Yt, (Y t−1

t−k )} as

(
∑T

t=1 |M c
t |)/(

∑T
t=1N

c
t )→ 0, and hence a limiting maximizer of the former must

also be a maximizer of the latter. (i) follows immediately from the definitions of

θ̂ and θ̂cc.

We do not treat the derivation of the information matrix here in detail, but

note that the equivalence of the complete-case likelihood to a standard logistic

regression problem implies that conventional approaches (e.g., approximation

via the inverse Hessian of the log-likelihood) from the latter case apply here as

well. The equivalence of the complete case likelihood and the logistic regression
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likelihood also implies Gaussian posterior asymptotics under standard Bayesian

theory (Gelman et al. (2004)) precisely as in the case of the logistic regression

for ignorably sampled data, and with the same caveats. For a further discussion

of Bayesian analysis of DNR with/without vertex dynamics see Almquist and

Butts (2014a).

3.1. Approximation of the complete-case likelihood

These results seem to suggest that for DNR we can avoid the entire issue

of imputation; however, the assumption that we can exactly calculate Sij(Y
t−1
t−k )

(for all i, j, t− 1, . . . , t− k of interest) completely from the observed data is not

always true. In special cases it is possible to use the complete-case likelihood

additionally constrained to only the cases S(Y t−1
t−k )o are also observed; this most

often occurs at low levels of missingness when the graph statistics of interest are

local (e.g., degree). In general, however, missing edge variables have effects that

propagate into Sij in ways that make subsetting alone insufficient. To illustrate

this point, consider a simple example. Let S be a statistic on Yt that outputs the

average degree for the endpoints of a given Yij edge variable. S then depends on

the values of all Yik, Ykj for k ∈ {Vt \ i, j}, and cannot be exactly computed if any

of these are missing. Since each missing edge variable here interferes with the

statistic on 2(|Vt|−2)+1 edge variables in each time slice, it is apparent that only

a small number of missing edges (here O(|Vt|) per slice) are needed to prevent

exact calculation of the complete-case likelihood in the worst case. Thus, we

often cannot calculate S (and hence the complete-case likelihood) exactly from

the observed data. We can, however, approximate S with a reasonable estimator

in many contexts of interest, substituting Ŝij for Sij in the likelihood calculation.

We then work with the resulting approximation to the complete-case likelihood,

l{θ|Y o
t , (Y

t−1
t−k )o, Ŝ} =

T∏
t=k

∏
i,j∈Ct

fY [yoijt|(Y t−1
t−k )oij , Xt, Ŝ{(Y t−1

t−k )oij}]. (3.5)

Clearly, these results for the CC likelihood hold in the limit when Ŝ → S. Often

it is possible to choose an Ŝ that approximates S well, though this cannot be

guaranteed. Thus this process transforms a problem of TERGM estimation with

missing data to a problem of logistic regression with measurement error, which

can be dealt with in standard ways. Different strategies for handling the Ŝ

function can be employed, allowing the researcher to exploit properties of the

model statistics and/or missingness process on a case-by-case basis.
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3.2. The Ŝ-function

Given that observations of the graph Yt contain missingness, it follows that

S(Y t−1
t−k ) must typically be approximated by Ŝ{(Y t−1

t−k )o}; in general, this will

introduce some level of error into our measurement of a given graph statistic

of interest. To illustrate this point, consider a simple graph statistic such as

the indegree of actor j for a the case with a single lag Yt−1 and no missing

vertices. In this case, Sj(Yt−1) =
∑nt−1

i=1 (Yt−1)ij . Where there is missingness in

Yt−1, we can decompose this function into its observed and missing components,

e.g. Sj(Yt−1) =
∑

(Y o
t−1)ij +

∑
(Y m
t−1)ij (for the fixed vertex case), where the

latter term is unobserved in our setting. Thus, introducing an estimate for the

unknown term leads to an error in the associated statistic, which in the case of

DNR is equivalent to the introduction of error to a regression covariate.

To understand the extent of this error and to provide intuition as to how

effective simple heuristic imputation schemes might be in practice, we begin by

proposing three naive approximation schemes for S that represent various limit-

ing cases. The first estimator we refer to as the “0 estimator,” Ŝ0, which treats

all missing edge variables as if they had values of 0 for purposes of calculating suf-

ficient statistics, each (Y t−1
t−k )mij = 0. (Huisman and Steglich (2008) used a related

idea in one stage of a model-based imputation scheme for actor-level missingness

in SAB models.) The second is the “1 estimator,” Ŝ1, which treats all missing

edge variables as if they had a value of 1 for calculative purposes, (Y t−1
t−k )mij = 1.

The third estimator is the “density estimator,” which can be thought of as a

simple “grand mean” imputation strategy.

The density estimator has the potential for further variation based on whether

we compute a density over the entire time period for imputation, or if we compute

the density at each individual time period for a separate imputation estimator

at each time period. In the first case, we take all missing edge variables to be

independent Bernoulli trials with success probability equal to the fraction of 1’s

in the observed data, while in the second we instead employ the fraction of 1’s

at each respective time step. Further elaboration by subsetting density between

covariate-defined classes of vertices is possible, though we do not pursue it here.

We also considered a fourth class of imputation schemes based on local pre-

diction, where an estimator for missing values in Ŝ is to be found through a naive

statistical model fit to the observed data (R-imputation). Here we considered

simple linear regression. This amounts to approximating Ŝ = ZTβ + ε. We rec-

ommend assessing any proposed training data model for prediction validation.
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Here, separate out the calculable (“observed”) and incalculable (“missing”) S

values Soij and Smij , selecting a training fraction α (in the following Sections we

take α = 3/4th) of the Y o
ij edge variables, fitting a linear model to the training

data, and evaluating its prediction accuracy with the remaining 1 − α of the

observed data. The model with the highest prediction accuracy is taken to be

the best model for imputing the missing Smij values, we replace Smij with Spredij .

4. Simulation Analysis

Having introduced a set of simple heuristics for complete-case likelihood ap-

proximation, we explored the performance of these approaches when applying

DNR to data with missingness under MAR assumptions. To do this we worked

with two data-sets. First, we employed a dynamic inter- and intra-group blog

citation network with a fixed vertex set; second, we used a month of daily inter-

personal communication data on windsurfers congregating on a beach in South-

ern California (a data set that varies with respect to both edges and vertices).

For full details on the computational methods employed, see the Computation

Subsection in the online supplement.

Our choice of missing data percentages were based on the empirical litera-

ture for static and dynamic networks. Missing data rates in social networks has

been observed to be up to 20% for survey data at a single time point (Brewer

and Webster (2000)); in the AddHealth survey up to 75% of edges over the three

waves of data can be missing (Hipp et al. (2015)); in the context of political blogs,

Adamic and Glance (2005) estimated 15% missing for the vertex set of interest

and 32% edges over 624 days; and in a dynamic Twitter network of US Emer-

gency Management-related Organizations was missing due to computer failure

(Almquist, Spiro and Butts (2016)). Here we employed the following statistics

for describing missingness levels: the fraction of vertices missing, the fraction of

edges missing, and the fraction of edge and vertices missing for a given number

of time points, e.g. a vector (pmv , p
m
e , t

m).

Data: Blog Citation Network: Our first data set involves observations of a

dynamic inter- and intra-group blog citation network collected by Butts and

Cross (2009) and analyzed with DNR in Almquist and Butts (2013). This

temporal network consists of interactions among all blogs credentialed by the

U.S. Democratic National Committee (DNC) or Republican National Commit-

tee (RNC) for their respective 2004 conventions. (For full details see Section

Data: Blog Citation Network in the online supplement).



1256 ALMQUIST AND BUTTS

Simulation Study of the Effects of Missingness: To assess efficiency and

accuracy we first examined parameter estimates for θ – in this case Bayesian

parameter estimates under diffuse t priors (the ML estimate results are similar)

– for the case with missingness in the edges at given time points (e.g. 10% in the

number of zeros and 10% in the number of 1’s at time t). We fit a simple model

to the blog data. The model contained three statistics: a mixing statistic which

is constituted by four dummy variables (DNC to DNC indicator, RNC to RNC

indicator, DNC to RNC indicator, and RNC to DNC indicator), a lag statistic

(in this case Yt−1), and an indegree statistic {S(Yt−1) = indegree(Yt−1)}. For

these simulations we broke down the missingness into three different parameters:

missingness in the 0’s, missingness in the 1’s, and the number of time points

which contain missingness. When it is obvious in context, we will express these

parameters as a vector (a, b, c). We chose to look at two estimators: the MAP,

and 95% Bayesian posterior interval (PI) (the ML estimate of the parameter and

95% confidence interval are similar in this context).

We performed a simple trace through various levels of missingness. We con-

sidered the parameter estimates under missingness versus the model without any

missing data, where missingness was simulated in every time point and contained

every combination from 0.05 to 0.5 by 0.05 in both the 0’s and 1’s for Ŝ with 0-

imputation, 1-imputation, and δ-imputation models. (See Figures 1–3 available

in Supplement). In all three cases the lag parameter and associated Bayesian

PI were estimated surprisingly well. As the missingness in the 1’s increased, the

graph density terms (the mixing effects) grew more biased. To an extent, the

fact that this model performed well in the lag-term is unsurprising given that

our scheme selects precisely those cases where both pre- and post- states were

observed, which should provide a fairly good basis for estimating the lag. The

surprise here was how well approximate inference using Ŝ performed under all of

the imputation schemes. Our next exploration into missingness was to simulate

something akin to missingness caused by machine failure (e.g. a fixed amount

of missingness) with a steadily growing number of time points. We began with

fixed (0.10, 0.30, 5) amount of missingness in the data. We varied the available

number of time points from 10 to 150 for all four imputation schemes (the regres-

sion imputation (R) was performed using predictive calibration on a set of simple

regression models to predict indegree, see Figures 4–7 available in Supplement).

At this level of missingness, the parameter estimates and Bayesian PIs settled to

approximately the true values after about 15–20 time points for all the param-

eters. As before, the lag parameter was almost always well-estimated. We then
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repeated the procedure starting with (0.15, 0.30), but increasing the number of

time points which contain missingness at 1 to 5 ratio (see Figures 8–11 avail-

able in Supplement). Again, the parameter estimates typically improve as the

amount of data increased. The 1-imputation case performed very poorly for the

parameter of Ŝ in this case. We show in the main text the results of the density-

imputation heuristic (Figure 1) because it serves as the simplest baseline model

and beginning point for any MCMC-based scheme, as explored in the Discus-

sion Section. Finally, we performed a closer inspection on the effect of fixed-rate

missingness on performance. We simulated missingness rates of (0.15, 0.30, 25)

on 50 time points and obtained the resulting parameter estimates over 100 sim-

ulations (see Figures 8–12 available in Supplement). The R-imputation method

performed best in the sense that the parameter estimate was consistently close to

the true value, and the PI was always wider than the “true” Bayes PI (reflecting

the expected uncertainty expansion due to missing data). The 0-imputation and

δ-imputation schemes were consistently biased downwards in both the Bayesian

PI and the parameter estimate. This is consistent with the literature in mean

imputation methods (see Little (1992)), noting that the 0-imputation method is

similar to the mean in this context. The 1-imputation scheme was biased down-

wards for mixing effects, but biased upwards for the lag and biased downwards

for the indegree effect. This suggests that over-estimating the graph density is

likely to cause much more trouble for sparse-graph models than does biasing the

density downward.

Interpretation and Suggestions: We summarize our findings as follows. The

R-imputation method, while powerful, has some obvious drawbacks. If there is

too much missingness in the data, there may not be enough observed data to fit

a regression model with good predictive performance. The blog data is particu-

larly sparse, so we see that the δ-imputation and 0-imputation methods are very

similar in this case. We suspect in a less sparse case the δ-imputation method

would outperform the 0-imputation case. Given a sufficiently dense network we

would expect the 1-imputation case to perform much better. Finally, we point

out that the “intercept” or graph density terms can be very biased depending on

choice of imputation scheme for Ŝ, and that the lag term is surprisingly robust.

Data: Windsurfers (DNR with Vertex Dynamics case): Freeman, Free-

man and Michaelson (1988) collected a dynamic interpersonal communication

network of windsurfers in the late 1980’s that he subsequently analyzed only

statically. The network was originally collected daily (aggregated over a morning

and an afternoon observation period) for 31 days (August 28, 1986 to September
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Figure 1. Missingness maintained at 5 random time-points with 10 percent missing
in the zeros and 30 percent in the 1s. Parameter estimates were generated for DNR
under complete case with d-imputation. Red is the “true” parameter and PI (i.e., MAP
estimate from the complete data) and the blue line is the estimated parameter and PI
from the data with simulated missingness.

27, 1986). For full details see Section Data: Windsurfers in the online supple-

ment.

Simulation Study of the Effects of Missingness: To test performance,

we considered the impact on parameter estimates of missingness in the ver-

tices (e.g. 5 percent of the vertices being missing at time t). We fit a simple

model to the fully observed beach data. The edge model contains a graph den-

sity term, a density scaling effect {log(Nt + 1)} (Butts and Almquist, 2015), a

lag term (Yt−1), and a degree statistic {S(Yt−1) = degree(Yt−1)}. The vertex
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model contains an intercept term, a lag term (Vt−1), and a degree sum statistic

{SV (Yt−1)i =
∑

j degree(Yijt−1)}. We express our missingness rates as a vector

(a, c) where a is the percent missingness in the vertex and edge sets (both) and c

is the number of time points which contain missingness. We evaluated the impact

of missingness on MAP and 95% Bayesian PI estimates (the ML estimate of the

parameter and associated CI show similar behavior).

We simulated the missing data at rates similar to the earlier section, with

complete details in the supplement. This case study focuses on the (0.50, 12)

case over 24 time points, and the resulting parameter estimates (see Figures 13–

15 available in Supplement). We primarily found bias in the intercept and ŜV
parameters, and, noticed that the vertex model suffers the most (particularly

under the 0-imputation method). We observed (0.10, 24) on 24 time points

and show the resulting parameter estimates (see Figures 13–15 available in Sup-

plement). The results are consistent with similar examples from the literature

on imputation (see Little (1992)), where we see that, as the amount of missing

data grows, we see downward bias in our δ-imputation scheme (and in the 0-

imputation scheme). The 1-imputation scheme again appears to behave better

in this context, but again less predictably. Overall, the vertex model was more

sensitive than the edge model with the 1-imputation performing the worst.

Interpretation and Suggestions: The R-imputation method is much more

complex in the case of vertex dynamics and not always feasible if there is miss-

ingness at every time point. Efficiency or power is a much bigger concern in the

case with vertex dynamics: nodes may not be observed very often and, if missing,

can bias the model substantially. However, if the missingness rate is relatively

low the basic heuristics perform quite well.

5. Discussion

To provide a point of comparison, we consider a few alternative estimation

schemes for the DNR case with missing data. For this purpose we focus on DNR

in the Blog Citation Network with (0.2, 0.4) missingness in all time points, a

relatively high level of missingness, but not unreasonable in a practical setting

due to limitations in data collection, coding, or software error. For our case, we

consider a series with 100 time points.

To examine the quality of our heuristics versus alternative approaches, we

employed a local approximation to a full MCMC algorithm that directly approx-

imates the full observed data likelihood of (2.4) by integrating across the full set
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Table 1. Comparison of bias for imputation strategies and local MCMC approximation.

Bias Comparison

Par 1-Imp 0-Imp δ-Imp
LA

MCMC
Par 1-Imp 0-Imp δ-Imp

LA
MCMC

RNC −0.16 −0.59 −0.21 0.45 Yt−1 −0.02 −0.14 0.01 −0.90
RNC −0.04 −0.49 −0.10 0.40 IDeg(Yt−1) 0.02 −0.02 0.01 0.00

DNCtoRNC −0.28 −0.71 −0.34 0.42 ODeg(Yt−1) −0.01 −0.02 −0.00 −0.00
RNCtoDNC −0.19 −0.58 −0.23 0.47 3Cycle(Yt−1) 0.06 0.01 0.01 0.05

of possible missing edge values. To obtain an approximate MCMC algorithm

we employed both past and future states as covariates for a local ERGM with

Left and Right averaging; here the issue arises that we have missingness in the

predictors. We alleviated this issue by imputing the first time step in the usual

way, performing model-based imputation on each step given the previous one,

and then estimating our model from the full data generated by the imputation

procedure. We then repeated the whole process K = 10 times to obtain multi-

ple imputations. One can then follow the Little and Rubin (2002) strategy for

computing the parameters and SE, or one could fit to the marginalized likelihood

over the realizations. Here, we fit to the marginalized likelihood over the imputed

data. We followed the same basic procedure as Koskinen, Robins and Pattison

(2010), providing again a local approximation to the full MCMC algorithm for

the model-based missing data procedure discussed earlier. (We employed the

software for the cross-sectional missing data approach developed by Koskinen,

Robins and Pattison (2010). Because this code was implemented using inter-

preted R functions it did not scale to our full case, and we thus chose to limit

analysis to a much smaller set of time points. We note that all other procedures

used here were implemented in the same fashion, but employed algorithms that

by nature are several orders of magnitude faster in typical settings.) We found

that the local ERGM with Left and Right averaging approach in this case study

results in parameters that are typically biased downward or to zero by small

amount (e.g., Table 1). Parameter variance on Ŝ is typically lower (e.g., Ta-

ble 2), though sometimes to the point of overconfidence. The improvement due

to MCMC use is greatest for complex terms (e.g. degree and cycle terms) that

benefit from the more refined imputation strategy. We expect this might be due

to MCMC approach overstating tie formation, improving the ability to estimate

complex terms, but pushing the model to think the overall density is higher than

actually observed.
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Table 2. Comparison of 95% BCI for imputation strategies and local MCMC approxi-
mation.

Bayesian Credible Intervals
Par 0-Imput 1-Imput δ-Imput LA MCMC True Values

2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%
RNC −7.12 −6.60 −7.12 −6.60 −7.12 −6.60 −6.49 −6.17 −6.88 −6.50
RNC −6.44 −5.75 −6.44 −5.75 −6.44 −5.75 −5.94 −5.52 −6.29 −5.79

DNCtoRNC −8.07 −7.32 −8.07 −7.32 −8.07 −7.32 −7.26 −6.82 −7.67 −7.14
RNCtoDNC −8.54 −7.62 −8.54 −7.62 −8.54 −7.62 −7.74 −7.21 −8.19 −7.56

Yt−1 10.05 10.57 10.05 10.57 10.05 10.57 9.42 9.73 10.14 10.51
IDeg(Yt−1) 0.07 0.15 0.07 0.15 0.07 0.15 0.07 0.11 0.07 0.11

ODeg(Yt−1) −0.05 0.03 −0.05 0.03 −0.05 0.03 −0.02 0.01 −0.02 0.02
3Cyc(Yt−1) −0.09 0.30 −0.09 0.30 −0.09 0.30 0.04 0.14 −0.01 0.09

We also tried a local version of the Bayesian data augmentation procedure

implemented by Koskinen, Robins and Pattison (2010). (This procedure was

developed for static rather than temporal imputation, so we have extended it

in the same manner as the MCMC local averaging procedure. Due to compu-

tational cost, we only perform this procedure on 20 time points.) We found

that this local approximation to Koskinen, Robins and Pattison (2010) tends

to bias the covariate effects by a large margin: biases in Homophily terms are

(2.76, 0.65, 2.938, 2.95), and the bias in the lag term is large, (−5.7). However,

the bias in more complex terms such as Indegree, Outdegree and Three Cycle

(0.005, −0.0002, −0.038) again resulted in an improvement, suggesting that a

local MCMC procedure for Ŝ imputation may be preferable for such terms. This

procedure appears to decouple the lag term to a much larger degree than the

local ERGM with Left and Right averaging approach. Finally, we found that

the Bayesian PI was shifted downward, e.g., the Outdegree term interval for the

Koskinen, Robins and Pattison (2010) approximation was (−0.030, −0.006) com-

pared to the true interval of (−0.018, 0.006). Overall, we find that in interpreted

R code the simple Ŝ-heuristics are an order of magnitude or more faster than

MCMC-based procedures, and generally perform well. Nevertheless, we can in

some cases obtain improved performance from MCMC-based imputation proce-

dures for Ŝ statistics if the time series is sufficiently short or the network size

is sufficiently small, particularly for models that depend on complex structural

statistics. In such settings, it may be worth employing a local approximation

to the full MCMC to obtain improved Ŝ estimates. However, we find that the

performance of the complete-case method seems to be quite good even with

fairly simple heuristics, and it appears that the cost/performance tradeoff of the
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heuristic methods will prove difficult to beat as data size increases. While we

think that there is considerable merit in continuing to consider MCMC-based

imputation strategies, our findings suggest that complete-case estimation with

density or regression imputation (as feasible) is a reasonable default strategy

for researchers working with large data sets. Clearly, there is room for future

exploration on improved model estimation based on multiple imputation (Little

and Rubin (2002); Gile and Handcock (2010a); Wang et al. (2016)), whether by

MCMC or by other simulation techniques. We expect that more sophisticated Ŝ

approximation methods could further improve the performance of the complete

case approach. We find it interesting however, that for DNR TERGMs with

missing data, simple methods can often yield favorable results.

Supplementary Materials

Extended details may be found online.

Acknowledgment

This work was supported in part by ONR award N00014-08-1-1015, ARO

awards W911NF-14-1-0577 (YIP) and W911NF-14-1-0552, NSF award IIS-1526

736, and NIH/NICHD award 1R01HD068395-01.

References

Adamic, L. A. and Glance, N. (2005). The political blogosphere and the 2004 us election: divided

they blog. In Proceedings of the 3rd International Workshop on Link Discovery. ACM.

Almquist, Z. W. and Butts, C. T. (2013). Dynamic network logistic regression: A logistic choice

analysis of inter and intra-group blog citation dynamics in the 2004 us presidential election.

Political Analysis 21, 430–448.

Almquist, Z. W. and Butts, C. T. (2014a). Bayesian analysis of dynamic network regression

with joint edge/vertex dynamics. In Bayesian Inference in the Social and Natural Sciences,

I. Jeliazkov and X.-S. Yang, eds. New York City, NY: John Wiley & Sons.

Almquist, Z. W. and Butts, C. T. (2014b). Logistic network regression for scalable analysis of

networks with joint edge/vertex dynamics. Sociological Methodology 44, 273–321.

Almquist, Z. W., Spiro, E. S. and Butts, C. T. (2016). Shifting attention: Modeling follower

relationship dynamics among us emergency management-related organizations during a

colorado wildfire. In Social Network Analysis of Disaster Response, Recovery, and Adap-

tation, A. Faas and E. Jones, eds. Elsevier.

Brewer, D. D. and Webster, C. M. (2000). Forgetting of friends and its effects on measuring

friendship networks. Social Networks 21, 361–373.

Butts, C. T. (2011). Bernoulli graph bounds for general random graphs. Sociological Methodology

41, 299–345.



DYNAMIC NETWORK ANALYSIS WITH MISSING DATA 1263

Butts, C. T. and Almquist, Z. W. (2015). A flexible parameterization for baseline mean degree

in multiple-network ergms. The Journal of Mathematical Sociology 39, 163–167.

Butts, C. T. and Cross, B. R. (2009). Change and external events in computer-mediated citation

networks: English language weblogs and the 2004 u.s. electoral cycle. The Journal of Social

Structure 10, 1–29.

Carley, K. (1999). On the evolution of social and organizational networks. Research in the

Sociology of Organizations 16, 3–30.

Cranmer, S. J. and Desmarais, B. A. (2011). Inferential network analysis with exponential

random graph models. Political Analysis 19, 66–86.

Desmarais, B. and Cranmer, S. (2012). Statistical mechanics of networks: Estimation and

uncertainty. Physica A: Statistical Mechanics and its Applications 391, 1865–1876.

Entwisle, B., Faust, K., Rindfuss, R. R. and Kaneda, T. (2007). Networks and contexts: Vari-

ation in the structure of social ties. American Journal of Sociology 112, 1495–1533.

Freeman, L. C., Freeman, S. C. and Michaelson, A. G. (1988). On human social intelligence.

Journal of Social Biological Structure 11, 415–425.

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis. New

York, NY: Chapman & Hall/CRC, 2nd ed.

Gile, K. J. and Handcock, M. S. (2010a). Modeling networks from sampled data. The Annals

of Applied Statistics 4, 5–25.

Gile, K. J. and Handcock, M. S. (2010b). Respondent-driven sampling: An assessment of current

methodology. Sociological Methodology 40, 285–327.

Gjoka, M., Kurant, M., Butts, C. T. and Markopoulou, A. (2010). Walking in facebook: A case

study of unbiased sampling of osns. In Proceedings of IEEE INFOCOM 2010.

Handcock, M. S. (2003). Statistical models for social networks: Inference and degeneracy. In

Dynamic Social Network Modeling and Analysis, R. Breiger, K. M. Carley and P. Pattison,

eds. pp. 229–240, Washington, DC: National Academies Press.

Hanneke, S., Fu, W. and Xing, E. P. (2010). Discrete temporal models of social networks.

Electronic Journal of Statistics 4, 585–605.

Hanneke, S. and Xing, E. P. (2007). Statistical network analysis: models, issues, and new

directions: ICML 2006 workshop on statistical network analysis, Pittsburgh, PA, USA,

June 29, 2006, revised selected papers, vol. 4503 of lecture notes in computer science, pp.

115–125, chap. Discrete Temporal Models of Social Networks. Springer-Verlag.

Hipp, J. R., Wang, C., Butts, C. T., Jose, R. and Lakon, C. M. (2015). Research note: The

consequences of different methods for handling missing network data in stochastic actor

based models. Social Networks 41, 56–71.

Huisman, M. and Steglich, C. (2008). Treatment of non-response in longitudinal network studies.

Social Networks 30, 297–308.

Kolaczyk, E. D. (2009). Statistical Analysis of Network Data: Methods and Models. Springer

Series in Statistics. New York, NY: Springer.

Koskinen, J. H., Robins, G. L. and Pattison, P. E. (2010). Analysing exponential random

graph (p-star) models with missing data using bayesian data augmentation. Statistical

Methodology 7, 366–384.

Krivitsky, P. N. (2012). Modeling of dynamic networks based on egocentric data with durational

information. Technical Report Series 12-01, The Pennsylvania State University, University

Park, PA 16802.



1264 ALMQUIST AND BUTTS

Leskovec, J. (2008). Dynamics of Large Networks. ProQuest.

Leskovec, J. (2011). Stanford large network dataset collection. http://snap.stanford.edu/

data/index.html.

Little, R. J. (1992). Regression with missing x’s: a review. Journal of the American Statistical

Association 87, 1227–1237.

Little, R. J. and Rubin, D. B. (2002). Statistical Analysis With Missing Data. Wiley Series in

Probability and Statistics. Hoboken, NJ: John Wiley & Sons, Inc., 2nd ed.

McCullagh, P. and Nelder, J. A. (1999). Generalized Linear Models. Chapman & Hall/CRC,

2nd ed.

Newcomb, T. M. (1961). The Acquaintance Process. New York, NY: Holt, Reinhard & Winston.

Powell, W. W., Koput, K. W. and Smith-Doerr, L. (1996). Interorganizational collaboration

and the locus of innovation: Networks of learning in biotechnology. Administrative Science

Quarterly 41, 116–145.

Rubin, D. B. (1976). Inference and mising data. Biometrika 63, 581–592.

Schweinberger, M. and Handcock, M. S. (2015). Local dependence in random graph models:

Characterization, properties and statistical inference. Journal of the Royal Statistical So-

ciety. Series: B (Statistical Methodology) 77, 647–676.

Snijders, T. (2005). Models for longitudinal network data. In Models and Methods in Social

Network Analysis, P. Carrington, J. Scott and S. Wasserman, eds. New York: Cambridge

University Press.

van de Rijt, A. (2011). The micro-macro link for the theory of structural balance. Journal of

Mathematical Sociology 35, 94–113.

van Duijn, M., Gile, K. and Handcock, M. S. (2009). Comparison of maximum pseudo likelihood

and maximum likelihood estimation of exponential family random graph models. Social

Networks 31, 52–62.

Wang, C., Butts, C. T., Hipp, J. R., Jose, R. and Lakon, C. M. (2016). Multiple imputation for

missing edge data: A predictive evaluation method with application to Add Health. Social

Networks 45, 89–98.

Wang, H., Xie, H., Qiu, L., Yang, Y. R., Zhang, Y. and Greenberg, A. (2006). Cope: traffic

engineering in dynamic networks. ACM SIGCOMM Computer Communication Review 36,

99–110.
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