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1 | INTRODUCTION

Infectious disease is central to the human experience. It
has served as a major source of selection on human
populations (Armelagos & Dewey, 1970) and conse-
quently many of the regions of the human genome that
have been under particularly strong selection in the
recent past (ie, since Holocene) are immune-related and
presumably a function of infectious disease (Karlsson,
Kwiatkowski, & Sabeti, 2014). Infectious disease is clearly
central to our understanding of the peopling of the world
(Black, 1975; Cockburn, 1971). Continuing to the present,
infectious disease is a major determinant of population
health (Heesterbeek et al., 2015) and a key contributor to
persistent socio-economic inequality (Bonds, Keenan,
Rohani, & Sachs, 2010; Sachs & Malaney, 2002).

It is therefore surprising that there has been relatively
little formal work on infectious disease dynamics and
their consequences for populations and individuals
embedded within populations within the fields of Human
Biology and Biological Anthropology. Human biology
remains concerned with the consequences of infectious
disease (eg, Dinkel et al., 2020; Gurven, Kaplan, &
Supa, 2007; Houldcroft, Ramond, Rifkin, & Under-
down, 2017; Houldcroft & Underdown, 2016; McDade
et al., 2012), but with precious few exceptions (Hazel &
Jones, 2018; Hazel, Marino, & Simon, 2015; Hazel,
Ponnaluri-Wears, Davis, Low, & Foxman, 2014;
McGrath, 1988; Nakazawa, Ohmae, Ishii, & Leafasia, 1998;
O'Neil & Sattenspiel, 2010; Sattenspiel, Koopman, Simon,
& Jacquez, 1990; Upham, 1986) generally does not inte-
grate the rich body of theory and methodology derived
from mathematical models of transmission dynamics.

The COVID-19 pandemic presents an opportunity to
engage these research communities. We will focus our
mini-review on topics that we think are likely to resonate
with the readership of AJHB. After introducing the for-
malisms of transmission-dynamics models for infectious
disease and how these models have been used to gain
insight into the origin, amplification, and dissemination
of the SARS Coronavirus-2, the causative agent of
COVID-19, we will turn to topics of particular interest for
anthropologists: the role population structure plays in
shaping transmission dynamics, geography and mobility,
simple models of socio-economic and health inequality
and their implications for epidemic control, and the con-
sequences for structured interpersonal relations, as for-
malized using networks, for disease transmission and
control.

2 | TRANSMISSION DYNAMICS

Every disease transmission event has a social cause. At
the heart of every transmission, and the formal machin-
ery for modeling infectious disease dynamics, is a social
interaction. Susceptible individuals need to come in con-
tact with infectious ones. For the great majority of
models, this is about as far as the model of social behav-
ior goes: contacts are assumed to happen at random, pro-
portional in a bilinear way to the number of susceptibles
and number infected in the population.

Epidemics are characterized simultaneously by
extreme uncertainty and extreme structure. Early in an
outbreak, when the number of infections is low, random-
ness dominates and prediction is very difficult. As an
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outbreak gets larger, it starts to take on momentum and
becomes more predictable. Once an epidemic is under-
way, it enters an exponential growth regime that is quite
predictable. A robustly-growing epidemic, in which cases
double in short intervals, takes on a great deal of inertia,
often before people notice that the epidemic is serious.
This is why epidemic controls needs to be effected early if
it is to have the greatest effect. Unfortunately, early in
the epidemic is when uncertainty is highest and push-
back from both politicians and the general public is likely
to be strong.

With some assumptions about population structure,
the behavior of hosts, and the properties of the pathogen,
we can construct a compartmental model which tracks
the stocks and flows between different elements of a pop-
ulation (ie, the “compartments”). These models typically
take the form of a collection of coupled, nonlinear ordi-
nary differential equations. The canonical compartmental
model is probably the SIR model. For a closed population
of N individuals, where S are susceptible, I infected, and
R are removed, the dynamics are characterized by three
equations:

dS
dt

= −βSI=N ð1Þ

dI
dt

= βSI=N−γI ð2Þ

dr
dt

= γI ð3Þ

where β= τ�c and is known as the effective contact rate
and is comprised of an average rate of per-capita contact
(�c) and a transmission probability conditional on contact
(τ), and γ is the removal rate. By assumption all rates are
constant. This means that the expected duration of infec-
tion is simply the inverse of the removal rate: d = γ−1.

These equations are coupled because the outputs of
one serve as inputs for others. They are nonlinear
because the incidence (dI/dt) is driven by the multiplica-
tive interaction of the susceptible and infectious compart-
ments—this is the social behavior that underlies the
model. The solution to Equations (1)–(3) leads to an
asymmetric bell-shaped incidence curve and approxi-
mately symmetric sigmoid functions of susceptibles
(declining) and removed (increasing). The exponential-
growth phase of the epidemic curve can be seen in Figure
3. The decline of the epidemic curves is typically quite a
bit slower than exponential, giving epidemic curves their
asymmetric bell-shape.

The formulation of the SIR model presented in Equa-
tions (1)–(3) assumes that there are neither births nor

deaths in the population (ie, the population is “closed”).
While this may seem like an absurd assumption to make,
it translates into the more reasonable interpretation that
the dynamics of the epidemic are much faster than the
vital dynamics of the population. This is clearly not a
valid assumption to make for endemic infectious dis-
eases. Based in part on the immunological profile of
COVID-19 survivors, there is some suggestion that
COVID-19 might become an endemic disease and under-
standing the continuing dynamics of the disease will
require open models. Bjornstad (2018) provides and
excellent introduction to SIR-type models for open
populations.

Compartmental models can get much more complex
than the SIR model. An important elaboration of the
basic SIR adds a compartment for people who have been
infected but are not yet themselves infectious. This
extract compartment, typically called “Exposed,”
accounts for the incubation period of the infection and
builds in a lag in observed infections. Most serious
research applications of mathematical models for under-
standing the dynamics of COVID-19 have taken the SEIR
form. Figure 1 presents a state diagram for the SEIR
model. This particular formulation of the SEIR model
includes births (λ) and deaths (μ). The rate of movement
from the exposed to the infectious compartment is given
by k. Otherwise, it is largely similar to the SIR model.

2.1 | The basic reproduction number of
an infectious disease

The basic reproduction number, denoted R0, is the
expected number of secondary cases produced by a single
typical infection early in the epidemic. It is closely related
to the R0 more familiar to demographers, namely the net
reproduction rate (Heesterbeek, 2002) in that it reflects
the per generation ratio of population size. In the case of
an epidemic, however, the population size that matters is
that of infectious individuals. This means that the essen-
tial identity of demography, namely R0 = exp{rT}, where r
is the intrinsic rate of increase and T is generation length

FIGURE 1 Susceptible-exposed-infected-removed model state

diagram
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(ie, mean age of childbearing), applies. In epidemiology,
this relationship holds as well, only we interpret r as the
exponential rate of increase in infections and T is known
as the serial interval, the mean duration between the
onset of symptoms between index and secondary infec-
tions. This relationship provides an easy way to estimate
R0 from case data. The Taylor series expansion of an
exponential function is ex = 1 + x to the first order. This
allows us to write R0 ≈ 1 + rV, where we have written V
for the serial interval.

R0 is a threshold parameter. From the SIR equations,
solve for dI/dt > 0, assuming at the outset of an epidemic
S/N = 1. What results is a simple ratio of the rate at
which new infections are added to the population to the
rate at which infections are removed from the popula-
tion, namely, R0 = β/ν. Note that β is a composite param-
eter, incorporating both the contact rate of people in the
population and transmissibility of the pathogen, β=�cτ ,
and that 1/ν = d, the expected duration of infectiousness.
This makes the basic reproduction number the product
of three elements: (1) the contact rate between suscepti-
ble and infectious people, (2) the transmissibility of the
pathogen, and (3) the duration of infectiousness. This
decomposition largely provides the theory of infectious-
disease control. An epidemic can only increase when
R0 > 1; control efforts should therefore focus on bringing
this quantity below unity. There are really only three
ways to do this: (1) reduce the contact-rate between sus-
ceptible and infectious people (sheltering-in-place, quar-
antine, travel restrictions), (2) reduce transmissibility
(use of personal protective equipment, vaccination, thera-
peutics which reduce viral shedding), or (3) reduce the
duration of infectiousness (make sick people well).

In addition to its fundamental role as an epidemic
threshold parameter, R0 determines a number of other
fundamental features of epidemics. Of particular interest
for the COVID-19 pandemic, R0 tells us about the critical
vaccination threshold or level of herd immunity (ie, the
level of immunity that prevents the epidemic from
increasing in the presence of a small number of infec-
tions), and the final size of the epidemic. The critical vac-
cination threshold is found simply by noting that an
epidemic cannot take place if R0 < 1. Solve the equation
R = R0(1 − p) for p, the proportion of the population
removed from the population through vaccination. The
critical fraction is clearly pc = 1 − 1/R0, where we have
denoted the critical fraction of the population pc. If
R0 = 2.5, the critical vaccination threshold is 60% of the
population. This is similarly the threshold for herd
immunity. At the time of writing, the highest prevalence
of antibodies for SARS-CoV-2 in the United States is 14%
in New York State, with an estimate of 22.7% in New
York city (Rosenberg et al., 2020). While testing is highly

variable and plagued by sampling biases, the prevalence
of antibodies appears to be much lower in most of the
country (for Disease Control and Prevention, 2020a).
Clearly, at seven months into the pandemic, we are a
long way from herd immunity, at least for anything
resembling a well-mixed population.

If we assume that the parameters of the SIR model
remain constant, we can calculate the fraction of the total
population that will become infected by the end of an
epidemic. This is called the final size of the epidemic and
it is calculated by dividing Equation (2) by Equation (1)
and integrating. The resulting equation is:

log s∞ð Þ=R0 s∞−1ð Þ, ð4Þ

where s∞ is the fraction of the population still susceptible
at the end of the epidemic. This equation always has a
solution at s∞ = 1, while for R0 > 1, it also has a solution
s∞ < 1. The complement of this value is the final size.

Figure 2 shows the final size for a range of values of
R0 that correspond to the typical range of observed basic
reproduction numbers for COVID-19. An important
observation to make about the final size of an epidemic:
it will generally be larger than the herd-immunity thresh-
old. For example, if R0 = 2.5, the threshold for herd
immunity is 60% but the final size of the epidemic is
89.7%. How can that be? The simple answer is that an
epidemic cannot start when 60% of the population are
removed. However, the momentum of an ongoing epi-
demic will carry it well through this threshold.

We have limited our discussion so far to R0 for the
simple, unstructured SIR model (Figure 3) because of the

FIGURE 2 Final size calculations for a range of R0 values

consistent with COVID-19
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heuristic value of its simple product form, R0 =�cτd . R0

will be different for different epidemic models. While it is
beyond the scope of this brief review, there is a highly-
elaborated theory for calculating R0 in more complex
models (Diekmann, Heesterbeek, & Metz, 1990). Briefly,
for an infection with discrete disease states, R0 is calcu-
lated as the dominant eigenvalue of a square k× k matrix
(where k indicates the number of distinct disease states)
known as the next-generation matrix, G. This matrix is
composed of elements gij, which can be thought of as a
type-specific reproduction numbers, accounting for the
number of type i infections caused by infectious contact
with individuals of type j. Taking the eigenvalue of this
matrix effectively averages over the different ways that
infections can be created in a structured model, allowing
these models to conform to the notion that R0 is the
expected number of secondary infections produced by a
single, typical index infection. More detailed notes on the
calculation of R0 can be found in Jones (2020).

It is important to note that R0 is not a property of the
pathogen exclusively. It is a property of the epidemic and
it incorporates, even if only in a highly-stylized manner
the social structure and behavior of the host organism
(Arthur, Gurley, Salje, Bloomfield, & Jones, 2017).

3 | SPECIFIC COVID-19 INSIGHTS
FROM EPIDEMIC MODELS

Transmission-dynamics models have been used to gain
critical insights into the behavior of the COVID-19 pan-
demic. In particular, models allowed epidemiologists and

governments to get a handle on the size and scope of the
epidemic at a time of great uncertainty. Furthermore, a
number of studies have focused on the efficacy of non-
pharmaceutical interventions (NPI), a critical question at
the outset of an epidemic before there is a vaccine or
effective therapeutic treatment. Most of the published
models focus on the early outbreak in China. Several key
studies estimated fundamental epidemiological parame-
ters that have been essential in formulating models.
Based on epidemiological investigation in China, Li,
Guan, et al. (2020) and Li, Pei, et al. (2020) estimated the
COVID-19 incubation period at 5.2 days, the serial inter-
val of 7.5 days, R0 = 2.2, and a doubling time of 7.4 days.
Zhang et al. (2020) estimated the same incubation period
but a shorted serial interval, both at 5.2 days. Following
the end of January, they estimate that Rt < 1 for all prov-
inces for which they had sufficient data to estimate it.

Models have allowed us to ascertain the scope of the
epidemic and the features of the transmission dynamics
of the SARS CoV-2 that make it so difficult to control.
Wu, Leung, et al. (2020) and Wu, Nethery, et al. (2020)
used an SEIR framework early in the epidemic in China
to suggest that there were more than 75 000 infections at
a time when the official cumulative prevalence was 4528,
a ratio of 16 infections per case. They estimated an
R0 = 2.68 and noted that the infection had already been
disseminated well beyond Wuhan. Li, Guan, et al. (2020)
and Li, Pei, et al. (2020) linked an SEIR metapopulation
model built on an explicit network with Bayesian infer-
ence to estimate that 86% of the infections in China were
undocumented prior to China imposing severe travel
restrictions. Per person, undocumented infections
accounted for fewer secondary infections, but because of
their large number, accounted for the great majority of
total transmissions. The ability to infer the presence of a
large degree of pre- or asymptomatic transmission would
not have been possible without the aid of the mathemati-
cal model of transmission dynamics.

Chinazzi et al. (2020) found that intense travel restric-
tions imposed in Wuhan had the effect of delaying the
epidemic by 3 to 5 days in mainland China, and also had
a substantial effect on slowing the spread internationally.
Importantly, they found that travel restrictions were not
effective unless accompanied by substantial (�50%)
reductions in transmission rate. Similarly, Prem
et al. (2020) employed an SEIR model parameterized with
movement data from Wuhan, China to show that move-
ment restrictions have the greatest impact in delaying the
epidemic and reducing the final size when they were
eased in a gradual manner over an extended time frame.
The sudden easing of restrictions would lead to a second
major wave of infections. Lai et al. (2020) used
anonymized movement data to simulate counterfactual

FIGURE 3 Epidemic curves for simple structured and

unstructured SIR models
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epidemic scenarios in China. They find evidence for the
remarkable effectiveness of NPI. In the absence of NPI,
the epidemic would likely have been 67-times larger by
the end of February than it was. Consistent with histori-
cal results of Hatchett, Mecher, and Lipsitch (2007), who
analyzed the effect of timing of NPI on the 1918 to 1919
influenza pandemic, speed of response in identifying and
isolating infections had the largest effect on reducing the
size of the epidemic, but combining this with other NPIs
such as reducing contacts and imposing travel restric-
tions had the greatest total impact.

Moving on from understanding the early epidemic in
China, research teams are increasingly looking at the
later stages of the pandemic. Using stochastic simulations
based on an SEIR model, Hellewell et al. (2020) show
that under most reasonable conditions, contact tracing,
coupled with testing and isolation, is sufficient to control
COVID-19 once R0 has been brought down to the range
of 1.5. Kissler, Tedijanto, Goldstein, Grad, and
Lipsitch (2020) predict recurrent winter outbreaks follow-
ing the initial pandemic wave. They anticipate that inter-
mittent social distancing will be necessary to keep critical
cases below the medical-capacity threshold through at
least 2022. Moghadas et al. (2020) found that with
R0 = 2.5, the US would need nearly four times the num-
ber of ICU beds than it has to accommodate the
increased demand from severe cases. They then found
that self-isolation by 20% of infections would reduce the
number of ICU beds needed at peak by nearly half.
Reducing R0 by half a secondary infection meant that
ICU demand would only be twice capacity and that self-
isolation of 20% reduced peak demand by nearly 75%.
These results suggest that self-isolation is a highly effica-
cious and cost-effective NPI for COVID-19.

4 | THE IMPACT OF HUMAN
BEHAVIOR AND SOCIAL
STRUCTURE ON EPIDEMIC
OUTCOMES

Epidemic models provide us with powerful tools for
understanding the consequences of behavior, social struc-
ture, and inequality on epidemic outcomes.

4.1 | Structure

Epidemic models, like the SIR model, involve dyads of
individuals—one susceptible and one infectious—coming
together at a specified rate and generating a new infec-
tion with a specified probability. We say that a popula-
tion is well-mixed if all infectious-susceptible dyads in the

population have approximately the same probability of
occurring. This is obviously a very strong assumption.
For example, a student at Stanford is probably much
more likely to encounter another Stanford student
infected with the COVID-19 than she is an infected stu-
dent at, say, the University of Washington.

We can relax the assumption of a population being
well-mixed by adding structure to it. The resulting model
will be characterized by structured mixing, meaning that
there are potentially quite different probabilities associ-
ated with dyads that can be formed from the various ele-
ments of structure (Morris, 1991, 1993). This structure
can represent geographic location (eg, Palo Alto, Califor-
nia vs Seattle, Washington) or it can represent various
mechanisms by which social or cultural attributes affect
the way people interact, for example, race/ethnicity, age,
gender, occupation, social class, income quartile, and
so on.

A structured model will always be slower than the
well-mixed case and will typically be smaller as well. This
sounds like unmitigated good news: slower epidemics
mean there is more time to intervene and smaller epi-
demics mean there is less morbidity and, presumably,
mortality associated with the epidemic. While these are
true, there is a darker side to structure. First, structure
can create pockets of high-prevalence in a population.
These pockets can then serve as sources from which new
infections can invade the broader population. Such
source-sink dynamics are analogous to the so-called “res-
cue effect” in metapopulation biology and are the main
explanation for why diseases such as gonorrhea persist in
rich countries where the behavior of the typical person
would not support endemicity (Hethcote & Yorke, 1984).
Second, and related to this, is the effect of heterogeneity
on R0 itself. Nold (1980) noted that heterogeneity in con-
tact rate and transmissibility can increase disease preva-
lence even if the means of these parameters are not
altered. Anderson, Medley, May, and Johnson (1986)
showed that heterogeneity in contact rates effectively
increases R0, deriving a relationship that expresses this
effect. Assuming a linear effect of number of contacts on
transmission, Anderson et al. (1986) show that
R0 =R mð Þ

0 1+ c2ð Þ , where R mð Þ
0 is the basic reproduction

number estimated from the mean values of contact,
transmissibility, and duration of infection, and c is the
coefficient of variation in contact rates. This result shows
that the effective R0 is directly proportional to variance in
contact rates. When population are structured into
groups where contact is heterogeneous, the effective R0

increases. A paradoxical consequence of this increase in
the effective R0 is that the final size of the epidemic will
be considerably smaller. As noted by Anderson and
May (1991), May and Lloyd (2001), and discussed in the
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context of network models for STIs by Handcock and
Jones (2006), as c!∞, the final size approaches zero.
This dual effect of heterogeneity making epidemics more
likely but ultimately smaller than the well-mixed case
may prove very important for understanding COVID-19.

4.2 | The population impact of
inequality on an epidemic

An important dimension along which populations are
structured is socioeconomic inequality (Subramanian,
Belli, & Kawachi, 2002). We can use the mathematical
formalism of infectious disease to help us understand the
consequences for the epidemic on the existence of health
inequalities. We will assume a very simple model where
the population is divided into two components, wealthy
and poor, and leading to a 2 × 2 next-generation matrix.
Homophily and especially residential segregation lead to
the diagonal elements (ie, infections within a category)
being greater than the off-diagonal elements. There is
mixing in the population such that both wealthy and
poor can infect others who are wealthy and poor, but
mixing is asymmetric. This asymmetry arises from a
number of social features of the socioeconomic land-
scape. Of particular relevance to COVID-19, poor people
are more likely to be engaged in high-risk, “frontline”
labor, making it more likely that they will receive infec-
tion from both wealthy and poor. Furthermore, poor peo-
ple live in more crowded housing, making NPIs such as
sheltering-in-place structurally less effective than they
are for wealthy people (Richardson et al., 2020). This lat-
ter observation leads to the expectation that the type-spe-
cific reproduction number for poor people will be
substantially greater than the analogous number for
wealthy people. The next-generation matrix is thus:

G=

gw w gw p

gp w gp p

2
64

3
75: ð5Þ

The assumptions articulated above translate into the
following ranking of type-specific reproduction numbers:

gpp > gww� gpw > gwp

Following the logic of the ordering of elements,
assume that gww = gpp/k for some risk ratio, k > 0. Fur-
ther assume that gpp, gww� gwp, gpw so that the number
of infections generated within a compartment greatly
exceeds the number generated between compartments.

With these assumptions, G is effectively a diagonal
matrix and the basic reproduction number for this system
is the larger of the two diagonal elements.

When k� 1, R0 is dominated by gpp. This follows
from the fact that the eigenvalues of a diagonal matrix
are simply the diagonal elements of the matrix and the
dominant eigenvalue will be largest diagonal element. If
the diagonals are greater than the off-diagonals, as we
have assumed, G approximates a diagonal matrix. If more
infections are generated within the poor compartment,
more effort should be allocated to controlling the epi-
demic in that compartment.

This discussion has focused on k� 1. It is desirable
to know the sensitivity to changes in the within- and
between-compartment reproduction numbers. Differenti-
ate the characteristic equation for the eigenvalue of the
next-generation matrix with respect to gpp and scale the
derivative by gpp/R0, yielding a proportional sensitivity,
or elasticity, of R0. Elasticities have the convenient prop-
erty that the sum across all elasticities is unity. The elas-
ticity of a particular element therefore represents the
relative effectiveness of a perturbation for reducing R0.
Assuming that R0 > 1, Figure 4 plots the elasticity of R0

with respect to gpp. As k increases, the elasticity of R0

with respect to a change in gpp approaches unity. Increas-
ing the number of expected cross-compartment infections
slows this approach, but the qualitative behavior remains
largely the same. If k = 2 and transmission is dominated
by the diagonal, more than 50% of the total elasticity is
accounted for by gpp, as indicated by the dashed line.

The upshot of this simple model is that when there is
structured heterogeneity in infection risk in a population,

FIGURE 4 Elasticity of R0 with respect to element gpp of the

next-generation matrix
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the most efficient way to bring R0 below the epidemic
threshold is to focus control on the highest-risk segments
of the population. In the context of COVID-19, this
involves providing resources that allow frontline workers,
especially those living in conditions that make sheltering-
in-place effectively impossible. Providing free rooms in
unused hotels to allow self-isolation for contacts who live
in crowded housing and replacing lost wages for self-iso-
lators are two specific policies for reducing gpp. Mitigating
the conditions that make meat-processing plants and
prisons vessels for super-spreading could also dispropor-
tionately reduce the epidemic (Leclerc et al., 2020).

4.2.1 | Pollution and differential
exposure

Pollution and poor ventilation are additional drivers of
transmission and disease severity for COVID-19, and the
distribution of exposure to both pollution and poorly-ven-
tilated homes and work environments is highly unevenly
distributed across populations. Including environmental
exposures to high levels of pollution in formal models
may be essential for understanding the differential
impact of infection on different groups. Wu, Leung,
et al. (2020) and Wu, Nethery, et al. (2020) attribute an
8% increase in death rate to just 1 μg/m3 in PM2.5 expo-
sure increase, according to an analysis of COVID-19-
attributed deaths across 3000 US counties, which is con-
sistent with pollution effects on death rates during the
2003 SARS (Cui et al., 2003). In Italy, the northern prov-
inces at the epicenter of the country's epidemic have
some of the worst air pollution in Europe, and chronic
air pollution was significantly associated with COVID-19
cases across the 71 Italian provinces (Fattorini &
Regoli, 2020). In both the US and Italy, long-term expo-
sure had a more robust influence on COVID-19 death
rates than short-term exposure.

African Americans mortality rates from COVID-19
are more than three times as high as white Americans
(Gross et al., 2020), and death rates in the hardest-hit cit-
ies are disproportionately higher in non-white majority
communities, regardless of residential density (Disease
Control and Prevention, 2020b). Among several aspects
of elevated risk that African Americans face, such as
denser communities, greater reliance on public transpor-
tation, and a higher rate of front-line employment, long-
term chronic pollution exposure is an important contrib-
uting factor (Brandt, Beck, & Mersha, 2020).

Pollution increases disease severity and risk of death
from respiratory illness by instigating chronic inflamma-
tion and cell damage in lung tissue as well as suppressing
the early immune response (Wu, Leung, et al., 2020; Wu,

Nethery, et al., 2020). While the hyper-inflammatory and
respiratory and cardiac problems associated with
COVID-19 are by now well documented, it is still unclear
how the SARS-CoV-2 virus interacts with particulate
matter (PM) during seroconversion and over the course
of disease (Fattorini & Regoli, 2020) and whether PM
directly inhibits the lungs' ability to clear the virus
(Brandt et al., 2020).

4.3 | Transmission heterogeneity and
network sampling

Since R0 is an expectation of secondary cases, we can
think about how the distribution of secondary cases
might affect R0 and subsequent dynamics of an infection.

COVID-19 is characterized by robust reproduction
numbers. There have been many estimates now, with the
majority of them falling between R0 = 2 − 3. However,
the early spread of the infection was, at times, halting.
Why? In a provocative preprint, Grantz, Metcalf, and
Lessler (2020) suggested that this might be due to trans-
mission heterogeneity. These results have since been con-
firmed by Endo et al. (2020).

Coronaviruses consistently feature substantially
skewed transmission (Munster, Koopmans, van Dore-
malen, van Riel, & de Wit, 2020). That is, coronavirus
transmission dynamics are characterized by the presence
of super-spreading events (Lloyd-Smith, Schreiber, Kopp,
& Getz, 2005). While the presence of super-spreading is
obviously not good, there is an upside. In particular, the
presence of a few super-spreaders can drag the expected
number of secondary cases (which is what R0 is at the
outset of an epidemic) out toward the tail that they
define. The only way you can have super-spreading
events, where dozens of secondary cases are created, and
a value of R0 on the order of 1 to 3 (or even 4-6) is for
most people to infect a very small number of new people.
The distribution of secondary cases is highly skewed and
the mode probably less than one (Leclerc et al., 2020).

The intuition behind Grantz and colleagues' explana-
tion of the epidemiological facts of COVID-19 is that, if we
assume that the expected number of secondary cases a per-
son is likely to generate is a feature of their physiology or
the circumstances of their infection (ie, it can be thought
of as a trait they take with them) and you pick people at
random with respect to this distribution, you are likely to
sample mostly people who are not going to generate many
secondary cases. As a result, the infection chains emanat-
ing from them are more likely to die out quickly and the
amount of epidemic dispersal will be limited.

This interpretation has a lot in common with the
problem of sampling networks. Indeed, it can actually be
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thought of as a network-sampling problem. It is well
known that a random sample of the vertices of a network
will lead to a biased sample of the network's edges, and
vice-versa (though this can be solved by re-weighting the
sample, see Gjoka, Kurant, Butts, & Markopoulou, 2010).
This is the basis of the famous friendship paradox, first
noted by Feld (1991), namely that your friends have more
friends than you do. When the degree distribution of a
graph is heterogeneous, and your sample is random with
respect to vertex, you will likely under-sample the edges of
the graph, making the induced subgraph arising from the
sampling possibly far less connected than the parent graph.
Consider a model for a network that is a graph comprised
of a set of vertices and edges connecting vertices:
G= V ,Ef g. An undirected edge between two individuals i
and j indicates the possibility of transmission across the
dyad. We will start with a random graph of 100 vertices
drawn from a skewed degree distribution and then draw
a random sample of 20 vertices from this graph.

The sampled graph (right panel of Figure 5) is far less
connected than that of the graph of the population from
which it is sampled (left panel of Figure 5). There is noth-
ing inevitable about this. If we had the ability to sample
edges or perhaps weight our sample by the degree distri-
bution (as, eg, in some adaptive network sampling
schemes: Salganik & Heckathorn, 2004), we could gener-
ate a more strongly-connected sample (Figure 6).

The model we have presented here is somewhat
abstract, but it is not difficult to see how we could repre-
sent the number of potential secondary transmission
events from a given case as a network. An epidemic is
indicated if the resulting graph is strongly-connected.
Sampling the vertices of the heterogeneous network
(analogous to moving away from the epidemic focus in
Wuhan) leads to an unconnected subgraph and the epi-
demic dies out. These insights take on paramount impor-
tance as we move into later parts of the pandemic where
stuttering transmission will again be an issue and a dis-
proportionate fraction of all new cases are likely to arise
from super-spreading events.

These methods were actually developed to count sub-
populations where a sampling frame was not available
(eg, the number of individuals who have contracted
HIV). Another practical use of network sampling
methods would be to estimate the number of infected
and recovered individuals of COVID-19. See Gile and
Handcock (2010) for thorough review.

4.4 | Networks, control, and behavior
change

Networks represent a way to conceptualize human inter-
action and disease spread. They can also provide strate-
gies for transmission mitigation (eg, social distancing).
Network models have been used to understand some of
the heterogeneity in transmission that interact non-
trivially with spatial heterogeneity of human populations
(see Thomas et al. (2020)). Further, network models can

FIGURE 5 Heterogeneous

network of 100 nodes and sampled

network from a random sample of 20

nodes

FIGURE 6 Degree-weighted sample of 20 nodes, showing that

sparseness of the sampled network is not inevitable but arises from

the bias introduced by sampling edges from a sample of nodes
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be used to understand how fragile social distancing strat-
egies can be.

Another counterfactual to consider is that of the net-
work effects of social distancing. In Figure 7 we illustrate
the Goodreau, Pollock, Birnbaum, Hamilton, and
M (2020) effect of social distancing which they refer to as
“can't I visit just one friend?”. We start this exercise with
no social distancing (Figure 7A), which we illustrate with
a random network that has a mean degree of five people
(eg, each person in the network has on average five inter-
actions which could lead to spread of COVID-19). Next,
we consider the case of perfect social distancing (Fig-
ure 7B). In this case, we go from almost everybody being
reachable/transmissible (largest component divided by
total population) of 100 to 0. Now, let's consider allowing
for essential workers. We set this to 10% of the population
(Figure 7C). This results in an increase of 0 connections
to 46. What happens if we loosen social distancing just a
little more, such that we allow just one household mem-
ber to mix with another household member? This results
in an increase from 46 to 98 or almost a factor 4 times as
many potential infections. Given the minimal exposure
requirement for the spread of COVID-19 this sort of

simulation shows that it does not take much mixing to
break down the effect of social distancing.

4.5 | Seasonality of COVID-19?

There has been much speculation about the underlying
environmental drivers of COVID-19, particularly whether
the COVID-19 epidemic will wane in the summer
months. It is too early to know if SARS-CoV-2 has a sur-
vival advantage in cold weather, but the strong seasonal-
ity of endemic respiratory viruses, particularly influenza
and other endemic (non-SARS) coronaviruses (CoV), in
temperate countries is instructive. However, important
differences in virulence and immunological interactions
limit the utility of these inferences (Yang et al., 2018).
Additionally, the environmental drivers of established
respiratory viruses are either understudied (CoVs) or
highly complicated (influenza), and are themselves active
areas of scientific debate. Nevertheless, epidemic forecast-
ing is a critical public health tool because accurate fine-
grained models can steer life-saving changes in policy
and outreach (Kramer & Shaman, 2019).

(A) (B)

(C) (D)

FIGURE 7 Social distancing

pushes the network to forefront of

COVID-19 modeling. We start with

no social distancing, figure A;

focusing on a network with mean

degree of 5. Contrast this with an

empty network (perfect social

distancing) in B. Now, let's consider

some loosening of social distancing

with essential works at 10% of the

population, C. Last, we what if we

allow household mixing of just one

household member (at random) we

get figure D
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The seasonality of influenza and CoV is well
established in temperate conditions. Although, the
United States Centers for Disease Control (US CDC)
only began reporting CoV infection rates in 2018, CoV
illness in the US shows strong peaks in January and
February with low summer incidence (Shaman &
Galanti, 2020). It is unclear whether transmission of
endemic seasonal respiratory viruses mostly disappear
during the summer months in temperate countries and
are then reintroduced by long-distance travel from loca-
tions with active outbreaks, or if undetected transmis-
sion carries on at low levels until weather conditions
favor virus survival and accelerated transmission. Sha-
man et al. (2018) investigated virus presence among
ambulatory adults in New York City during the low
epidemic months (April-July) and found that 7.2% of
participants were positive for at least one respiratory
virus, and 21.5% of detected viruses were seasonal CoV.
Depending on how symptomaticity was defined, they
estimated between 57.7%and 93.3% of virus-positive
people were asymptomatic. Even if there is a significant
drop in virus circulation in the Northern Hemisphere's
summer months, ongoing asymptomatic shedding can
be an important contribution to a second wave as
weather becomes colder again. If low-level transmission
in the global north coincides with re-openings of econo-
mies and national borders as well as cooler weather in
the Southern Hemisphere, we could see a dangerous
shift in SARS-CoV-2 distribution toward countries with
poorer public health infrastructure, denser urban settle-
ments, and more remote rural populations with erratic
access to hospital care. As Buckee et al. (2020) point
out, large-scale mobility, not just local travel, is impor-
tant to incorporate into COVID-19 models, particularly
because SARS-CoV-2 is not (yet) an endemic virus, and
its ongoing potential to cause epidemics worldwide will
be driven by long-distance travel as well as by local
livelihood-related mobilities. Buckee and various col-
leagues who are among the co-authors in Buckee
et al. (2020) have pioneered the inclusion of remotely-
sensed movement data into epidemic models (eg, Bharti
et al., 2011; Buckee, Tatem, & Metcalf, 2017;
Wesolowski et al., 2012, 2015, 2017; Wesolowski,
Buckee, Engø-Monsen, & Metcalf, 2016).

Relative to CoV, influenza surveillance and case
report data for the US are more robust and have been col-
lected for a longer time period, so forecasts of annual epi-
demic peaks and intensities are relatively accurate and
well-calibrated. Furthermore, extensive retrospective data
enable better modeling of environmental effects so that
the specific weather elements that contribute to epidemic
forcing can be teased out. Transmission dynamics models

have shown that small differences in transmissibility aris-
ing from seasonal variability can have surprisingly large
effects on the overall dynamics and intensity of transmis-
sion, matching observed epidemic patterns remarkably
well (Altizer et al., 2006; Dushoff, Plotkin, Levin, &
Earn, 2004). High mean relative humidity and tempera-
ture are frequently identified as the key weather elements
that drive influenza epidemics. However, as noted by
Shaman and Kohn (2009), absolute humidity predicts
influenza virus transmission and survival much better
than relative humidity. Increased transmission occurs
when humidity and temperature decrease because a
rapid shift toward colder, drier air favors longer virus sur-
vival in water droplets and, as temperatures drop, people
spend increasing time indoors, where crowding and poor
ventilation exacerbate transmission risk (Chattopadhyay,
Kiciman, Elliott, Shaman, & Rzhetsky, 2018). In the US,
these epidemic conditions are best met in the southeast-
ern states and transmission moves from coastal areas
toward denser inland areas, following local travel pat-
terns. This suggests that COVID-19 transmission is likely
to increase again in the late autumn and winter of 2020
to 2021.

The seasonality of respiratory virus transmission is
less clear for tropical and sub-tropical regions, partly
because seasonality is less defined than in temperate
regions, and partly because of the lack of longitudinal,
fine-grained data. We can look at the state of influenza
forecasting to understand the challenges of modeling epi-
demic seasonality in general but particularly for tropical
countries. Most reliable influenza forecasting is con-
ducted for the US and other temperate countries, while
forecasts for tropical and sub-tropical regions are less
accurate and less frequently done, with the exception of
Hong Kong and Singapore, whose public health infra-
structure and case surveillance and reporting abilities are
not broadly representative of the socio-economic condi-
tions of many tropical countries.

Unlike the clear seasonal waves observed in temper-
ate regions, in tropical and subtropical countries, influ-
enza peaks occur sporadically throughout the year. Links
between influenza and tropical weather patterns have
been inconsistently identified, with rainy season being
the most consistent correlate (Shek & Lee, 2003; Viboud,
Alonso, & Simonsen, 2006), but how precipitation drives
viral circulation in tropical regions remains unclear, with
some studies finding increased viral transmission during
rainy and humid seasons and others not (Yang
et al., 2018). Variance in data quality and availability
restrict meaningful multi-national modeling and a lot of
the disparities in findings come from country-specific
models.
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5 | DISCUSSION

In this paper, we have tried to summarize an already
dauntingly large literature on the relevance of formal
models of transmission dynamics to understanding the
COVID-19 pandemic. Models are powerful tools for
understand complex phenomena. Most of the simple
models we have discussed in this review are best viewed
as producing counterfactuals. When we say that the final
size of an epidemic where R0 = 2.5 is 89.3% of the total
population, there is an implicit if-nothing-changes caveat.
This leads to a common problem with the interpretation
of models, namely, that they don't make good predic-
tions. Many models, particularly early in an epidemic are
not attempting to make predictions per se. They are try-
ing to present counterfactuals for various possible scenar-
ios. This said, simple models can be surprisingly robust
over the long-term, as highlighted by the recent preprint
by Carletti, Fanelli, and Piazza (2020) and made for long-
term demographic forecasting by Goldstein and
Stecklov (2002).

R0 must not be naturalized as a quality of the patho-
gen. It always encapsulates both pathogen and host
behavior and social structure (Arthur et al., 2017), even if
only in a rudimentary way. Because every transmission
event for an infectious disease ultimately has a social
cause, the social behavior of the hosts must be incorpo-
rated into models of disease transmission and measures
of epidemic thresholds. This social behavior may be as
simple as assuming random encounters such that the
product of the densities of susceptible and infectious indi-
viduals in the population, as in the simple SIR model.
However, as we have outlined above, models can incor-
porate structure ranging from simply subdividing the
number of compartments in an SIR-like model (as in the
inequality example depicted in Figure 4) to the explicit
description of fine-grained social structure as in the net-
work examples. There remains a great deal of room for
improved input for the best way to incorporate structure
and behavior from anthropologists and human biologists.

We have sought to engage the human biology com-
munity in this review by framing the results in terms of
important research areas within human biology and bio-
logical anthropology. In particular, we have focused on
results relating to population heterogeneity, health
inequalities, and differential environmental exposures in
particular. We hope that this review can serve as a
launching point for human biologists, with their unique
focus on the holistic bio-social causation and integration
with evolutionary explanation, into work on the dynam-
ics of respiratory (and other) infectious diseases of peo-
ple, including COVID-19. There remain major challenges
to incorporating both human behavior and social

structure into epidemic models (Arthur et al., 2017; Funk
et al., 2015), and the COVID-19 pandemic has
highlighted the large stakes associated with developing
adequate models. We believe that human biologists can
play an important role in meeting these challenges.
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