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Scientific inquiry about the transmissibility of infectious diseases is largely based on the
basic reproduction number (R0) and its derivations. This paper describes a mechanism
overlooked in most conventional analyses, in which a disease can endogenously
“compete” with itself when multiple infectious individuals race to infect the same
susceptible individual, thereby reducing the effective reproductive rate. Utilizing
an empirically calibrated network epidemiological model of wild-type COVID-19
diffusion in its early pandemic, we show that the mechanism would be expected to
reduce its reproductive rate by an average of 39%. Simulation experiments further
identify different types of endogenous competition mechanisms and their relative
effect sizes. We highlight the incorporation of endogenous competition mechanism as
a necessary step in realistically modeling the reproduction process of infectious diseases.

social network | reproduction number | diffusion | COVID-19

A core goal in the study of infectious diseases is to understand their transmissibility in pop-
ulations, a question that receives substantial attention from scientists, policy-makers, and
the general public—a goal whose importance was underscored by the recent COVID-19
pandemic (1, 2). The starting point for studying disease transmission is typically the
basic reproduction number (R0), which indicates “the number of secondary cases which
one case would produce in a completely susceptible population” (3). An insightful and
mathematically simple concept, R0 has been usefully employed to study a wide range of
infectious diseases (4–8). Nevertheless, R0 is a frequently misinterpreted concept (9): It
does not inform us about the number of secondary cases that are actually produced by
one infectious case in the disease diffusion trajectory, but its expectation in a hypothetical
world where all but one individual in the population is susceptible, and where the one
infective is selected uniformly at random. In practice, neither condition holds for long
(if at all), placing limitations on the appropriate use of R0 in an evolving outbreak.
The gap between R0 and realized reproductive rates is illustrative of the more general
gap between transmissibility as treated in highly stylized, mass-action models and in
mechanistic models that can better account for local processes that impact the course of
diffusion over time. These latter models demonstrate the presence of often nonobvious
mechanisms that can lead to substantial effects on real-world reproductive rates; in this
paper, we elucidate several of these mechanisms.

As the above suggests, considerable effort has gone into making the analysis of
the reproduction process more “realistic.” The literature has focused on two major
approaches. The first direction loosens the “everyone-is-susceptible” assumption of R0,
accounting for the fact that the proportion of the susceptible population is a time-
varying and space-varying property. This measurement, named the effective reproduction
number (Re), has become the gold standard in assessing the epidemic growth over
time in the epidemiological community (1) (though R0 continues to be widely used
elsewhere). A second more ambitious approach is extending reproduction analysis from
mass-action or compartment models to network models that account for the discreteness
and heterogeneity of real-world contact patterns. Classic compartment models divide the
population into various statuses (e.g., susceptible, exposed, infectious, and recovered in
SEIR models), with population members of one compartment moving to another at fixed
rates; in typical models, compartments are further segmented by demographic and/or
geographical features, with contacts among pairs of individuals within and between
compartments being treated as uniform random events with constant mixing rates. Like
particles in solution, individuals are presumed to enjoy random “collisions,” which may
(when an infective bumps into a susceptible) lead to transmission. Neither the individuals
nor the transmission events are modeled directly, being instead treated as a bulk process.
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This allows for great simplicity and computational efficiency and
can work well where populations are large and random mixing
holds. In other cases, however, both the number of contacts
per individual and the network structure of those contacts can
vary widely within the population, creating strong deviations
from bulk mixing models. Moreover, when contact networks
are persistent on the timescale of infection, local “exhaustion”
of available susceptibles becomes possible (even when others are
present in the population). These factors can greatly alter the
diffusion process (10–13). Network models account for these
effects by explicitly modeling individuals within the population
and their pattern of contacts, allowing for both heterogeneity and
exhaustion (12–14).

The use of network models to study disease diffusion has
revealed numerous insights that are not evident in a compart-
mental view [e.g., the role of partnership concurrency in HIV dif-
fusion (15, 16)]. Here, we examine a mechanism—endogenous
competition—whose implications have to our knowledge not
been fully characterized in existing work on disease transmission.
The basic notion is simple: Endogenous competition occurs
when multiple infectious hosts have the opportunity to transmit
a pathogen to the same susceptible individual (thus forcing the
disease to “compete” with itself for the transmission opportunity).
Intuitively, we may suspect that the strength of reproduction
will be reduced by the level of endogenous competition—
which can vary over time and space, and across subpopulations.
Further, it seems evident that measurements that do not adjust
for endogenous competition (e.g., R0 and Re) will overstate
transmission rates in real-world settings. As we show, both
intuitions are correct. Further, multiple types of endogenous
competition exist, with different relative effects on transmission
rates. Accounting for them leads to very different expected
diffusion rates (by a factor of approximately 40% in the case
studied here) than would be expected under a less explicit
treatment.

To examine the mechanisms of endogenous competition,
we employ disease diffusion trajectories using a network epi-
demiological model empirically calibrated for wild-type (WT)
SARS-CoV-2 in the early phase of the COVID-19 pandemic
(12, 13). The model generates a spatially-embedded contact
network among all residents in King County (encompassing
Seattle), WA, USA, and then simulates SARS-CoV-2 diffusion
in the network based on biometrics of the wild-type virus and
calibrated by reported death cases. We then calculate a series of
reproduction numbers from the basic R0 to the actual number
of realized secondary cases based on the diffusion trajectory.
Comparing these numbers reveals how multiple mechanisms—
including endogenous competition—influence the transmissi-
bility of SARS-CoV-2. Expanding on this, we design and test
metrics based on contact network topology to explain the
trend and scale of these effects. Last, we utilize a simulation
experiment of ideal-type network structures to compare two types
of endogenous competition mechanisms. Analyses show that
endogenous competition reduces the transmissibility of SARS-
CoV-2 on average by 39% versus a naive baseline, and this impact
is heterogeneous over time in contact networks. As a result, the
realized reproduction number (Rr) is significantly lower than
those described by R0 and Re, and Rr actually stays around 1
for the majority of the trajectory. We conclude by discussing
the implications of the disease diffusion process, reflecting on
existing metrics and methods, and suggesting directions for future
data collection and empirical analysis work on infectious disease
transmissibility.

Reproduction Metrics

To bridge the stylized model with a realistic disease diffusion
process, we define the following four reproduction numbers,
moving from the simplest basic reproduction number to the
realized reproduction number, expressing each in network terms
(Fig. 1). With the exception of the basic reproduction number,
each of these quantities can be defined at the level of an individual
infective, or (averaging over infectives) the level of the population.
As we show, considerable insight can be obtained by considering
reproduction at the individual level.

We begin with the well-known basic reproduction number,
described in network terms as

R0 = d̄ · p0, [1]

where d̄ is mean degree (the average number of contacts, or
in network terms, alters, of an individual, ego, in the contact
network), and p0 is the probability that an infection passes from
an infected ego to a susceptible alter; we call this the “basic
probability.” In the calibrated study case, d̄ = 10.3, p0 = 26.8%,
and R0 = 2.7–that is, the average individual has just over
10 contacts, the marginal probability of infecting a contact is
approximately 27%, and a randomly infected individual would
thus be expected, on average, to produce about 2.7 new cases in
a completely susceptible population.

Incorporating network structure and time dimension, the
second metric, the dynamic basic reproduction number (Rd (t)),

 Scalar R0 (stylized global average)

 Dynamic Rd(t) (time-varying local contacts)

 Effective Re(t) (shrinking susceptibility)

 Realized Rr(t) (endogenous competition)

R0=4p0

Rd(1)=3p0 Rd(2)=5p0 Rd(3)=4p0

Re(1)=2p0 Re(2)=3p0 Re(3)=2p0

E[Rr(1)]=1.33p0 E[Rr(1)]=1.75p0 E[Rr(3)]=1.5p0

 infectious ego
 susceptible alters
 non-susceptible alters
 infectious competitors

Fig. 1. Schematic illustration of four reproduction metrics and the mecha-
nisms considered. Note that every metric except the realized reproduction
number (Rr(t)) is an expectation, but Rr(t) is an observed metric subject
to diffusion stochasticity. Hence, we can only illustrate the expected value
of Rr(t) with the assumption that every infectious individual has the same
chance of infecting their alter.
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B

C

Fig. 2. Reproduction rates in the King County trajectory. Columns from Left to Right show dynamic basic reproduction numbers, effective reproduction
numbers, and realized reproduction numbers; points show individual-level quantities, with population moving averages shown as solid red lines (grand means
over all time points shown via dotted red lines). R0 (green dashed line) and the unit reproductive rate (i.e., 1) are shown as references. Row (A) shows the
reproduction numbers themselves over the course of the trajectory; note both their heterogeneity within and across time and the systematic deviation of
moving averages from R0. Row (B) shows the ratios between successive reproduction numbers (in order of “realism”). Particularly at the individual level, we
see large differences between these quantities. Row (C) shows line plots of the moving averages of ratios from (B), with solid blue curves showing explanatory
proxies (see text). In all three cases, the explanatory proxies exactly match or closely approximate the observed ratios.

refers to the expected number of secondary cases produced by an
individual infected at time t in a completely susceptible popula-
tion. WhileR0 is a scalar that describes the average transmissibility
of disease of the whole system, Rd (t) is a time-varying vector that
describes the local transmissibility of disease based on an infected
individual’s network structure. Letting d(t) be the number of
alters of a given individual infected at time t, we have

Rd (t) = d(t) · p0. [2]

Averaging this quantity over the set of all individuals infected
at a given time provides a dynamic equivalent to R0.

Loosening the assumption that all but the ego are susceptible,
the third metric, the effective reproduction number (Re(t)), has
the same definition of Rd (t) except that the population is now
partially susceptible. In other words, Re(t) considers the fact that
some individuals are no longer susceptible by the time the ego
gets infected. Letting ds(t) be the number of susceptible alters of
a given individual infected at time t, we have

Re(t) = ds(t) · p0. [3]

As before, this is defined in terms of a particular infective;
taking the average over the set of all infectives at time t leads to
a population-level property.

The effective reproduction number is the finest-grained
measurement of reproduction used by most literature. Yet, Re(t)
still carries a strong assumption that all susceptible individuals
will remain susceptible throughout the infectious period of the

infected ego. This ignores the possibility that a susceptible alter
can be infected (or “scooped”) by other infectious individuals
before the ego infects them. This is another way of understanding
the endogenous competition mechanism: Multiple infected
individuals can be in “competition” to infect the same susceptible
individual when they are all connected with that susceptible. To
examine whether and how much this mechanism reduces the
transmissibility of the disease, we will compare Re(t) with the
realized reproduction number Rr(t). Rr(t) is the number of cases
that are actually produced by an individual infected at time t.
Note that the first three metrics are all theoretical quantities re-
garding the expected transmissibility under certain assumptions,
but the realized reproduction number is an observed quantity,
directly derived from the disease diffusion trajectory.* As with
the others, the average of the Rr(t) over infectives provides a
population-level index.

From Basic Reproduction Number to Its
Realization

Fig. 2 shows the simulated reproduction trajectory of COVID-19
in King County using the metrics defined above. A key takeaway
is the high level of heterogeneity in transmissibility across all met-
rics in Panel (A), and their deviation from R0 (dotted green line).

*The spirit of the realized reproduction number is similar to the “actual reproduction
number” in prior literature (17, 18), but the actual reproduction number is an estimated
number defined in compartment models, while the realized reproduction number here is
an observed number that can be directly summarized by examining the diffusion trajectory
in network models.
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This heterogeneity happens not only at the individual level (as
demonstrated by the wide point clouds) but also over time, as
reflected by variation in the population average transmission rates
(red curves). These highly variable transmission patterns result
from both heterogeneity in the underlying contact networks
and from endogenous competition (10, 12), properties that
are difficult to capture with compartment models and that are
obviously omitted when using a scalar such as R0 to summarize
transmission across the whole system.

The Dynamic Reproduction Number Deviates from R0 Due to
Bias in Who Gets Infected. We now consider each transmission
metric in turn. We begin with the dynamic R0, Rd (t) (Fig. 2, first
column), representing the hypothetical infection potential among
those actually infected. Beyond its heterogeneity, we observe that
the global average is actually 24.4% higher than the scalar R0.
This is because not every individual is ultimately infected, and
the uninfected do not contribute to the dynamic R0 at any stage.
As expected, individuals who get infected have more contacts, on
average, than the whole population. In fact, by taking the ratio
between Eqs. 1 and 2, we can see that the ratio between dynamic
R0 and the scalar R0 is simply d(t)/d̄ , the ratio between the
degree of the individual infected at time t over the mean degree
of the whole population. This explanation of the gap between
Rd (t) and R0 is demonstrated by the Left-most panel in row C,
which shows d(t)/d̄ as an explanatory proxy for Rd (t)/R0; the
coincidence of the two curves visually confirms what is obtained
from the ratio of equations above. Substantively, we can see that
the dynamic reproduction number is higher when the disease
penetrates into subpopulations that are well connected, while it
drops when infecting those with fewer contacts.

The Effective Reproduction Number Deviates fromRd(t) Due to
Local Exhaustion of Susceptibles. The Middle column of Fig. 2
shows the trajectory of the most frequently used time-varying
metric, the effective reproduction number (Re(t)). Re(t) is on
average smaller than both the scalar R0 and the dynamic R0. As
the Middle figure shows, on average, the effective reproduction
number is roughly half (51.8%) of the dynamic R0. Taking the
ratio of Eqs. 2 and 3, we can see that Re(t)/Rd (t) = ds(t)/d(t):
The ratio between effective reproduction number and dynamic
R0 at each time point is the proportion of the contacts to
the focal infective that are susceptible at time t. In row (C),
we plot the average of this quantity as an explanatory proxy
against Re(t)/Rd (t); the coincidence of the two curves confirms
the source of the difference in the two metrics. We observe
that the ratio between Re(t) and Rd (t) is relatively high at
the beginning of the diffusion, when most individuals are still
susceptible, but it quickly drops to fluctuate around its average,
going high when the disease penetrates into a mostly susceptible
subpopulation, and going low when it spreads “deeper” into a
community that has been penetrated. It should be noted that
the nearly 50% gap between these metrics does not reflect the
global loss of susceptibles in the population (which is much lower
through much of the trajectory), but their local exhaustion in the
communities through which the disease is actively spreading.
Realistic contact networks are far less globally well-connected
than random graphs (the discrete analog of mixing in simple
compartment models), creating myriad “pockets” whose local
infection rates can differ greatly from the population as a whole;
when these pockets are consumed, local infection rates slow
dramatically, despite the availability of susceptibles elsewhere in
the population.

The Realized Reproduction Number Deviates from Re(t) Due to
Endogenous Competition. Perhaps the most striking results lie in
theRight column of Fig. 2, which shows the realized reproduction
numbers (Rr(t)) for the King County trajectory. While all metrics
examined here share a similar shape for their moving average, we
see a further dip from the effective reproduction number to the
realized reproduction number. Indeed, Rr(t) fluctuates around 1
most of the time. While this seems counterintuitive, we note
that the grand mean of Rr(t) over all time must be equal to 1,
because the total number of the cases infected (nominator) is
equal to the total number of the cases ever being infectious
(denominator) (ignoring a small number of patient zero(s) who
were infected from outside the system). Put in substantive terms,
when considered over an entire pandemic, the average number
of secondary cases produced by each case is almost exactly equal
to 1. Of course, this does not rule out periods during which the
mean realized reproductive number is greater than 1–or below
it. Here, we see a very brief period in which Rr(t) � 1 at the
very start of the pandemic, followed by a drop to Rr(t) ≈ 1 with
short-term fluctuations over and under this value.

Comparing the effective and the realized reproduction num-
bers in the third column of row (B) offers further insight:
On average, only 61.5% of the transmissibility predicted by
the effective reproduction number is actually realized. The
ratio varies drastically due to the stochasticity of the diffusion
process and the network heterogeneity. Yet, on average, the ratio
gets lower when the reproduction numbers peak, suggesting
a role for increased competition among infectious individuals
when penetrating into populations with a large number of
connections: For a susceptible individual, the more connections,
the higher the likelihood of having multiple contacts that
overlap in their infectious periods. The moving-average ratio gets
close to one at the later stages, when the number of actively
infectious individuals drops, and the chance of competition
lowers.

To unpack whether and how endogenous competition can
explain the underrealization of reproduction from the prediction
of effective reproduction numbers, we compare an explanatory
proxy based on the endogenous competition model. Detailed
in SI Appendix, this proxy considers the expected probability
of infection as a function of the number of competitors an
infected individual faces when attempting to infect a susceptible
alter. The Bottom-Right panel of Fig. 2 shows that, despite
the stochasticity contributing to great local variation in the
disease diffusion process, the proxy stays close to the average
ratio in its moving average, and effectively reproduces its
temporal trend. This suggests that the endogenous competition
mechanism sufficiently accounts for the discrepancy between
the two reproduction numbers. In other words, the endoge-
nous competition mechanism is a mechanism that lowers the
transmissibility of infectious diseases but has not yet been
captured by existing metrics such as the effective reproduction
number; in our study case, failing to account for this mech-
anism can, on average overestimate disease transmission rates
by 62.7%.

Alternative Sources are More Important than
Alternative Two-Paths for Endogenous
Competition in Diseases Like WT SARS-CoV-2

To further understand endogenous competition, we identify
two mechanisms that can contribute to this phenomenon.
Panel (A) of Fig. 3 illuminates the mechanisms by focusing
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Fig. 3. Comparing two mechanisms behind endogenous competition: alternative sources vs. alternative two-paths. (A) Diagrams illuminating the alternative
sources mechanism and the alternative two-paths mechanism (including independent two-paths and tow-paths that form a clique), where orange nodes
are infectious, green nodes are susceptible, the diamond is the ego, the circle is the alter, and pentagons are competitors. (B) Simulation results of realized
reproduction on a focal dyad as a function of the number of competitors for different mechanisms. Alternative source competitors play a larger role than
alternative two-path competitors.

on the probability of realized reproduction from an infectious
ego to a (focal) susceptible alter. The first mechanism of
competition is the presence of alternative sources, where the
susceptible alter is connected to other infectious individuals,
generating direct competition among all infectious individuals
connected to the susceptible alter. The second mechanism
is alternative two-paths, in which the susceptible alter has
no other infectious neighbors, but some of their alters are
also connected to the infectious ego. This creates two-paths
connecting the infectious ego and the susceptible alter, opening
the possibility that one of these other alters will first become
infected by ego and then “scoop” them by infecting the focal
alter before ego doing so. We show the two most extreme
scenarios for this mechanism, where either none of the shared
contacts are connected (independent two-paths), or all of them
are connected (creating a clique). Panel (B) of Fig. 3 shows
simulation results (setup detailed in Materials and Methods) for
the probability of infection of the focal alter by ego. We see
that increasing the number of alternative sources substantially
reduces the probability that ego will successfully infect the focal
alter, while alternative two-paths have a minimal effect. The
perhaps surprising weakness of the two-path mechanism can
be understood as arising from the fact that having a two-path
“scoop” a direct infection requires: 1) infection occurring over
two edges, which is an event with base probability p2

0 � p0;
and 2) kinetically, the combined time of the two infections
must be smaller than the time that would have been taken by
the direct infection (had the two-path not intervened). While
this suggests that the relative strength of these endogenous
competition mechanisms will depend on both the transmissibility
of disease (p0) and its time schedule, alternative sources can be
expected to dominate whenever p0 is not large (as is true of
a great many diseases). Certainly, for wild-type SARS-CoV-2,
we can see that we are in a regime in which alternative sources
can be expected to be the dominant mechanism of endogenous
competition.

It should be noted that reproduction numbers are only one
of the many tools for characterizing a diffusion process. While
the network structure that facilitates endogenous competition
can undermine the transmissibility of infectious diseases from
a reproduction number view, it may have positive influences
in other aspects of the diffusion. We elaborate this point with
further simulation analyses in SI Appendix.

Discussion

This paper demonstrates the discrepancy between the basic
reproduction number and the realized scale of reproduction
of infectious diseases and the mechanisms that contribute to
this discrepancy. We highlight an overlooked mechanism in
the literature, endogenous competition, that can reduce the
scale of COVID-19 reproduction (relative to the effective
reproductive number) by 39% in an empirically calibrated
network epidemiological model. Simulation experiments show
that the main contributor of endogenous competition is not
alternative paths from an infected to a susceptible but to have
multiple simultaneously infected individuals connected to and
compete in infecting the same susceptible. SI Appendix shows that
while different network structures can yield distinct reproduction
trajectories, endogenous competition consistently undermines
the transmissibility of infectious diseases.

This paper reminds us that reproduction numbers are theo-
retical values whose interpretations are associated with strong
(but often tacit) modeling assumptions; even the effective
reproduction number, which is time-varying and considers the
shrinking susceptible population, carries assumptions of no
endogenous competition, thereby overestimating the transmis-
sibility of disease in realistic settings. Extant literature has posed
caveats in comparing R0 with the threshold 1 to determine the
persistence of disease diffusion (19). This caution also applies to
more sophisticated reproductive indices: Even if one can get the
realized reproduction number Rr , as is shown above, it can stay
close to or even below 1 for an extensive amount of time while
the disease continues to spread, due to the heterogeneity in the
contact structure across individuals and subpopulations.

It is important to bear in mind that simplified metrics are
inevitable when trying to make sense of complex phenomena
or to communicate their behaviors to nonspecialists, and we
continue to find high value in the concept of a “reproduction
number.” However, we would argue that there is a strong need
to caution users of such metrics to fully understand what they
tell us at any given time in an epidemic. It is especially important
to keep in mind the limits of both the theoretical R0 and the
seemingly more well-foundedRe that in contexts such as epidemic
response (where such numbers may be taken as predictive of
the evolution of epidemic, and/or used to evaluate interventions
or otherwise guide policy). Future work should look to collect
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and utilize contact tracing data to empirically evaluate the scale
of endogenous competition. Similar to the progress from basic
to effective reproduction numbers by considering the shrinking
susceptible population, the quantification and incorporation of
the endogenous competition mechanism should be the next step
in achieving a realistic understanding of the disease reproduction
process.

Materials and Methods

Spatially-Embedded Contact Network and Diffusion Model. We adopt the
network data and the disease diffusion model from ref. 12. To summarize,
the network data contain every individual in King County, WA, USA, based on
the 2010 Census, with contacts based on a probabilistic model in which ties
are a decaying function of their residential distance. Locations were based on
households, placed within their Census blocks using a planar Halton sequence
combined with an artificial elevation model (20). The distance between each
pair of individual were then measured and employed to predict their probability
of having a tie based on empirically calibrated spatial interaction functions
employed in prior works (20, 21); a complete description of the modeling
procedure can be found in ref. 12. The generated network contains 608,660
individuals, and each individual on average has 10.3 contacts (a.k.a. the mean
degree), with SD 7.13.

The spatially-embedded contact network offers a realistic approximation
of many aspects of social contact patterns, including realistic mean degree,
nonmonotone degree distributions with heavy upper tails, high transitivity,
within-household clustering, and spatially biased interaction with power-law
tail behavior. To further understand whether and how the reproduction process
depends on certain network features, we replicate the diffusion experiment on
two corresponding networks, a 2K graph (22) and a Bernoulli graph. The 2K
graph has the same population size and the same degree and degree-mixing
distributions as the spatial network but is otherwise uniformly random; it thus
preserves properties related to first and second-order neighborhood sizes, while
randomizing higher-order structure. The Bernoulli graph is a product of further
randomization, where only population size and the mean degree is preserved.
Results of 2K and Bernoulli graphs are reported in SI Appendix.

The disease diffusion model, adopted from ref. 12, uses a continuous-time
individual-level SEIR framework, where each individual has four potential states:
susceptible (never infected and at risk of being infected), exposed (already
infected but not infectious yet), infectious (able to infect their contacts), and
recovered (including death). The algorithm starts with five randomly selected
patient zeros, who are at the state of exposed, and the rest of the population
started at the susceptible state. Based on prior estimates of the wild-type

COVID-19 features before implementation of public health measures including
vaccination and shelter-in-place rulings, the time from exposed to infectious
follows a Gamma distribution with (shape,scale) being (kS = 5.807, �S =
0.948); once becoming infectious, a Bernoulli trial determines the individual’s
fate of recovery or death, with death probability pD = 1.38%. The transition to
recovery and death follow Gamma distributions of (kD = 4.566, �D = 3.984),
and (KR = 5.834, �R = 4.566), respectively. Infection on each edge follows
a Poisson process with rate r = 1/82.87 = 0.012, based on calibration of
King County’s COVID-19 death case in the early pandemic (12). The trajectory is
completed when no further infections are possible.

Simulation Experiments Comparing Two Endogenous Competition
Mechanisms. We first construct a set of networks illustrated in Panel (A) of Fig. 3
where the number of competitors ranges from 0 (no competitor but only the ego
and the alter) to 10. For the alternative sources mechanism, we let both the ego
and the infectious competitor be infected all at time 0, but for alternative two-
paths, the only infected individual is the ego. We then run diffusion simulation
50,000 times for each network, and by definition, the realized reproduction
number for the focal edge ispr , the percentage of the times that ego successfully
transmits the disease directly to the alter. As shown in panel (B), alternative
sources provide a much more powerful source of endogenous competition than
alternative two-paths.

The alternative path mechanism does not necessarily happen via a two-path;
it can be achieved by a longer route, but on average, the longer the path, the
less probability and the slower the infection will happen along it. Since the two-
path mechanism is already ineffective in competing with direct infection, the
longer-paths will be even less competitive (and, in practice, their contribution is
negligible).

Data, Materials, and Software Availability. Replication data are deposited
in Harvard Dataverse (https://doi.org/10.7910/DVN/PCBWO2) (23).
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