Difference between revisions of "Anatomy Pipeline"

From Brain Development & Education Lab Wiki
Jump to: navigation, search
(AC-PC Alignment)
(AC-PC Alignment)
Line 2: Line 2:
  
 
We collect a high resolution T1-weighted image on every subject, and use this image to define the coordinate space for all subsequent analyses. This section describes the processing steps for a subject's T1-weighted anatomy and should be performed before analyzing the rest of their MRI data.
 
We collect a high resolution T1-weighted image on every subject, and use this image to define the coordinate space for all subsequent analyses. This section describes the processing steps for a subject's T1-weighted anatomy and should be performed before analyzing the rest of their MRI data.
==AC-PC Alignment==
+
==AC-PC Aligned Nifti Image==
Data can come off the scanner with arbitrary header information and the subject might not be properly position. So for each subject we start by defining a coordinate frame where 0,0,0 is at the anterior commissure, the anterior and posterior commissure are in the same X and Z planes, and the mid-line is centered in the image. Bob Dougherty wrote a nice tool to help with this. See [https://github.com/vistalab/vistasoft/blob/master/mrAnatomy/VolumeUtilities/mrAnatAverageAcpcNifti.m mrAnatAverageAcpcNifti]. The subject's T1-weighted image should be ac-pc aligned, resliced (preserving its resolution), and saved in the subject's anatomy directory.
+
Data can come off the scanner with arbitrary header information and in parrec format. So for each subject we start by defining a coordinate frame where 0,0,0 is at the anterior commissure, the anterior and posterior commissure are in the same X and Z planes, and the mid-line is centered in the image. Bob Dougherty wrote a nice tool to help with this. See [https://github.com/vistalab/vistasoft/blob/master/mrAnatomy/VolumeUtilities/mrAnatAverageAcpcNifti.m mrAnatAverageAcpcNifti]. The subject's T1-weighted image should be ac-pc aligned, resliced (preserving its resolution), and saved in the subject's anatomy directory.
  
  parrec2nii
+
  parrec2nii -c
 
  mrAnatAverageAcpcNifti
 
  mrAnatAverageAcpcNifti
  
 
==Freesurfer Segmentation==
 
==Freesurfer Segmentation==

Revision as of 20:00, 14 August 2015

We collect a high resolution T1-weighted image on every subject, and use this image to define the coordinate space for all subsequent analyses. This section describes the processing steps for a subject's T1-weighted anatomy and should be performed before analyzing the rest of their MRI data.

AC-PC Aligned Nifti Image

Data can come off the scanner with arbitrary header information and in parrec format. So for each subject we start by defining a coordinate frame where 0,0,0 is at the anterior commissure, the anterior and posterior commissure are in the same X and Z planes, and the mid-line is centered in the image. Bob Dougherty wrote a nice tool to help with this. See mrAnatAverageAcpcNifti. The subject's T1-weighted image should be ac-pc aligned, resliced (preserving its resolution), and saved in the subject's anatomy directory.

parrec2nii -c
mrAnatAverageAcpcNifti

Freesurfer Segmentation