About

The Bush Lab is a research group in the Department of Chemistry and the Biological Physics, Structure & Design Program at the University of Washington. Our research focuses on the development and application of mass spectrometry and ion mobility spectrometry techniques to elucidate the structures and assembly of protein complexes and subcellular machines.

  • Interested in joining the Bush Lab? Click here.
  • Our weekly group meetings are held on Wednesdays at 5:00 PM in CHL 068B.
    • 10/18: Research Updates
    • 10/11: Rae’s Group Meeting
    • 10/4: Cece’s Group Meeting
    • 9/27: PacMass (click link for time and location)
    • 9/20: Meagan’s Group Meeting

ACS Fall National Meeting in DC 2017

Matt Bush presented the following talks at the ACS Fall National Meeting in Washington DC, where he also received the Arthur F. Findeis Award for Achievements by a Young Analytical Scientist.

ANYL 269: Interpreting the collision cross sections of proteins: Insights from ion mobility, unfolding, and folding of ions in the gas phase, as a part of the Analytical Division Award Symposium.

PHYS 322: Effects of charge state on the structures of protein ions: Results from cation-to-anion proton-transfer reactions (CAPTR), as a part of the symposium on Gaseous Ion Chemistry & Surface Reactions.

Congratulations to Kim Davidson for defending her dissertation!

New Publication: Interpreting the Collision Cross Sections of Native-Like Protein Ions: Insights from Cation-to-Anion Proton-Transfer Reactions


Interpreting the Collision Cross Sections of Native-Like Protein Ions: Insights from Cation-to-Anion Proton-Transfer Reactions. Kenneth J. Laszlo, Matthew F. Bush. Anal. Chem. 2017, DOI: 10.1021/acs.analchem.7b01474. (Link)

The effects of charge state on structures of native-like cations of serum albumin, streptavidin, avidin, and alcohol dehydrogenase were probed using cation-to-anion proton-transfer reactions (CAPTR), ion mobility, mass spectrometry, and complementary energy-dependent experiments. The CAPTR products all have collision cross-section (Ω) values that are within 5.5% of the original precursor cations. The first CAPTR event for each precursor yields products Continue reading

New Publication: Structural Dynamics of Native-Like Ions in the Gas Phase: Results from Tandem Ion Mobility of Cytochrome c

Structural Dynamics of Native-Like Ions in the Gas Phase: Results from Tandem Ion Mobility of Cytochrome c. Samuel J. Allen, Rachel M. Eaton, Matthew F. Bush. Anal. Chem. 2017, DOI: 10.1021/acs.analchem.7b01234. (Link)

Ion mobility (IM) is a gas-phase separation technique that is used to determine the collision cross sections of native-like ions of proteins and protein complexes, which are in turn used as restraints for modeling the structures of those analytes in solution. Here, we evaluate the stability of native-like ions using tandem IM experiments implemented using structures for lossless ion manipulations (SLIM). In this implementation of tandem IM, ions undergo a first dimension of IM up to a switch that is used to selectively transmit ions of a desired mobility. Selected ions are accumulated in a trap and then released after a delay to initiate the second dimension of IM. For delays ranging from 16 to 33 231 ms, Continue reading

Congratulations to Ken Laszlo for defending his dissertation!

New Publication: Effects of Solution Structure on the Folding of Lysozyme Ions in the Gas-Phase

Effects of Solution Structure on the Folding of Lysozyme Ions in the Gas-Phase. Kenneth J. Laszlo, Eleanor B. Munger, Matthew F. Bush. J. Phys. Chem. B 2017, 121, 2759–2766. (Link)

The fidelity between the structures of proteins in solution and protein ions in the gas phase is critical to experiments that use gas-phase measurements to infer structures in solution. Here we generate ions of lysozyme, a 129-residue protein whose native tertiary structure contains four internal disulfide bonds, from three solutions that preserve varying extents of the original native structure. We then use cation-to-anion proton-transfer reactions (CAPTR) to reduce the charge states of those ions in the gas phase and ion mobility to probe their structures. The collision cross section (Ω) distributions of Continue reading

Congratulations to Julia Greenwald, who was awarded an NSF Graduate Research Fellowship!

Julia Greenwald, a first year graduate student in the Bush Lab, was recently awarded a National Science Foundation Graduate Research Fellowship! From the NSF:

The NSF Graduate Research Fellowship Program recognizes and supports outstanding graduate students in NSF-supported science, technology, engineering, and mathematics disciplines who are pursuing research-based Master’s and doctoral degrees at accredited United States institutions. (For additional information, click here.)

Congratulations to Sam Allen, who just defended his dissertation!

Prof. Bush to receive the 2017 Arthur F. Findeis Award

Prof. Bush has been named the recipient of the 2017 Arthur F. Findeis Award for Achievements by a Young Analytical Scientist. The Findeis Award is given annually by the American Chemistry Society Division of Analytical Chemistry, to recognize and encourage outstanding contributions to the fields of analytical chemistry by a young analytical scientist. The award will be presented at the 254th ACS National Meeting to be held August 20-24, 2017 in Washington DC. (Link to additional information about the award)

New Publication: Native-Like and Denatured Cytochrome c Ions Yield Cation-to-Anion Proton Transfer Reaction Products with Similar Collision Cross-Sections


Native-like and Denatured Cytochrome c Ions Yield Cation-to-Anion Proton-Transfer Products with Similar Collision Cross Sections. Kenneth J. Laszlo, John H. Buckner, Eleanor B. Munger, Matthew F. Bush. J. Am. Soc. Mass Spectrom. 2017, in press. (Link)

The relationship between structures of protein ions, their charge states, and their original structures prior to ionization remains challenging to decouple. Here, we use cation-to-anion proton transfer reactions (CAPTR) to reduce the charge states of cytochrome c ions in the gas phase, and ion mobility to probe their structures. Ions were formed using a new temperature-controlled nanoelectrospray ionization source Continue reading