Constrained Autonomous Precision Landing via Dual Quaternions and Model Predictive Control

U. Lee, M. Mesbahi

Journal of Guidance, Control, and Dynamics

The problem of powered descent guidance and control for autonomous precision landing for next-generation planetary missions is addressed. The precision landing algorithm aims to trace a fuel-optimal trajectory while keeping geometrical constraints such as the line of sight to the target site. The design of an autonomous control algorithm managing such mission scenarios is challenging due to fact that critical geometrical constraints are coupled with the translational and rotational motions of the lander spacecraft, leading to a complex motion-planning problem. This problem is approached within the model predictive control framework by representing the dynamics of the rigid body in a uniform gravity field via a piecewise affine system taking advantage of the unit dual-quaternion parameterization. Such a parameterization in turn enables a six-degree-of-freedom motion planning in a unified framework while also admitting a quadratic cost on the required control commands to minimize propellant consumption. A novel feature of the proposed approach is the development of convex representable subsets in the configuration space in terms of unit dual quaternions. The stability and reachability issues of the corresponding piecewise affine model predictive control approach are then discussed. Numerical simulations are presented to demonstrate the effectiveness of the proposed methodology for autonomous precision landing.

Links: