University of Washington, Department of Chemistry


Metabolomics across biological kingdoms

Multikingdom signaling — such as signaling between fungi, bacteria, and plants — plays a key role in the environment and agriculture; symbiotic microbes significantly boost crop yields, and pathogenic microbes can infect or contaminate entire batches of crops. Similarly, signals such as oxylipin immune mediators and microbial secondary metabolites contribute significantly to human health and infections. Advanced culture models are required to recreate the salient features of these complex multikingdom systems, and novel sample preparation methods are required to isolate key effector molecules from the chemical milieu. We combine environmental and organotypic culture models with novel methods for small molecule isolation and advances in mass spectrometry to study the metabolomics of signaling in diverse microbiomes.




Steroid synthesis in development

Steroidogenesis, the synthesis of steroids, is a critical driver of normal development. Many toxins and toxicants (synthetic compounds) have been found to inhibit or hijack steroidogenic pathways, resulting in birth defects or increased risk for steroid-responsive cancers, including prostate and breast cancer. We develop in vitro microscale assays to identify and study compounds that interfere with steroidogenesis. One of our goals is to determine how the action of these compounds is affected by microenvironment, such as extracellular matrix composition and supporting cell types cocultured with steroidogenic cells.



Establishing links between small molecule production and biological function

We develop functional readouts within our engineered in vitro microenvironments to better understand the effects of small molecules on biological processes. For example, angiogenesis (the formation of blood vessels from existing blood vessels) plays an important role in development, wound healing, and many diseases. We have developed a microscale cell-based assay that responds to complex pro- and anti-angiogenic factors with an in vitro readout for vessel formation. We are incorporating this angiogenesis assay with microscale metabolomics methods to identify the chemical factors regulating blood vessel formation in disease.