Submicrosecond Time Resolution Atomic Force Microscopy for Probing Nanoscale Dynamics

Abstract

We propose, simulate, and experimentally validate a new mechanical detection method to analyze atomic force microscopy (AFM) cantilever motion that enables noncontact discrimination of transient events with similar to 100 ns temporal resolution without the need for custom AFM probes, specialized instrumentation, or expensive add-on hardware. As an example application, we use the method to screen thermally annealed poly(3-hexylthiophene):phenyl-C-61-butyric acid methyl ester photovoltaic devices under realistic testing conditions over a technologically relevant performance window. We show that variations in device efficiency and nanoscale transient charging behavior are correlated, thereby linking local dynamics with device behavior. We anticipate that this method will find application in scanning probe experiments of dynamic local mechanical, electronic, magnetic, and biophysical phenomena.

Publication
NANO LETTERS
Rajiv Giridharagopal
Rajiv Giridharagopal
Chief scientist at the Ginger lab

Raj is the ‘Cheif Scientist’ and a senior research coordinater at the Ginger lab

David Ginger
David Ginger
B. Seymour Rabinovitch Endowed Chair in Chemistry

David Ginger is the the B. Seymour Rabinovitch Endowed Chair in Chemistry at the University of Washington, and the PI of the ginger group