Phase Transfer of Large Anisotropic Plasmon Resonant Silver Nanoparticles from Aqueous to Organic Solution

Abstract

We describe the phase transfer of large, anisotropic, silver nanoparticles (similar to 50-100 nm edge length) from water to polar organics such as alcohols, acetone, dimethylformamide and to nonpolar hexanes. We transferred the silver nanoparticles to the polar organic solvents via their precipitation in water by centrifugation and redispersion in organics. Using scanning electron microscopy (SEM) imaging and UV-vis extinction spectra, we confirmed that there was little to no shape change in the nanoparticles upon transfer to the polar solvents. The nanoparticles were stable for months in the polar organics. We also transferred the nanoparticles to hexanes with up to 75% phase transfer efficiency by using sodium oleate as a surfactant. We found the extinction spectra and transmission electron microscopy (TEM) images of the nanoparticles were similar in water and hexanes, indicating that exchange into hexanes resulted in all only slight change in shape. The nanoparticles were stable for at least 10 days in hexanes tinder appropriate conditions. The phase transfer efficiency decreased with an increase in the size of the nanoparticles. These results open the possibility for the conjugation of large, anisotropic plasmon resonant silver nanoparticles with organic dyes or their blends with conjugated polyelectrolytes for fundamental optical studies and applications.

Publication
LANGMUIR
David Ginger
David Ginger
B. Seymour Rabinovitch Endowed Chair in Chemistry

David Ginger is the the B. Seymour Rabinovitch Endowed Chair in Chemistry at the University of Washington, and the PI of the ginger group