Built-In Potential in Conjugated Polymer Diodes with Changing Anode Work Function: Interfacial States and Deviation from the Schottky-Mott Limit

Abstract

We use electroabsorption spectroscopy to measure the change in built-in potential (V-BI) across the polymer photoactive layer in diodes where indium tin oxide electrodes are systematically modified using dipolar phosphonic acid self-assembled monolayers (SAMs) with various dipole moments. We find that V-BI scales linearly with the work function (Phi) of the SAM-modified electrode over a wide range when using a solution-coated poly(p-phenylenevinylene) derivative as the active layer. However, we measure an interfacial parameter of S = e Delta V-BI/Delta Phi < 1, suggesting that these ITO/SAM/polymer interfaces deviate from the Schottky-Mott limit, in contrast to what has previously been reported for a number of ambient processed organic-on-electrode systems. Our results suggest that the energetics at these ITO/SAM/polymer interfaces behave more like metal/organic interfaces previously studied in UHV despite being processed from solution.

Publication
JOURNAL OF PHYSICAL CHEMISTRY LETTERS
David Ginger
David Ginger
B. Seymour Rabinovitch Endowed Chair in Chemistry

David Ginger is the the B. Seymour Rabinovitch Endowed Chair in Chemistry at the University of Washington, and the PI of the ginger group